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Abstract. The data parallel programming language construct of a “for-
each” loop is proposed in the context of hierarchically nested arrays
and unbalanced k-ary trees used in high performance applications. In
order perform an initial evaluation, an implementation of an automatic
parallelization system for C++ programs is introduced, which consists
of a preprocessor and a matching library for distributed memory, shared
memory and mixed model parallelism. For a full compile time dependence
analysis and a tight distributed memory parallelization, some additional
application knowledge about alignment of arrays or indirect data access
can be put into the application’s code data declarations. Results for a
multigrid and a fast multipole benchmark code illustrate the concept.

1 Introduction

High performance computing should be about a single application of large scale
such that both memory size and computing time of a parallel computer limit
the precision of the solution computable. A single algorithm operates on a large
data set, distributed over the local memories of the parallel processors. Data
structures may be uniform or unstructured grids, cells or trees, that is large
containers of relatively small, numerical data. It is usually not a good idea to
move a substantial amount of data to another local memory or even to redistrib-
ute data during computation. Hence a data parallel programming style seems
to be natural with operations performed on all elements of the large container.
Further, the operations have to operate almost on a local neighborhood only,
to be efficiently parallelizable. The “owner computes” paradigm guarantees lo-
cal memory store operations, such that non-local load operations are the main
source of inter process communication.

Parallelization of a sequential code can be done in several steps. First, local
and global data dependence analysis can be applied. However, currently they
fall short for more complicated data structures and require additional specifi-
cation [1]. The second step of parallelization is a scheduling and mapping step.
Independent operations have to be combined to larger blocks which are mapped
to processes or threads. The mapping problem can be far more serious, because
again global dependence analysis of the code is required. Once the data structures
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are instantiated, scheduling and mapping can be written as a large graph prob-
lems.However, at compile time the graph is unknown and solutions are available
only in very simple cases such as arrays and uniform grids with regular access
patterns. This is implemented in numerous data parallel array constructs.

Global dependence analysis of imperative sequential codes is unlikely to solve
the scheduling and mapping problem at compile time in general. However, there
often is application knowledge, such as geometric properties within a grid or tree,
sufficient to enable an efficient parallelization by hand. It is not very economic,
however popular to create a full featured parallel programming language for each
application area and to incorporate this knowledge. On the other hand, standard
library design for common languages is not able to forward this knowledge to
an optimizing/parallelizing compiler. Hence there is a current trend to combine
library and compiler or some kind of optimizing preprocessor in order to allow
for application specific knowledge for parallelization in an abstract programming
environment. Such effort include the use of expression templates and extensible
source-to-source compilers/optimizers and tools like Rose [2]. A more general
concept of application specific code optimization are telescoping languages [3].

The goal of the article is to discuss a preprocessor/library system for par-
allelization of array and more complex tree data structures common in high
performance computing. The sequential programming language is extended by
a single data parallel “foreach” construct together with data iterators defined
by the library. Data structure dependent parallelization knowledge is confined
to the library, application specific parallelization knowledge such as alignment
or non-local references can be specified in the application code.

A model implementation uses C++ class libraries and a set of perl scripts,
the m4 macro processor and the Gnu g++ compiler to do the local dependence
analysis and the source-to-source transformations. Targets currently are distrib-
uted memory computers with MPI message passing, shared memory computers
with pthreads and hybrid systems with MPI on processes and pthreads to spawn
several threads per process. Hierarchies of grids in a multigrid code and unbal-
anced k-ary trees in a fast multipole code are used to demonstrate the concept.
The emphasis of this paper is on the parallel programming style, especially for
parallel tree algorithms, rather than its model implementation, which can eas-
ily be improved. We do acknowledge a large number of alternative solutions for
parallel array style programming, which again is not the main subject here. We
do not advocate the use of scripts and preprocessors for parallel computing,
but would like to foster the development of more general and easier ways to
incorporate domain specific knowledge into the parallelization of codes. How-
ever, even more sophisticated solutions will never be able to perform automatic
parallelization of all possible codes.

2 Data Parallel Programming Paradigms

We consider different target architectures. The current preprocessor scans stan-
dard C++ code augmented by the “foreach” construct and emits multi-threaded
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code for shared memory computers with pthreads, message passing code for dis-
tributed memory computers with library calls based on MPI 1, and a combi-
nation of message passing between processes and multi-threading within. The
message passing calls and parts of the data iterators are encapsulated in a C++
run-time library.

The strategy for distributed memory computing is based on the following
considerations:

– Distribute large data structures. Each element is mapped to one process
(owner), which is the only process to modify it: “owner computes”. The
mapping is implemented in the library and is application specific.

– Replicate small data structures and small numbers of operations thereon for
each process instead of sending data.

– Use as few send and receive operations as possible. transfers.
– Transfer only data necessary. Perform a dependence analysis at compile-time

to determine which data needs to be sent.

Basic message passing operations needed are matching point-to-point send/
receive and global reduction operations. The overall performance of the par-
allel code relies on the pre-computed minimal communication pattern compared
to dynamic distributed-shared-memory and related techniques.

Shared memory versions with global address space are easier to implement.
The parallel iterator on large data structures with static mapping first cuts the
data into several pieces of similar size, and then starts a thread which executes
the iterator on each piece and finally waits for the threads to finish. Data is
partitioned according to memory layout. Each thread is allowed to modify its
own piece of data only, with the exception of global reduction of scalars. Such
reductions are done locally for each thread, with a final reduction over all threads.

3 Array Operations

For illustration purposes only we begin with well known for-loops and distributed
arrays. We use a block distribution and restrict ourselves to the important part of
nearest neighbor communication. This occurs for Finite Difference discretizations
on cartesian grids. Each element of an array is associated to a grid point which
itself represents a geometrical location. The resulting compact difference stencils
represent a finite geometric interaction distance between grid points. Hence it
is a good idea to decompose the geometric domain for parallelization, which is
done by an array block distribution. Of course, a parallel compiler is not able to
figure this out without global code analysis. Hence, the application programmer
provides the geometric interpretation implicitly for parallelization through the
specification of a block distribution.

3.1 Sequential Semantic

We begin with a code snippet in C++ creating a one dimensional grid, an iterator
for all interior grid points and two arrays on the grid. The grid is defined by an
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index set, the interval (0, n+1(. Arrays are allocated according to this index set.
Further we introduce an iterator on a subset of the grid, here (1, n(, in order to
treat boundary indices separately.

int n = 64;
Grid1 *g = new Grid1(0, n+1);
Grid1IteratorSub it(1, n, g);
DistArray1<double> x(g), y(g);
double e = 0.;
ForEach(int i, it, x(i) += ( y(i+1) + y(i-1) )*.5; e += sqr( x(i) ); )

The “foreach” loop based on the index set of the iterator expands to the
sequential code

for(int i=1; i<n; i++) {x(i) += (y(i+1) + y(i-1))*.5; e += sqr(x(i));}

but provides the semantic of independent operations, and consists of arbitrary
(reentrant) C++ code including nested function calls. The result is guaranteed
to be independent of the sequence. For the reduction of the variable e this
is only true up to floating point rounding. A two dimensional grid example
including different iterators inside and on the boundary reads like this. The grid
is represented by a set of index tuples, here (0, n+1(×(0, n+1(. Iterator ita visits
all tuples in (1, n(×(1, n( and iterator ita all tuples except for (1, n(×(1, n(.

Grid2 *g2 = new Grid2(0, n+1, 0, n+1);
DistArray2<double> z(g2), a(g2);
Grid2IteratorSub ita(1, n, 1, n, g2);
ForEach(‘int i, int j’, ita, ‘z(i,j) = ( a(i-1,j-1) + a(i+1,j+1) +

a(i-1,j) + a(i+1,j) + a(i,j-1) + a(i,j+1) )/6.;’)
Grid2IteratorOutside itb(1, n, 1, n, g2);
ForEach(‘int i, int j’, itb, ‘z(i,j) = 0.;’)

Basically, the nesting of the i and j loops and the execution order is not
specified. The “foreach” syntax including comma separator and ‘ ’ quotation
marks are due to an m4 preprocessor step and could be changed to semicolon
and {} brackets for more C style. Of course there are many different ways to
express this including array operations.

3.2 Code Analysis

In the current implementation a sequence of preprocessing steps identifies the
variables and types used in the “foreach” loop, checks for data and loop depen-
dence (including inter procedure analysis) and issues warnings if the code does
not seem to be parallel, emits communication operations such as send/receive
and reduce, transforms loop code and finally creates C++ source code. The code
can be compiled with a run-time library which provides the implementations of
grids, arrays and the remaining parts of the iterator. We briefly comment on
some rationales.

Replicated data, i.e. scalars and small data structures allocated on each pro-
cess can either be read-only (store is disallowed) in a loop or a reduction variable



Data Parallel Iterators for Hierarchical Grid and Tree Algorithms 629

(simple load is disallowed). In the case of a reduction, special code is created for
thread and/or message passing environments.

Distributed data container and iterators ought to match. Assume that the
iterator and the arrays involved share the same index space and distribution.
Then it is easy to detect the disallowed cases of non-local store (violates the
owner-computes-rule), references to elements more distant than direct process
neighbors (violates nearest neighbor communication) and loop carried depen-
dence (non-local load together with local store). Only output-dependence for
global objects (e.g. file descriptor cout) is allowed with non deterministic out-
put order. Non-local load operations trigger appropriate send/receive message
passing code, which is executed prior to the “foreach” loop.

The model can be generalized to non-neighbor communication, which raises
the questions of appropriate data distributions. For indirect addressing see the
following chapter on trees.

3.3 Arrays of Different Shapes

The computational model for arrays so far can be extended relaxed to arrays
and iterators based on different grids. We are aiming at the multigrid application
with a set of nested grids to be discussed later. A notation of grid alignment is
used which is slightly different than the HPF guarantees a relationship between
the distributions of the arrays. In order to use a fixed communication scheme, a
finer grid is created aligned to a coarser one using a mapping function. Further,
to be able to compute the communication patterns at compile time, the mapping
is also passed to the “foreach” loop as a C++ template type.

To be more precise, assume two one dimensional arrays, a base array with
integer index space [n0, n1) ⊂ ZZ and another, possibly larger array with index
space [m0, m1). We define a (truncated) affine monotone mapping π : ZZ → ZZ,
which can be written as π(i) = �(i − k)/m� with constant m ∈ IN, k ∈ ZZ. Each
index i ∈ [n0, n1) of the base array is mapped uniquely to process p(i) ∈ IN0. A
grid [m0, m1) is said to be aligned, iff index j ∈ [m0, m1) is mapped to process
p(π(j)). The mapping and an example code, simplified versions of the following
application multigrid code’s restriction and prolongation operations, looks like
this:

class fine { public: int map(int i) {return i / 2;} } f;
Grid1 *gf = new Grid1(0, 2*i+1, g, &f);
DistArray1map<double, fine> z(gf);
ForEach(int i, it, x(i) = z(2*i)*.5 + ( z(2*i-1) + z(2*i+1) )*.25; )
ForEach(int i, it, z(2*i) = x(i);

z(2*i+1) = ( x(i) + x(i+1) )*.5; )

The first “foreach” loop triggers a left process fetch for the array z on the
finer grid, while the second one triggers a right fetch for array x, while still being
a local store operation under transformation π.
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4 Tree Operations

Now we consider the main target of the paper, namely algorithms on tree data
structures with the same “foreach” loop syntax. For alternative ways to write
tree iterators see [4]. With a fast multipole summation of particle-particle in-
teractions in mind, a k-ary tree represents a hierarchical decomposition of the
computational domain with particles at the leafs of the tree according to their
geometrical location. The tree can be written as a directed acyclic graph start-
ing from a root node. A useful data partition in distributed memory starts with
a coarse sub-tree from the root node which is replicated on each process. The
remaining nodes form a forest of trees, with each tree mapped to one process.
The mapping may combine trees geometrically or by some graph partitioning
scheme, see [5].

4.1 Communicationless Tree Traversal

The following code snippet shows part of the tree declaration, but hides the
library’s tree implementation.

class tree : public KAryTree<class tree, 2> {
public: // generic binary tree provides tree* child(int);
complex<double> m, l, f, x;

... };
tree *root = new tree;

Tree creation proceeds by (parallel) insertion of particles or (parallel) sort-
ing according to some partitioning scheme, where algorithms of different types
are involved. Geometric domain decomposition, graph partitioning, space-filling
curves and other techniques [5] are available to partition the data in an initial
step or after a number of (time-) steps e.g. in a particle simulation. We consider
iterators for tree traversal only.

TopDownIterator<tree> down(root);
ForEach(tree *b, down, b->f = b->l; )
ForEach(tree *b, down, ‘
for (int i=0; i<2; i++)

if (b->child(i)) b->child(i)->l += b->l; ’)

The order of execution is no longer arbitrary, but partially ordered, in this
case top down from root to the leaves, such that lots of parallelism is exposed.
Operations on the replicated coarse tree are executed on all processes and op-
erations on the remaining trees are executed by the respective owners. The first
“foreach” loop shows a local assignment completely independent of the execution
order. The second one performs a local store at the child nodes, such that a strict
parent before child order has to be enforced. Different orders of load and store
operations which lead to loop carried dependence trigger warning messages of
the preprocessor using path matrix dependence analysis [1]. Except for possible
global reduction operations no parallel communication is needed.
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4.2 Bottom-Up Communication

A bottom up, leaf to root execution order is shown in the next example.

BottomUpIterator<tree> up(root);
ForEach(tree *b, up, ‘
for (int i=0; i<2; i++)

if (b->child(i)) b->m += b->child(i)->m; ’)

Now, the processes first execute the operations on their own sub trees in a
children before parent order. A communication step at the replicated coarse
tree’s leaf nodes is necessary to update them, which currently uses a global mes-
sage passing gather operation. Afterwards the operations can be executed on
all processes on the coarse tree. The preprocessor determines variables to be
transferred (here: m). The library does the packing and un-packing. Additional
communication would be needed for global reduction operations. Non-local store
or different load operations leading to loop dependence would again trigger warn-
ing messages. The shared memory implementation performs a synchronization
step instead of the communication, with coarse tree operations done by a single
thread.

4.3 Communication Within a Geometrical Neighborhood

Besides parent to child and children to parent data flow, fast summation tech-
niques also rely on neighborhood data on all tree levels. However, the nodes
actually needed are a small fraction of the full tree and are often determined geo-
metrically. Assume that the operation on node i requires data of ‘neighbor’ node
j, which we denote by relation i ∧ j. Each fine tree node i is mapped to process
p(i). In a communication step, data of nodes

⋃
{j| i∧j, p(i) = p1, p(j) = p2} has

be send from p2 to p1. In order to do this efficiently, a hierarchical hull relation
i � j is needed with i ∧ j ⇒ i � j and i � j ⇒ parent(i) � j and i � parent(j). Using
relation � on the coarse tree representation of the data partition is sufficient
and each process is able to compute a superset of nodes to be transferred. Such
relations are available for many tree codes and one might try to construct them
based on more abstract specifications [6].

The following statements within class tree declaration define the relation �
fetch, which guards all accesses to nodes pointed to by elements of the interac-
tion list inter.

Require( list<tree*> inter, fetch );
double x0, x1;
int fetch(tree *b) { return (x0==b->x1) || (x1==b->x0); }

Statement ‘require’ both declares the variable inter and attaches the relation
fetch to it. The following code shows a tree iterator using indirect addressing.

ForEach(tree *b, down, ‘
for (list<tree*>::const_iterator i = b->inter.begin();

i != b->inter.end(); i++)
b->l += log(abs(b->x - (*i)->x)) * (*i)->m; ’)
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Each process collects all nodes defined by � on the coarse tree’s leafs and may
be needed by another process and forwards these. The preprocessor determines
the variables actually needed (here: x and m) and looks for loop dependencies.
The implementation proceeds with the tree traversal. During the creation of the
interaction list for example, no data except for the tree structure is needed.

5 Applications

Basically we want to demonstrate the feasibility of the proposed way of express-
ing parallelism in numerical array and tree codes. It is essential to see some test
cases can be written and translated to lower-level parallel code this way. The
communication patterns, the number and volume of messages and the placement
of thread synchronization points are identical to hand written code based on the
same parallelization strategy. Since such a parallelization is known to be efficient
for the given applications, we do not explore in detail the scalability for large
numbers of processors or different hardware platforms. A direct comparison to
a hand written parallelization is not expected to give new insight at this stage
of development.

First we consider a test example for hierarchical arrays. The NAS multigrid
benchmark code Fapin [7] implements a geometric multigrid V0,1-cycle with one
post-smoothing step for a Poisson equation on a set of nested three-dimensional
cartesian grids with constant coefficients. The Fortran77 code was ported C++
using the distributed array classes and run for larger data sets (fine grid 5133)
than originally conceived. All message passing and multi-threaded timings are
reported for an eight-processor (4 dual-core) AMD64 at 1.8GHz with Scientific
Linux 4.1 and Gnu g++ compiler 3.4.3 in 64bit address mode binaries, opti-
mization ‘O3’. Compared are timings for Mpich (shmem device) and the native
pthread library, see Table 1 left. The mapping of MPI processes and shared
memory threads onto the four physical processors and their two processing cores
is done dynamically by the operating system.

The parallel speedup on eight processor cores indicate that both different
strategies, message-passing (shown vertically) and threads (shown horizontally)
work almost equally well with slight advantages for the local address space
message-passing. This advantage is probably due to a strong processor to MPI-
process binding compared to an arbitrary mapping of processors at each syn-
chronization point of the multi-threaded implementation with effects on access
to and caching of local memory banks. This seems to outweigh message passing
overhead, which is limited to the transfer of a small fraction of all data. Parallel
efficiencies are well above 70% and seem to be limited by the memory bandwidth
rather than less efficient coarse grid computations. The measured times for two
and four processors involved showed larger variations in different runs due to
operating system scheduling, with minimum times shown in the table. Without
idle processors the effects vanish. Additional slackness due to more jobs than
processors does not improve the numbers significantly, with slight improvements
for additional message-passing processors.
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Table 1. Parallel speedups of the message-passing (> 1 processes), multi-threaded
(> 1 threads), and hybrid (> 1 processes and > 1 threads) program versions on
8 processor cores. Multigrid test case on a nested set of 3D arrays (left) and 2D adaptive
fast multipole test case (right).

threads per process 1 2 4 8

no. of processes 1 1 1.50 2.44 5.27
2 1.92 2.51 5.58 5.70
4 2.38 5.77 5.57 5.67
8 5.91 5.63 5.76 5.80

1 2 4 8

1 1 1.85 3.59 6.71
2 1.94 3.63 6.80 2.87
4 3.91 7.64 6.79 4.28
8 7.79 7.76 7.78 7.73

The second test case covers a hierarchical tree algorithm. Based on parts of
the two-dimensional adaptive fast multipole C code FMM of the shared memory
Splash-2 benchmarks [8], a C++ implementation using the distributed quad-tree
was developed. For reasons of simplicity we consider only at most one particle
per leaf cell, using a multipole Laurent series and a local polynomial with 20
complex coefficients each. The tree is partitioned on balanced coarse trees both
for message-passing and for multi-threading, although the tree populated with
2 · 106 particles is unbalanced and the tree implementation works for arbitrary
partitions. Measured are the times of one field evaluation by the fast multipole
method. Parallel load-balancing and tree creation like in [5] could be inserted
here additionally, at an initial step and after a couple of multipole evaluations,
but involve algorithms of different types (e.g. parallel sorting or embarrassingly
parallel) not discussed here. A parallel Barnes-Hut algorithm could be imple-
mented similar to the fast multipole method, but is of higher complexity. The
timings were made on the eight-processor system like before. The results are in
Table 1 right.

We see again efficient parallelization both for message-passing and for multi-
threading with larger advantages for local address space message-passing. Ex-
tremely high 97% parallel efficiency are obtained for 8 processes and any num-
ber of threads per process. Due to irregular memory access patterns, the shared
memory version is slightly slower. Again we obtain large variations in measured
times for the partially loaded computer with less than 8 jobs. For the 8 thread
case in message passing (2 and 4 processes) we obtain some reproducible timing
anomalies. The overall parallel efficiency of the tree code is extremely good as
to be expected for large trees of this type.

6 Outlook

We have demonstrated that automatic parallelization does work even for hier-
archical algorithms and data structures in high performance computing with a
parallelization strategy similar to the ones used for parallelization by hand. How-
ever, domain or application specific language extensions were necessary, which



634 G. Zumbusch

in this case were provided by a combination of a source-to-source preprocessor
and a dedicated library.

The parallelism detected so far has been used for coarse grain parallelism.
Within a job it is currently not used further. A possible extension would be to
exploit the dependence analysis also for code optimization of memory access pat-
terns for hierarchical memory, instruction level parallelism, software-pipelining
and for techniques like hyper-threading.

The “foreach” loops and data parallel iterators may also be implemented by
a fully fledged C++ source-to-source translator instead of the current scripting
solution, which would certainly be an improvement. The concept of telescoping
languages would include to have the parallel iterator programming style inter-
operable with other (parallel) libraries and language extensions. Furthermore,
we would like to see easier ways to exploit application specific knowledge for the
parallelization in the future.

We would like to thank the anonymous referees for their helpful comments.
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