
On Greedy Graph Coloring
in the Distributed Model

Adrian Kosowski and �Lukasz Kuszner�

Department of Algorithms and System Modeling,
Gdańsk University of Technology, Poland

Abstract. In the paper we consider distributed algorithms for greedy
graph coloring. For the largest-first (LF) approach, we propose a new
distributed algorithm which is shown to color a graph in an expected
time of O(Δ log n log Δ) rounds, and we prove that any distributed LF-
coloring algorithm requires at least Ω(Δ) rounds. We discuss the quality
of obtained colorings in the general case and for particular graph classes.
Finally, we show that other greedy graph coloring approaches, such as
smallest-last (SL) or dynamic-saturation (SLF), are not suitable for ap-
plication in distributed computing, requiring Ω(n) rounds.

1 Introduction

Problem definition. We discuss the vertex coloring problem in a distributed
network. Such a network consists of a set V of processors and a set E of bidi-
rectional communication links between pairs of processors. It can be modeled
by an undirected graph G = (V, E). We denote n = |V |, m = |E| and for each
vertex v define its open neighborhood N(v) = {u : {u, v} ∈ E} and vertex de-
gree degG v = |N(v)|. In order to distinguish neighbours of higher degree, we
will use the symbols N>(v) = {u ∈ N(v) : deg(u) > deg(v)} and similarly
N≥(v) = {u ∈ N(v) : deg(u) ≥ deg(v)}.

To color the vertices of G means to give each vertex a positive integer color
value in such a way that no two adjacent vertices get the same color. If at most k
colors are used, the result is called a k-coloring. In many practical considerations,
such as code assignment in wireless networks [1], it is desirable to minimise the
number of used colors. The smallest possible positive integer k for which there
exists a k-coloring of G is called the chromatic number χ(G). This value is
bounded from above by Δ + 1, where Δ denotes the maximum vertex degree of
the graph.

Model of computation. We assume the common model used widely in pre-
vious research on the subject [3,11,16]. Moreover, we assume neither any global
parameters known a priori for any vertex in a graph, nor unique identifiers. We
allow each vertex of the graph to know only its own local state and local states

� Research supported by the State Committee for Scientific Research (Poland) Grant
No. 4 T11C 047 25.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 592–601, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Greedy Graph Coloring in the Distributed Model 593

of neighboring vertices. To measure time complexity we use the number of syn-
chronized rounds as such a measure is used in most cited material, even though
the algorithms discussed here may be adapted for the asynchronous model.

When evaluating the performance of a random distributed coloring algorithm
A on a graph G there are at least two random variables of interest: CA(G), the
number of colors used by the algorithm to color the graph G, and TA(G), the
number of rounds used to color G.

A good distributed algorithm is one where CA(G) is close to χ(G), the chro-
matic number of G, and where TA(G) is small relative to the number of vertices
in G. The difference CA(G) − χ(G) can be viewed as a measure of the effective-
ness of the algorithm. It has to be remembered though, that in the general case
approximating χ(G) within a factor of n1/7−ε is an NP-hard problem, for any
ε > 0 [2].

1.1 Preliminaries: Greedy Graph Coloring in a Distributed Context

For a given graph G and the sequence of vertices K = (v1, v2, . . . , vn), we
will use the term greedy coloring to describe the following procedure of color
assignment:

algorithm Greedy-Color(G, K):
for v := v1 to vn do

give vertex v the smallest possible color;

Definition 1. A sequential coloring algorithm is an algorithm which determines
a sequence K of vertices of G, and then colors G using the procedure Greedy-
Color(G, K).

Below we briefly recall the basic principles of the most common sequential algo-
rithms; for a more detailed analysis of sequential coloring see [8,9].

– S algorithm: no assumptions are made concerning sequence K.
– LF algorithm: sequence K is formed by arranging the vertices of graph G in

non-ascending order of degrees,
– SL algorithm: sequence K is formed by iteratively removing a vertex of

minimal degree from the graph and placing it at the end of K.
– SLF (DSATUR) algorithm: sequence K is formed by dynamically arranging

the vertices of graph G in non-ascending order of saturation degrees, where
the saturation degree is the number of neighboring vertices which have al-
ready been colored (ties are broken by choosing the vertex of greater degree).

For some sequential algorithm A, we will call a coloring of a graph an A-coloring
if it may be obtained by coloring the graph greedily using a sequence of vertices
K legal for algorithm A. In particular, it is easy to observe that an S-coloring of
graph G is equivalent to a Grundy coloring [5] of G, i.e. such a coloring, that no
single vertex may have its color value decreased without affecting the color of

594 A. Kosowski and �L. Kuszner

some other vertex. All other sequential algorithms also produce Grundy color-
ings and may also have other, stronger properties (see [9,14,17] for an extensive
characterisation).

Definition 2. A distributed graph coloring algorithm DA is said to be a dis-
tributed implementation of sequential algorithm A (or simply: a distributed A-
coloring algorithm) if all possible results of algorithm DA are correct A-colorings.

1.2 Summary of Main Results

State-of-the-art results. For the general graph coloring problem some ex-
tremely fast algorithms have been described. Linial in [11] gave an algorithm
working in O(log∗ n) time but using O(Δ2) colors. This result was improved
later on by De Marco and Pelc [13]. The algorithm given in the paper uses O(Δ)
colors and O(log∗(n/Δ)) rounds, but local computations are not even polynomi-
ally bounded. On the other hand, a very simple algorithm for coloring arbitrary
graphs with (Δ + 1) colors was given by Johansson [7]. It was proved to run in
O(log n) time, but the number of colors used by the algorithm is close to Δ even
if the graph is bipartite. This is not surprising, since Johansson’s algorithm has
no mechanism for economizing on the number of colors. Further improvements
were proposed in [4]. In that paper a very similar technique was used to compute
a coloring of triangle-free graphs using O(Δ/ log Δ) colors, but the algorithm can
fail for some instances of the problem.

To the best of our knowledge, the first greedy distributed approach to graph
coloring was studied by Panconesi and Rizzi [15]. The authors used a forest
decomposition technique to achieve O(Δ2 log∗ n) time. Recently an algorithm
motivated by sequential LF-coloring was described in [6]. Analysis shows that it
runs in O(Δ2 log n) time. However, it sometimes leads to colorings which are not
LF-colorings, so the described algorithm is not a distributed implementation of
the LF algorithm according to the Definition 2.

Our contribution. In Section 2 we describe a new approach to distributed
LF-coloring, showing an algorithm based on iterated maximal independent set
construction with O(Δ log n logΔ) expected runtime, which is shown to be nearly
optimal and improves earlier results from [6,15]. In Subsection 2.3 we briefly dis-
cuss the quality of colorings obtained using the proposed algorithm and compare
it to its sequential counterpart. In Section 3 we show that every distributed im-
plementation of the LF algorithm requires Ω(Δ) time, whereas the SL and SLF
approaches may in fact for some graphs require Ω(n) rounds to color.

2 A Distributed Implementation of the LF Algorithm

Before discussing the details of the distributed implementation of the LF algo-
rithm, we present an equivalent characterization of a correct LF-coloring. For a
given coloring of G, let IS(d,c) ∈ V denote the independent set of vertices of G
of degree d and colored with color c.

On Greedy Graph Coloring in the Distributed Model 595

Lemma 1. An assignment of colors to G is a correct LF-coloring iff for all
1 ≤ d, c ≤ Δ + 1 the set IS(d,c) is a maximal independent set in the subgraph
H(d,c) of G induced by the set of vertices

(⋃
ci≥c IS(d,ci)

)
\ N

(⋃
di>d IS(di,c)

)
.

Proof. (⇒) Consider a coloring obtained by an arbitrary sequence of the LF al-
gorithm. Clearly, IS(d,c) is an independent set. By contradiction, suppose that
the set IS(d,c) is not maximal and can be extended by some vertex v of H(d,c).
This implies that v is of degree degG v = d and has some color c(v) > c, which
means that it is adjacent in G to a vertex u previously colored by the LF algo-
rithm with color c, i.e. such that v ∈ N(u) and degG u ≥ d. Hence we either
have v ∈ N(IS(d,c)) or v ∈ N

(⋃
di>d IS(di,c)

)
, a contradiction.

(⇐) It suffices to observe that if a coloring of G fulfills the right hand side of the
lemma, then it may be obtained by using the LF algorithm with the sequence of
vertices: K = (IS(Δ,1), IS(Δ,2), . . . , IS(Δ,Δ+1), IS(Δ−1,1), IS(Δ−1,2), . . . , IS(Δ−1,Δ),
. . . , IS(1,1), IS(1,2)), where the elements of each independent set may be enumer-
ated in arbitrary order. �

We now propose a distributed algorithm in which each vertex v is characterised
by three principal local state variables: c(v) which will store the color of vertex
v at the end of the coloring, d(v) which constantly stores the degree of v in G,
and a binary flag f(v) which specifies whether v has already reached its final
color. Using the terminology from Lemma 1, at any point of the execution of the
algorithm we classify the vertices of G into three categories, depending on the
information currently available to the vertex from its own local state and the
local states of its neighbours:

– v is correctly colored, if v can determine that it will belong to IS(d(v),c(v)) at
the end of the coloring,

– v is actively uncolored, if v can determine that it will not belong to any of the
sets IS(d(v),1), . . . , IS(d(v),c(v)−1), N

(⋃
di>d IS(di,c)

)
, but cannot infer whether

it will belong to set IS(d(v),c(v)) at the end of the coloring.
– v is passively uncolored, if v can determine that it will not belong to any of

the sets IS(d(v),1), . . . , IS(d(v),c(v)−1), but cannot infer whether it will belong
to the set N

(⋃
di>d IS(di,c)

)
at the end of the coloring.

Theorem 1. There exists a distributed graph coloring algorithm using local state
variables c(v), d(v), f(v), such that at any stage of execution each vertex belongs
to exactly one of three categories: correctly colored, actively uncolored and pas-
sively uncolored. Moreover, a correctly colored vertex will remain correctly colored
throughout the rest of the execution.

Proof (sketch). Let us assume the interpretation of the state variables as in the
earlier description. Initially, let c(v) := 1 and f(v) := false. The value f(v) will be
set to true when vertex v becomes correctly colored. Let us assume that through-
out the algorithm the value c(v) will never decrease and may only increase when
f(v) = false and it is certain that v will not belong to set IS(d(v),c(v)).

We will show that under these assumptions it is possible to construct an
algorithm such that a vertex v with f(v) = false is actively uncolored if there

596 A. Kosowski and �L. Kuszner

does not exist a vertex u ∈ N>(v) such that c(u) ≤ c(v) and f(u) = false, or
passively uncolored in the opposite case. Indeed, it suffices that the algorithm
repeatedly performs the following two actions in successive rounds:

1. For each vertex v, if there exists a correctly colored vertex u ∈ N≥(v) such
that c(u) = c(v), increase c(v) by 1 and repeat the step if necessary.

2. For each actively uncolored vertex v, attempt to include v in the independent
set IS(d(v),c(v)). If successful, mark v as correctly colored (f(v) := true).

The inclusion of v in the independent set IS(d(v),c(v)) performed in Action 2 may
only fail if two neighbouring vertices attempt to join the same set simultaneously,
thus implying the need for a separate tie-breaking mechanism. It is easy to see
that Action 1 is performed only for actively uncolored vertices directly after
losing a tie in action 2 and for passively uncolored vertices. Simple inductive
reasoning shows that the earlier assumed condition for identifying passively and
actively uncolored vertices is indeed correct, which completes the proof. �

Assuming that the actions of the algorithm presented in the proof of Theorem 1
are understood as rounds in the distributed model, we observe that during ac-
tion 2 all actively uncolored vertices with the same value of variables d and c
attempt to join the same independent set IS(d,c). For instance, directly after the
initialisation of the algorithm the set of actively uncolored vertices is equal to
the set of vertices of degree Δ, all of which attempt to join independent set
IS(Δ,1). The number of such vertices may be arbitrarily large (even equal to n
in the case of Δ-regular graphs), thus necessitating an efficient approach to the
distributed independent set problem, described in detail in Subsection 2.1.

2.1 Tie-Breaking in the Distributed Independent Set Problem

The problem of constructing a maximal independent set IS by adding subsets of
candidate vertices in successive rounds, encountered in the proof of Theorem 1,
has no deterministic solution in the distributed model. The first efficient prob-
abilistic approach was proposed by Luby [12] for a parallel processing system,
but due to its nature the algorithm may also be applied in a distributed setting.
For a given graph G, let S ⊆ V denote an independent set of vertices and let
Pi ⊆ V \ (S ∪ N(S)) be the set of candidates for inclusion into S in the i-th
stage of the algorithm. The algorithm divides set Pi into three disjoint subsets,
Pi = Wi ∪ N(Wi) ∪ Pi+1, where Wi denotes the independent set of vertices
merged with S at the end of the stage (known as winners, S := S ∪Wi), N(Wi)
is the neighborhood of Wi which will never enter S (known as losers), and Pi+1
is the set of candidates remaining for later consideration. The process continues
until for some k we have Pk = ∅, then IS := S is a maximal independent set,
with respect to the set of all candidate vertices.

The details of the i-th stage of the algorithm may be written as follows. Let
Hi denote the subgraph of G induced by set Pi and let Ei be its edge set. First,
each vertex v ∈ Pi is either assigned local state value r(v) = 0 and transferred
to Pi+1 with probability 1 − 1/(2 degHi

v), or contends for a place in Wi with

On Greedy Graph Coloring in the Distributed Model 597

probability 1/(2 degHi
v). Next, each of the contending vertices v draws a random

number with uniform distribution. A contending vertex v becomes a winner if
r(v) > maxu∈N(v) r(u), and becomes a loser in the opposite case. Luby showed
that the described algorithm fulfills the following property.

Theorem 2 ([12]). Let Di denote the random variable given as the ratio Di =
Ei+1/Ei. Then the mean value of Di is bounded by E[Di] ≤ 7/8.

Observe that for obvious reasons the value of variable Di lies within the range
Di ∈ [0, 1]. Consequently, from the above theorem we obtain the following con-
clusion.

Corollary 1. In each stage of the algorithm, the number of edges in the can-
didate set decreases by not less than 1/16-th part with probability at least 1/15,
Pr[Di ≥ 1/16] ≥ 1/15.

Let us now consider the random variable T describing the number of rounds per-
formed by the maximum independent set algorithm before its completion. Let
random variable Li be defined as Li = log16/15 Ei. Initially, L0 = log16/15 E0 ∈
O(log m) = O(log n). In each stage of the algorithm (which may easily be imple-
mented in the form of three rounds), the value Li − Li+1 is always non-negative
and, by Corollary 1, not less than 1 with probability at least 1/15. Hence we
obtain the following statement.

Corollary 2. The number of rounds T performed before the candidate set is
empty has a probability distribution with mean value E[T] ∈ O(log n) and prob-
ability mass function fT (x), bounded from above for x ∈ Ω(log n) by that of the
negative binomial distribution with a probability parameter of 1/15.

In further analysis it is important to remember that the probability distribution
of variable T is understood in terms of randomly drawn local variables, and is
independent of the structure of sets S and Pi.

2.2 An Algorithm for LF-Coloring in O(Δ log n log Δ) Rounds

A formal description of the proposed LF-coloring algorithm is obtained by com-
bining the approach from the proof of Theorem 1 with the results of consider-
ations from Subsection 2.1. For the values 1 ≤ d, c ≤ Δ + 1 we will in parallel
be constructing the maximal independent sets IS(d,c). At a given stage of con-
struction of set IS(d,c), the set S(d,c) of known elements will consist of vertices
v having c(v) = c, d(v) = d, f(v) = true, while the set P(d,c) of candidates will
consist of actively uncolored vertices having c(v) = c, d(v) = d, f(v) = false. The
complete pseudocode of distributed LF-coloring algorithm DLF is given below.
Implementation details of independent set tie-breaking follow Subsection 2.1,
and we assume that function rnd[a, b] returns an integer with uniform distribu-
tion from the range [a, b]. Note that when implementing the process of contention
for independent set IS(d,c), at most d neighbours contend for one place in the
independent set, thus it is sufficient to assume [0, d4] as the range from which
random values r(v) are drawn, without escalating the number of ties.

598 A. Kosowski and �L. Kuszner

IS(Δ,1) ��

��

IS(Δ,2) ��

��

IS(Δ,3) ��

��

IS(Δ,Δ) ��

��

IS(Δ,Δ+1)

IS(Δ−1,1) ��

��

IS(Δ−1,2) ��

��

IS(Δ−1,3) ��

��

IS(Δ−1,Δ)

IS(2,1) ��

��

IS(2,2) ��

��

IS(2,3)

IS(1,1) �� IS(1,2)

Fig. 1. Illustration of worst-case time ordering of independent set construction

algorithm DLF(G):
Round 0:

f(v) := false; d(v) = degG(v);
Round 3k + 1:

if f(v) = false
then while ∃u∈N≥(v)(c(u) = c(v) ∧ f(u) = true)

do c(v) := c(v) + 1;
Round 3k + 2:

r(v) := 0;
if f(v) = false ∧c(v) < minu∈N>(v){c(u) : f(u) = false}

then if 1 = rnd[1, 2 · |{u ∈ N(v) : d(u) = d(v) ∧ c(u) = c(v)}|]
then r(v) := rnd[0, d(v)4];

Round 3k + 3:
if r(v) > max{u∈N(v):d(u)=d(v)∧c(u)=c(v)} r(u)

then f(v) := true;

Theorem 3. Algorithm DLF determines an LF-coloring of G in O(Δ log n logΔ)
rounds.

Proof. The proof of correctness is complete when we observe that by Lemma 1
finding a correct LF-coloring of G is equivalent to determining maximal indepen-
dent sets IS(Δ,1), IS(Δ,2), . . . , IS(Δ,Δ+1), IS(Δ−1,1), IS(Δ−1,2), . . . , IS(Δ−1,Δ), . . . ,
IS(1,1), IS(1,2). It is a direct conclusion from Theorem 1 that the DLF algo-
rithm does indeed determine these independent sets through the local variables
(d(v), c(v)) of the vertices.

Careful analysis of algorithm DLF shows that for any fixed d and c, the process
of construction of set IS(d,c) is dependant only on the construction of sets IS(di,ci),
for di ≥ d, ci ≤ c. Moreover, vertices once added to an independent set are
never removed from it. Without any time gain we may therefore assume that
the construction of independent set IS(d,c) starts directly after the construction
of sets IS(d+1,c) and IS(d,c−1) is complete. This would result in a time depen-
dency diagram as shown in Figure 1, where a pointer denotes flow of control
after completion of the preceding action. Let T(d,c) denote the random variable

On Greedy Graph Coloring in the Distributed Model 599

describing the number of rounds used for the construction of set IS(d,c). From
Figure 1 it is easy to observe that the anticipated completion time TDLF of the
DLF algorithm is bounded by the expression:

TDLF ≤ (Δ + 1) · E
[

max
1≤d,c≤Δ+1

T(d,c)

]

However, a characterisation of the mass function of the distribution of T(d,c) is
given by Corollary 2. Moreover, this distribution remains the same regardless
of the nature of the constructed independent set, thus making the family of
variables T(d,c) pairwise independent. By bounding the negative binomial distri-
bution from above by the exponential distribution and performing a number of
technical transformations (which we leave out), we obtain the following result:

E
[

max
1≤d,c≤Δ+1

T(d,c)

]
∈ O(log n log Δ)

Thus, we may finally write TDLF ∈ O(Δ log n log Δ), which completes the proof.�

2.3 Quality Characteristics of Distributed LF-Colorings

As a natural consequence of Lemma 1, algorithm DLF produces worst-case col-
orings which never use more colors than the worst-case colorings given by a
sequential implementation of LF. It is for instance known that any LF-coloring
is optimal or near optimal for numerous graph classes, e.g. complete k-partite
graphs, caterpillars, crowns, bipartite wheels [9]; as a result, algorithm DLF also
performs well for all these graph classes. As a matter of fact, it is easy to observe
that the worst case performance of DLF is exactly the same as that of LF, by
the following fact (which we leave without proof).

Corollary 3. A coloring of graph G is an LF-coloring iff it is a DLF-coloring.

However, the sequential LF and distributed DLF algorithms may have a differ-
ent probability of achieving a given coloring, thus affecting their average-case
performance. Here we confine ourselves to an experimental comparison of the
average number of colors used by LF and DLF for random graphs of different
order, edge density and average vertex degree, the results of which are presented
in Table 1. It can be clearly seen that the number of colors used by both algo-
rithms is nearly identical, though as a rule marginally smaller for the sequential
algorithm. Both LF and DLF clearly outperform all non-greedy algorithms based
on the assignment of random colors from the range [1, Δ + 1].

3 Complexity Bounds on Distributed Greedy Coloring

We will now show that the most popular sequential coloring algorithms impose
strong lower bounds on the expected computational time in a distributed setting.
First, consider the SL and SLF algorithms. Both of them exactly color paths

600 A. Kosowski and �L. Kuszner

Table 1. An experimental average-case comparison of the sequential and distributed
LF-coloring algorithms. The tests were conducted for a sample of 100 uniform edge
probability random graphs of fixed order n and edge density ϕ = m/(n

2) (left table) or
mean vertex degree � = 2m/n (right table), each of which was colored 10 times.

n ϕ Δ CLF CDLF TDLF

100 0.001 1.21 2.00 2.00 9.67
0.005 2.81 2.09 2.11 12.14
0.025 7.00 3.42 3.48 15.68

500 0.001 3.63 2.44 2.52 15.57
0.005 8.43 3.95 3.97 19.21
0.025 24.24 7.67 7.71 33.73

2500 0.001 9.61 4.00 4.00 22.59
0.005 26.51 7.99 8.00 37.67
0.025 91.73 21.07 21.02 91.21

n � Δ CLF CDLF TDLF

1000 4 11.79 4.63 4.68 22.87
20 35.83 10.06 10.08 44.47

100 132.38 29.49 29.61 117.57
5000 4 13.23 4.99 5.00 26.71

20 38.53 10.25 10.30 48.88
100 138.22 29.28 29.30 127.54

25000 4 14.44 5.00 5.00 29.92
20 41.51 10.73 10.88 51.40

100 142.71 29.82 29.82 134.81

and rings, hence all distributed implementations of SL and SLF have the same
property. Linial [11] proved that the exact coloring of a ring requires Ω(n) rounds,
so we obtain the following conclusion.

Corollary 4. Any distributed implementation of SL or SLF requires Ω(n) time.

Now, let us consider the LF algorithm. We will show that any distributed imple-
mentation of LF algorithm requires Ω(Δ) rounds. To achieve this, we construct
a family of graphs Gd with diam(Gd) = d and Δ(G) = 2d. A representative of
such a family is depicted in Figure 2. Vertices v0, v1, . . . , vd induce a path of
length d. Some additional components are connected to particular vertices to
ensure that vertex vi obtains a color d − i + 1 in each LF-coloring of Gd, that is
component Kr depicts a complete graph with r vertices and a bold line between
such a component and vi illustrate that each of the vertices of Kr is connected
to vi. Similarly, when two components Kr1 and Kr2 are connected, each vertex
from Kr1 is connected to each vertex from Kr2 , thus forming a clique Kr1+r2 .
We have deg vi = d + i and |N>(vi)| = d − i, hence it is easy to observe that the
only possible color for vi in any LF-coloring is d − i + 1. However, if vertex vd

were to be removed from the graph, the colors of all other vertices of the path
would decrease by 1. Thus we have shown that color of v0 depends on the value
of the length of the path, d ∈ Ω(Δ). As information in our model can propagate
only at the speed of one vertex per round we have the following.

Corollary 5. Any distributed implementation of LF requires Ω(Δ) time.

Final conclusions. Taking into account the above corollaries, the proposed
O(Δ log n log Δ) implementation of LF presented in Section 2 may be considered
not far from optimal among distributed LF-coloring algorithms, and to have lower
complexity than any possible implementation of an SL-coloring or SLF-coloring
algorithm. For graphs of bounded degree, the proposed distributed LF-coloring
algorithm is, to the best of our knowledge, the first of the well known graph
coloring heuristics running in O(log n) rounds.

On Greedy Graph Coloring in the Distributed Model 601

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

K2d−1 K2d−3 K2d−5 K5 K3 K1

K1 Kd−4 Kd−3 Kd−2 Kd−1

vd vd−1 vd−2 v3 v2 v1 v0

K2K4K6K8K2d−2

Fig. 2. A graph which requires Ω(Δ) time to LF-color in the distributed model

References

1. Battiti, R., Bertossi, A. A., and Bonuccelli, M. A.: Assigning codes in wireless
networks. Wireless Networks 5 (1999) 195–209.

2. Bellare, M., Goldreich, O., and Sudan, M., Free bits, PCPs and non-
approximability — towards tight results, SIAM J. Comp. 27 (1998), 804–915.

3. Chaudhuri, P.: Algorithms for some graph problems on a distributed computational
model. Information Sciences 43 (1987), 205–228.

4. Grable, D. A., and Panconesi, A.: Fast distributed algorithms for Brooks-Vizing
colorings. J. Algorithms 37 (2000) 85–120.

5. Grundy, P. M.: Mathematics and games. Eureka 2 (1939), 6–8.
6. Hansen, J., Kubale, M., Kuszner, �L. and Nadolski, A.: Distributed largest-first

algorithm for graph coloring. Proc. Euro-Par, LNCS 3149 (2004), 804–811.
7. Johansson, Ö.: Simple distributed (Δ + 1)-coloring of graphs. Inf. Process. Lett.

70 (1999) 229–232.
8. Kosowski, A. and Manuszewski, M.: Classical Coloring of Graphs. In: Graph Col-

orings, AMS Contemporary Math. 352 (2004), Providence, USA, 1–20.
9. Kubale, M.: Introduction to Computational Complexity and Algorithmic Graph

Coloring. GTN (1998), Gdańsk, Poland.
10. Kubale, M. and Kuszner, �L.: A better practical algorithm for distributed graph

coloring. Proc. PARELEC (2002) 72–75.
11. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21 (1992)

193–201.
12. Luby, M.: A simple parallel algorithm for the maximal independent set problem.

SIAM J. Comput. 15 (1986) 1036–1053.
13. De Marco, G. and Pelc, A.: Fast distributed graph coloring with O(Δ) colors. Proc.

SODA (2001) 630–635.
14. Olariu, S. and Randall, J.: Welsh-Powell opposition graphs. Inf. Process. Lett. 31

(1989) 43–46.
15. Panconesi, A. and Rizzi, R.: Some simple distributed algorithms for sparse net-

works. Distributed Computing 14 (2001), 97–100.
16. Panconesi, A. and Srinivasan, A.: Improved distributed algorithms for coloring and

network decomposition problems. Proc. STOC (1992) 581–592.
17. Turner, J. S.: Almost all k-colorable graphs are easy to color. J. Algorithms 9

(1988) 63–82.

	Introduction
	Preliminaries: Greedy Graph Coloring in a Distributed Context
	Summary of Main Results

	A Distributed Implementation of the LF Algorithm
	Tie-Breaking in the Distributed Independent Set Problem
	An Algorithm for LF-Coloring in $O(\Delta$ log n logΔ) Rounds
	Quality Characteristics of Distributed LF-Colorings

	Complexity Bounds on Distributed Greedy Coloring

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

