
Distributed Approximation Allocation Resources

Algorithm for Connecting Groups

Fabien Baille1, Lelia Blin2,�, and Christian Laforest2

1 LIAFA, Univ. Denis Diderot- Case 7014 2,
place Jussieu, F-75251 Paris Cedex 05

2 Tour Evry II, IBISC, Univ. d’Evry, 523 place des terrasses,
91000 EVRY, France

lelia.blin@lami.univ-evry.fr

Abstract. This paper presents a distributed algorithm to allocate re-
sources (links of a network) for interconnecting machines (forming a
group) spread in a network. This is what we call a connection struc-
ture for this group of machines. An important innovative feature of our
construction method is that we prove (not just simulate on particular
and restricted cases) the fact that this structure has good properties in
terms of, simultaneously, induced distances (for latency considerations)
and cost (for cost considerations). Hence, we propose a distributed mul-
ticriteria approximation algorithm.

In applications like video-conferences or net-meetings, members of a group spread
in a network, have to communicate with high QoS requirements. A possibility
for a provider selling this service on his network is to allocate/rent resources
(links) for the exclusive use of the members. We call this a connection structure
for the group. We propose here a distributed protocol to construct connection
structure with high guaranty of quality.

Minimizing induced distances in the structure. To optimize QoS require-
ments on latency between members, we want to construct a structure in which
distances are minimized. However, these distances cannot be smaller than those
of the underlying network. Hence, we want to design a structure in which the
induced distances between members are as close as possible to those of the orig-
inal graph. To capture this desired property, we focus in this paper on the min-
imization of two criteria, namely the maximum and average distances between
members.

The cost of the structure. Steiner tree. As a connection structure is a
definitive allocation of links, exclusively reserved for the group, these resources
are not available for others applications during the existence of the group. Hence,
the provider allocating the structure must minimize the total number of links

� Corresponding author.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 519–529, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

520 F. Baille, L. Blin, and C. Laforest

used in the structure in order to minimize its exploitation costs and to keep
the maximum number of available links for others services. In this paper, the
number of edges in a graph or in a structure is called its cost. The minimum
cost (weight) tree spanning a given set M of vertices is called the Steiner tree
problem and is NP-complete.

Conflicting parameters. Simultaneous approximation. In the situation
described above, the provider must minimize the distance parameters (to satisfy
the customers) and, simultaneously, the cost of the structure. It was shown in
[1] that it is impossible; the criteria cost and diameter are conflicting. To solve
this conflict we do not strictly minimize the parameters but we approximate
them.

A distributed algorithm. In spite of its interest in the guarantees that can
be offered, this kind of approach generally suffers from a weakness: The meth-
ods to construct the structure are almost all centralized. To exploit them, the
provider needs a global view of the state of its system before applying the al-
gorithms. In general this is not possible in practice. To help him, we propose in
this paper a distributed algorithm. The connection structure is then constructed
by exchanging messages between members, with no centralized node doing all
the job. Members just know local information to process. In this paper, we make
reasonable hypothesis; we suppose that a routing table and an allocating mech-
anism is available in the system (see more details on the distributed model in
section 1).

Another interesting parameter to investigate for our asynchronous protocol
is then the number of exchanged messages (or messages complexity) during its
execution to avoid to overload the network during the construction.

Representation by a graph. We model the network by a graph G = (V, E)
where V is the set of vertices representing the nodes of the network, E is the
set of edges modeling its bidirectional physical links. Graphs considered here are
unweighted, undirected and connected.

Let M ⊆ V be the group of m = |M | members that must be connected by
allocating/renting links. The set of these links form what we call a connection
structure; As the links are reserved for intra-group communications there is no
external traffic disturbing the communications between members. Note that in
terms of graphs a connection structure S = (VS , ES) in a connected subgraph
of G = (V, E) spanning M (M ⊆ VS ⊆ V , ES ⊆ E).

Technically, the latency is represented by distances. For each pair u, v of ver-
tices of V , we denote by dG(u, v) the distance between u and v. This is the
minimum number of edges to cross to go from u to v in G.

Notation 1. Let G = (V, E) an unweighted, undirected graph and M ⊆ V be
the group.

– The diameter of M in G is: DG(M) = max{dG(u, v) : u, v ∈ M}
– The sum of distances of M in G is: CG(M) =

∑

u,v∈M

dG(u, v).

Distributed Approximation Allocation Resources Algorithm 521

– The cost of any graph (or structure) G = (V, E) is its number of edges:
W (G) = |E|.

We focus here on sum of distance since it is easy to get average distance from
that. The minimum cost (weight) spanning structure of a group M is the well
known Steiner tree denoted by T ∗(M).

We want to construct a structure S, spanning members of M such that its
diameter DS(M) (resp. its sum of distance CS(M), resp. its cost W (S)) is no
more than ρDDG(M) (resp. ρaCG(M) resp. ρW W (T ∗(M))). The parameter ρD

(resp. ρa resp. ρW) is the approximation ratio for the diameter (resp. sum of
distances, resp. weight).

Known results. Due to space limitation we focus here on the main related
works to ours. We underline the difference with our own contribution.

In [2] for example, reader can find treatment of approximation algorithms and
of the NP-hard Steiner tree problem. However, classical approximation methods
just deal with the optimization of one criterion: Only the weight is treated for the
Steiner tree for example; the induced distances in such trees are not considered.

At the opposite, works on spanners investigate the problem to construct a
structure of minimum weight, spanning all the vertices and inducing distances
between each pair of vertices at most a given multiplicative factor of the one in
the underlying graph. This approach is very interesting but unfortunately there
are many non approximability results (see [3]). A variant for groups has been
investigated in [4] and was also shown to be hard. Moreover all the existing
methods are centralized.

We can see that the main constraint in spanner is to give guarantees for the
distances between each pair of vertices. In other works, authors relax this con-
straints and investigate the construction of structures in which the maximum
and/or average distance are minimized. For example, one can find in [5,1,6]
approximation algorithms to construct trees spanning a given group with the
objective to approximate simultaneously these parameters. In particular, [6] in-
vestigates exactly the three parameters considered in the present paper. However
the algorithm given in [6] is not distributed. In the present paper we propose an
alternative construction to [6] that allows us to obtain a distributed protocol.
Indeed this version exhibits original local properties that are exploited. We show
in this paper that this new approach leads to an efficient algorithm (in terms
of message complexity) and good approximation ratios. For completeness, we
present here the whole construction and all the proofs.

To finish we can cite [7] surveying several recent works on approximation
distributed algorithms. However, there is no reference on our own subject, works
mentioned focus on the optimization of only one criterion (we are multicriteria)
and the distributed systems under consideration are synchronous (we deal here
with asynchronous systems).

Outline of the paper. In Section 1, we describe our distributed algorithm. We
prove its approximation ratios and number of exchanged messages in Section 2.

522 F. Baille, L. Blin, and C. Laforest

1 Our Tricriteria Approximation Distributed Algorithm

Our tricriteria algorithm proceeds in two phases: In the first phase, we construct
the tree Tp, a ρ-approximation of a Steiner tree T ∗(M) of the group M . In a
second phase, we reduce the induced distances between members in this tree; this
is done by adding appropriated shortest paths without increasing significantly
the weight of the initial tree.

Distributed model: A shortest path routing function is available as in many
current networks. Each node u can use its local copy of the routing table to
determine the distance dG(u, v) between itself and any node v. This routing
function can also be used by node u to send messages by a shortest path of G
to any node v. It can also be used to allocate a shortest path between u and v
(reserve the links of this path). We suppose that these two operations induces
a number of messages equal to the number of links crossed, that is dG(u, v).
Moreover, we consider that each member is awake and knows the m distinct
identities of the members.

1.1 Phase 1: Construction of an Approximated Steiner Tree

Phase 1 constructs a tree TP satisfying W (TP) = O(log(m)W (T ∗(M))). More-
over, the first phase finds a member with particular properties, called the Median
r of the group M . This particular member is essential for beginning the second
phase.

As the identifiers of members of M are known by each node of M , each
node can create an order. W.l.o.g. we suppose that the members are numbered
M = {u1, u2, . . . , um} and that each member knows this order.

The construction of tree Tp is the following: Each member ui connects itself to
the nearest member in the set {u1, . . . , ui−1} (ui can select this nearest member
using its local routing table). These m−1 connections can be done in any order,
even in parallel. At the end, the (intermediate) obtained structure is composed of
m−1 shortest paths and is connected. It is not necessarily a tree (it may contain
cycles), an appropriated DFS is done twice from node u1 to cut potential cycles
and to prune the structure to obtain the desired tree TP . After this operation,
each node u ∈ M is in the tree TP .

We give now the definition of the median and the way to construct it.

Definition 1 (Median of a group). Let G = (V, E) and M ⊆ V . A vertex
r ∈ M is a median of M (in M) if it satisfies:

∑

u∈M

dG(u, r) = min

{
∑

u∈M

dG(u, v) : v ∈ M

}

To do that, u1 starts the process by sending to u2 the pair (S1, u1) where
S1 =

∑
v∈M dG(u1, v). When it receives S1, node u2 can compute its own value

Distributed Approximation Allocation Resources Algorithm 523

S2 =
∑

v∈M dG(u2, v). If S1 < S2 then u2 sends (S1, u1) to u3, otherwise it
sends (S2, u2). This process can be continued from node to node, following the
order {u1, . . . , um}. The last node um sends its result to u1 that now knows the
median r (since the minimum sum of distances has been filtered in successive
transfers). It then broadcasts the result to the whole group.

1.2 Phase 2: Distributed Median-Control

The general idea of this phase 2 is to make a DFS from the Median r in TP

(constructed in previous phase). Each time the DFS reaches a member, it makes
a particular test on distances: If the test is positive, it roughly means that the
member is ”too far” from the median in Tp compared to its distance in G (read
in the routing table). In this case, we say that this member vi is added in set
S. This member connects to the Median by allocating a shortest path of the
graph (using the routing mechanism). Note that this set S is not transported
in the message. We only need its cardinality in the protocol; However, in the
proof we will use this implicit set S. At the beginning, when S = ∅, we set
vi = r.

Message: For the protocol, we need to transport several information in the
messages of type: < DFS, DistTP , DistG, cardS >

– DFS is the name of the message.
– DistTP is the distance in tree TP between the last node vi inserted in set S

and the node sending the DFS message. This parameter must be updated
at each node (member or not).

– DistG is the distance in G between vi and the Median node r. This distance
is read by vi in its local routing table. Note that DistG (= dG(r, vi)) does
not change during the construction while vi+1 is not detected.

– Counter cardS is the number of nodes in the current set S.

Local variables: For each node u in TP , the main variables are:

– NTP : set of neighbors identifiers of u in tree TP .
– TBS: (To Be Sent) set of neighbors of u in Tp to which node u has to forward

the DFS message.
– V isited: boolean with value True iff node u has received a DFS message.

Init. at False.
– Parent: node identifier by which node u receives for the first time message

DFS. Init. at NIL.
– Last Card S: integer counter containing the knowledge node u has of the

cardinality of the current set S. Init. at 0.

We suppose in the following that a parameter α is already known by all the
members of M .

524 F. Baille, L. Blin, and C. Laforest

Pseudo-code of the algorithm
Procedure: Executed only by Node Median (node r), at the beginning
Last Card S := 0; DistTP := 0; DistG := 0;
NumConnections := 0; TBS := NTP ;
Do

{Choose any v ∈ TBS; TBS := TBS − {v};
Send < DFS, DistTP , DistG, cardS > to v;
Wait for a message < DFS, DistTP , DistG, cardS > from v;
Last Card S := cardS;
If cardS = 0 then DistTP := 0; else DistTP := DistTP + 1;}

While TBS �= ∅

/* When Last Card S = NumConnections, the algorithm is finished
and the final connection structure Gf is allocated. */

Procedure: Each time Node Median r receives a connection from a
node v
NumConnections := NumConnections + 1;

Procedure: When a node u �= Median receives
< DFS, DistTP , DistG, cardS > from node v ∈ NTP

If V isited = False then { /* First visit of the DFS */
V isited := True; Parent := v; TBS := NTP − {Parent};
DistTP := DistTP + 1; Last Card S := CardS;
If u ∈ M and DistTP + DistG > αdG(r, u) Then {

/* A new vi is detected and added in set S */
DistTP := 0; DistG := dG(r, u); cardS := cardS + 1;
Last Card S := CardS;
Connect to Median r by a shortest path;}

}
Else {/* V isited = True */

If Last Card S < CardS then {
/* New vi’s have been discover in the exploration of the subtree of u */

DistTP := DistTP + 1; Last Card S = CardS;}
else DistTP := DistTP − 1;
If TBS = ∅ then a = Parent; /* It is time to backtrack */
else {Choose any a ∈ TBS; TBS := TBS − {a};}
Send < DFS, DistTP , DistG, cardS > to a;

}

2 Proofs and Correctness

We express and prove in Section 2.1 a generic result giving the three approxi-
mation ratios obtained by our algorithm. In Section 2.2 we use this result to give

Distributed Approximation Allocation Resources Algorithm 525

the real approximation ratios obtained by our method and an upper bound on
the number of exchanged messages.

2.1 Three Simultaneous Approximation Ratios

Theorem 1. Let G = (V, E), M ⊆ V (m = |M |), Gf be the connect structure of
M returned (in the second phase Median-Control) with TP a ρ-approximation
of the Steiner tree T ∗(M) of M , constructed in phase 1. The three simultaneous
properties of our algorithm are the following:

1. A 2α-approximation for the sum of distances: CGf
(M) ≤ 2αCG(M).

2. A 2α-approximation for the diameter of M : DGf
(M) ≤ 2αDG(M).

3. A ρ
(
1 + 2

α−1

)
-approximation for the weight:

W (Gf) ≤ ρ

(
1 +

2
α − 1

)
W (T ∗(M)).

For the clearness of the proof we will use Lemmas.

Lemma 1. Let G = (V, E), M ⊆ V (|M | = m) and r be any vertex of V . Let
A be any subgraph of G, spanning M and r, satisfying dA(u, r) ≤ αdG(u, r) for
all u ∈ M for some α ≥ 1. We have:

CA(M) ≤ 2αm
∑

u∈M

dG(u, r)

Lemma 1 is an extension of a result of [8].

Proof. We upper bound CA(M) by using triangular inequality.

CA(M) =
∑

u,v∈M

dA(u, v) ≤
∑

u,v∈M

(dA(u, r) + dA(r, v))

=
∑

u∈M

∑

v∈M

(dA(u, r) + dA(r, v))

=
∑

u∈M

(
mdA(u, r) +

∑

v∈M

dA(r, v)

)

= 2m
∑

u∈M

dA(u, r) ≤ 2αm
∑

u∈M

dG(u, r)

The last inequality follows from the property of distance in A. �	
Lemma 2. Let G = (V, E), M ⊆ V and r ∈ M a median of M . We have:

CG(M) ≥ m
∑

u∈M

dG(u, r)

Proof. CG(M) =
∑

v∈M

(
∑

u∈M

dG(u, v)

)
≥ m

∑

u∈M

dG(u, r) �	

526 F. Baille, L. Blin, and C. Laforest

We suppose here that a tree TP spanning M is given, constructed in Phase 1.
This is an approximation of the Steiner tree T ∗(M). Graph Gf in the following
is the final connection structure constructed by our algorithm. The techniques
used here and related proofs are adaptations and modifications of the ones of
[5,6] for the distributed context.

Lemma 3. For all u ∈ M we have: dGf
(r, u) ≤ αdG(r, u)

Proof. Let us consider the step where the DFS reaches vertex u ∈ M for the
first time. At this particular moment, let vi be either the last vertex put in
set S or vertex r (if set S is still empty). Two cases must be examined, de-
pending on the test treating u in the algorithm. Note that dTP (vi, u) (resp.
dG(r, vi)) is transported by the incoming DFS message in parameter DistTP

(resp. DistG).

1. If dG(r, vi) + dTP (vi, u) > αdG(r, u) then u is put in set S and after the
DFS a shortest path between r and u is added in Gf and in this case
dGf

(r, u) = dG(r, u).
2. Otherwise, dG(r, vi) + dTP (vi, u) ≤ αdG(r, u). As Gf contains a shortest

path between vi and r in G and also contains the whole tree TP , by using
the triangular inequality we have:

dGf
(r, u) ≤ dGf

(r, vi) + dGf
(vi, u) ≤ dG(r, vi) + dTP (vi, u) ≤ αdG(r, u) �	

Lemma 4. W (Gf) ≤
(

1 +
2

α − 1

)
W (TP)

Proof. Let S = {v1, . . . , vk} be the k vertices added in set S during the al-
gorithm. Let v0 = r (median of M). A new vertex vi is added in S by the
algorithm when: dG(r, vi−1) + dTP (vi−1, vi) > αdG(r, vi). Making the sum on

i, we obtain: α

k∑

i=1

dG(r, vi) <

k∑

i=1

dG(r, vi−1) + dTP (vi−1, vi). But, as v0 = r we

get dG(r, v0) = 0 and:
k∑

i=1

dG(r, vi−1) ≤
k∑

i=1

dG(r, vi). By combining we have:

(α − 1)
k∑

i=1

dG(r, vi) <

k∑

i=1

dTP (vi−1, vi). As v1, . . . , vk is a prefix order of a sub-

set of M visited in a DFS visiting exactly twice each edge of tree TP we

have:
k∑

i=1

dTP (vi−1, vi) ≤ 2W (TP). Hence,
k∑

i=1

dG(r, vi) <
2

(α − 1)
W (TP). But,

W (Gf) ≤ W (TP) +
k∑

i=1

dG(r, vi) ≤
(

1 +
2

(α − 1)

)
W (TP). �	

Distributed Approximation Allocation Resources Algorithm 527

Proof. (Theorem 1)

1. Result for the sum of distances: Lemma 2 shows: m
∑

u∈M

dG(u, r) ≤ CG(M)

with r ∈ M a median of M . With Lemma 1, and Lemma 3 we obtain:
CGf

(M) ≤ 2αm
∑

u∈M

dG(u, r). Hence: CGf
(M) ≤ 2αCG(M).

2. Result for the diameter. With the triangle inequality, with Lemma 3 and
with the fact that r ∈ M , for all u and v in M we have:

dGf
(u, v) ≤ dGf

(u, r) + dGf
(r, v) ≤ α(dG(u, r) + dG(r, v)) ≤ 2αDG(M).

Hence DGf
(M) ≤ 2αDG(M).

3. Result for the weight. Lemma 4 gives the result since W (Tp) ≤ ρW (T ∗(M)).

�	

2.2 Total Number of Exchanged Messages and Induced
Approximation Ratios

In this Section we use all the previous analysis to compute the performance
of our algorithm in terms of approximation ratios (Theorem 2) and number of
exchanged messages (Theorem 3).

Theorem 2. If α is a constant then our algorithm is a distributed, constant
approximation for diameter and sum of distances parameters and a O(log(m))
approximation for cost.

Theorem 3. If α is a constant and m = |M | then our algorithm uses at most
O(m log(m)DG(M)) messages.

To prove these final results we need some Lemmas.

Lemma 5. W (TP) = O(log(m)W (T ∗(M)))

Proof. The process of construction of our tree TP can be viewed as another equiv-
alent version of the online algorithm proposed in [9]. The authors show that if a
Steiner tree is constructed step by step by connecting a new member to the near-
est member already connected, then, the final tree is a O(log(m))-approximation
of the Steiner tree. This is in fact what we do here, by ”simulating” this pro-
cess. �	
Proof. (Theorem 2) Apply Lemma 5 and Theorem 1 with ρ = O(log(m)) �	
Lemma 6. Phase 1 uses at most O(m log(m)DG(M)) messages (m = |M |).
Proof. The construction of the initial substructure requires at most (m−1)DG(M)
messages. The message complexity of the pruning process of this structure to ob-
tain TP is linear in the number of edges in TP and, from Lemma 5, it is at most
O(log(m)W (T ∗(M))). As W (T ∗(M)) ≤ (m − 1)DG(M), the construction of TP

requires at most O(m log(m)DG(M)) messages. Determining the median of M
just requires at most O(mDG(M)) messages by the presented process. �	

528 F. Baille, L. Blin, and C. Laforest

Lemma 7. Phase 2 uses at most 2ρ

(
1 +

2
α − 1

)
W (T ∗(M)) messages.

Proof. During phase 2, a DFS of tree TP is performed and each edge of TP is
crossed exaclty twice. Moreover, some direct connections (by the routing func-
tions) are made between some elements of M and the Median r. All the edges
crossed by messages is exactly the set of edges of the final structure Gf . Hence,
at most 2|E(Gf)| messages are exchanged during phase 2. As |E(Gf)| = W (Gf),
approximation ratio on the cost of Theorem 1 shows the desired result. �	
Proof. (Theorem 3) Lemma 6 shows that phase 1 uses O(m log(m)DG(M))
messages. Lemma 5 shows that ρ = O(log(m)); combined with Lemma 7 and
the fact that W (T ∗(M)) ≤ mDG(M) we get the result. �	
Theorem 3 just gives an estimation, an upper bound on the number of messages.
In particular, each time a member sends a message to another member, in the
worst case the number of messages is equal of the diameter DG(M). In practice
many pairs of members are closer; this reduces the expected complexity. Each
message transports three data: two distances and one cardinal. Each value is smaller
than the numbers of vertices of G, thus can be represented on O(log n) bits.

3 Conclusion

In this paper we have proposed a tricriteria distributed algorithm for the con-
struction of a connection structure for interconnecting a group of machines
spread in a network modelled by a graph. This connection structure is allocated
for the group and is optimized in terms of induced delays and total cost.

We proved the quality of the structure by approximation ratios and we pro-
posed and proved an upper bound on the number of exchanged messages. This
last parameter was evaluated by a worst case analysis. It could be refined by
simulations for example. Moreover, our construction and proofs are parametric:
We used two separated phases and parameters α and ρ; Hence, if a better dis-
tributed algorithm 1 to construct the initial approximation Steiner tree exists
then it can directly be “plugged” in our method and its impact can easily be
evaluated by using our analysis.

References

1. Irlande, A., König, J.C., Laforest, C.: Construction of low-cost and low-diameter
steiner trees for multipoint groups. In M. Flammini, E. Nardelli, G.P., Spirakis, P.,
eds.: Procedings of Sirocco 2000, Carleton Scientific (2000) 197–210

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and approximation. Springer (1999)

3. Elkin, M., Peleg, D.: The hardness of approximating spanner problems. In Reichel,
H., S.Tison, eds.: STACS 2000. Number LNCS 1770, Springer Verlag (2000) 370–381

1 Better in terms of approximation ratio and number of exchanged messages.

Distributed Approximation Allocation Resources Algorithm 529

4. Laforest, C.: Construction of efficient communication sub-structures: Non-
approximability results and polynomial sub-cases. In Springer, ed.: EUROPAR.
Volume 2790 of LNCS. (2003) 903–910

5. Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning trees and
shortest-path trees. Algorithmica (14) (1995) 305–321

6. Laforest, C.: A good balance between weigth and distances for multipoint tre es.
In: 6th International Conference On Principles Of DIstributed Systems (OPODIS).
(2002)

7. Elkin, M.: Distributed approximation: a survey. SIGACT News 35(4) (2004) 40–57
8. Wu, B., Chao, K., Tang, C.: Approximation algorithms for the shortest total path

length spanning tree problem. Discrete applied mathematics (105) (2000) 273–239
9. Imase, M., Waxman, B.: Dynamic steiner tree problem. SIAM Journal on Discrete

Mathematics 4(3) (1991) 369–384

	Our Tricriteria Approximation Distributed Algorithm
	Phase 1: Construction of an Approximated Steiner Tree
	Phase 2: Distributed Median-Control

	Proofs and Correctness
	Three Simultaneous Approximation Ratios
	Total Number of Exchanged Messages and Induced Approximation Ratios

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

