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Abstract. Standard compilers are incapable of fully harnessing the
enormous performance potential of Blue Gene systems. To reach the
leading position in the Top500 supercomputing list, IBM had to put
considerable effort into coding and tuning a limited range of low-level nu-
merical kernel routines by hand. In this paper the Vienna MAP compiler
is presented, which particularly targets signal transform codes ubiquitous
in compute-intensive scientific applications. Compiling Fftw code, MAP
reaches as much as 80% of the optimum performance of Blue Gene sys-
tems. In an application code MAP enabled a sustained performance of
60 Tflop/s to be reached on BlueGene/L.

1 Introduction

Blue Gene Servers. Top-performing supercomputers are usually based on the
fastest processors available. In their latest hardware development, IBM went a
radically different way, building Blue Gene servers [3] on an embedded-systems
processor with low-power consumption, the IBM PowerPC 440.

To support scientific computing applications efficiently, IBM added a func-
tional unit for double-precision scalar and 2-way SIMD floating-point arithmetic,
extending the existing processor design by an auxiliary processor unit, yielding
the PowerPC 440 FP2.

One node of a Blue Gene server comprises two PowerPC 440 FP2 proces-
sors (one dedicated to communication, the other one to computation), shared
memory, and high-speed network interconnect hardware. The biggest installa-
tion built to date—BlueGene/L—is made up of the unprecedented number of
65,536 nodes integrated into a single distributed memory system. As of Novem-
ber 2005, Blue Gene servers take three out of the ten top positions on the Top500
supercomputing list, including the number one and two.

Automatic Performance Tuning Software. State-of-the-art numerical li-
braries in the field of linear algebra and signal processing are not based upon
predetermined and fixed algorithms for performing the requested calculation,
but utilize automatic performance tuning [4] to search the space of different
algorithms and implementations for members of this set showing optimal run-
time behavior. Rather than relying on formal performance models (covering
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the utilization of the memory hierarchy, arithmetic operation count, instruction
count, calling overhead of a procedure, and other relevant properties of the tar-
get architecture), they take actual runtime measurements obtained in numerical
experiments to guide the process of automatic self-adaptation.

Automatic performance tuning systems often use automatically generated ker-
nels that are long sequences of straight line code. For achieving high performance,
these libraries heavily rely on the quality of the C compiler.

Experiments have uncovered a number of shortcomings of general purpose
compilers when applying them to long, automatically generated straight line
code, which opens up a performance gap between code generated by general
purpose compilers and assembly code written by a skilled hand-coder.

The MAP Tool Chain. The Vienna MAP compiler tool chain aims at closing
this performance gap, addressing domain-specific straight line codes produced
by special-purpose program generators like genfft [8].

This paper describes a version of the MAP compiler targeting IBM’s Blue
Gene systems. The MAP compiler comprises a set of generic components ar-
ranged in the form of an open tool chain, communicating through a very narrow
human-readable interface, which allows for (i) easy conservation of high-level in-
formation by means of annotation, (ii) introspection and injection of code, and
(iii) easy experimentation with different arrangements of compilation stages.

Synopsis. Section 2 presents and discusses important properties of the target
processor. Section 3 describes a 2-way single-instruction multiple-data (SIMD)
vectorizer extracting parallelism out of basic blocks, Section 4 a versatile peep-
hole optimizer for utilizing fused multiply-add (FMA) instructions, and Section 5
a Blue Gene specific backend that optimizes effective address calculations.

New contributions presented in this paper are improvements of (i) the vec-
torization method and of (ii) address-generation in the backend.

Section 6 demonstrates the impressive effects of the presented components and
techniques on the performance of Fftw [9], the de-facto standard for the com-
putation of discrete Fourier transforms (DFTs), running on Blue Gene servers.

2 The Blue Gene Processor

IBM’s Blue Gene processor, the PowerPC 440 FP2, is a low-frequency (700 MHz)
32 bit processor with 32 integer registers, 32 SIMD floating-point registers, a
short (7-stage) pipeline, large split L1 caches (32 kB for instructions, 32 kB
for data), a fast non-pipelined multiplier, and support for 2-way super-scalar
out-of-order execution. Integer registers are 32 bit, SIMD registers 128 bit wide.

Although the processor is a dual-issue design, not all conceivable pairs of in-
structions may be executed in parallel. Scalar arithmetic, SIMD data-reordering,
and SIMD arithmetic use the same functional unit, and cannot be executed in
parallel. At most one instruction per cycle may access naturally aligned memory.

The PowerPC 440 FP2 supports scalar [17] and 2-way SIMD [2] floating-
point arithmetic, both operating on the same 2-way SIMD register file, with
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scalar instructions working on the lower half of SIMD registers. Floating-point
addition, subtraction, and multiplication are all fully pipelined, and available in
double precision only. Support for single-precision floating-point data is offered
for data loads/stores and by explicit rounding operations. Both for the scalar
and the SIMD case, FMAs are available, which doubles the peak performance
and improves the accuracy of the results by avoiding intermediate rounding.

FP2 offers a huge collection of vertical (inter-operand style) SIMD FMAs,
including instructions that (i) perform different operations on different parts of
the SIMD registers (e. g., addsub), (ii) use one part of a register as input for
both operations, and (iii) combine a swap with an arithmetic operation.

Native support for horizontal (intra-operand style) SIMD is, however, com-
pletely missing in FP2. Emulating horizontal SIMD operations with a sequence
of vertical and data reordering operations is considerably more expensive than
on other SIMD ISAs (Tables 1 and 2).

Table 1. Instruction Count for Horizontal (H) and Vertical (V) Addition and Sub-
traction Operations. Uniform instructions perform two additions or two subtractions,
while mixed instructions perform an addition and a subtraction.

op 3DNow! Ext. 3DNow! SSE2 SSE3 IA64 FP2

H / uniform 1 1 3 1 3 5
H / mixed 2 1 4 2 3 5

V / uniform 1 1 1 1 1 1
V / mixed 2 2 2 1 1 1

Table 2. Instruction Count for Data Reordering Operations. Uniform unpacks (un-
packXX) combine the lower parts of two registers, while mixed unpacks (unpackXY)
combine the lower part of one register with the upper part of another.

op 3DNow! Ext. 3DNow! SSE2 SSE3 IA64 FP2

unpackXX 1 1 1 1 1 2
unpackXY 2 2 2 2 1 2

Scalar computation can only be done in the lower half of the registers and some
data may need to be moved. Mixing scalar and SIMD code is possible, but not
at uniform cost.

The application binary interface (ABI) used in the Blue Gene environment [12]
defines approximately half the registers as callee-saved, which can be a consid-
erable disadvantage for small leaf procedures.

The PowerPC 440 FP2 lacks two important features for calculating effective
addresses efficiently. First, the PowerPC ISA does not offer a combined shift by a
constant and add instruction. Second, FP2 does not support register+immediate
forms [5] for SIMD loads/stores.
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3 The MAP Vectorizer for Blue Gene

Unlike SIMD-style vector computers, SIMD floating-point ISA extensions on
general purpose processors operate on very short vectors. As this allows ex-
pressing parallelism on a very low level, not only loop-based vectorization tech-
niques [19], but also more fine-grained ones, that extract the parallelism already
present within a basic block, can be utilized.

To get the highest possible performance, a basic block vectorizer tries to
maximally cover a scalar DAG with SIMD instructions natively supported by
the target machine.

While our approach has some similarity to existing work like [6, 13, 14], our
work is biased towards different assumptions about the class of input codes and
about the target hardware. (i) As linear transform codes are highly structured,
any divide-and-conquer based vectorization approach incurs high costs when
connecting vectorized sub-graphs. (ii) Unlike SIMD ISAs on some DSPs, SIMD
ISAs present on general purpose microprocessors do not allow scalar and SIMD
to be mixed efficiently. (iii) As numerical kernels used in automatic performance
tuning systems can be very large, finding a compromise between vectorization
runtime and code quality is a key issue. (iv) Accesses to interleaved complex
numbers naturally translate to 2-way SIMD memory instructions, which mas-
sively prunes the search space. However, for some kernels that do not have this
kind of access, e. g., real FFTs, the vectorizer has to consider all combinations
of all possible pairs of DAG inputs and DAG outputs.

Vectorization consists of two major steps, that are alternated until either the
scalar DAG is covered with SIMD instructions or failure is discovered.

First, the vectorizer combines pairs of scalar variables to SIMD variables,
ensuring that no scalar variable occurs in two SIMD variables and that the
producers of the respective variables may be joined into a (pseudo) SIMD in-
struction.

Second, as the vectorizer combines two scalar instructions to one SIMD in-
struction, it propagates the layout requirements of the inputs and outputs of the
newly extracted SIMD instruction, triggering the creation of new pairs.

Non-deterministic choice in this search process is handled by using depth-first
search with chronological backtracking.

In an attempt to prune the search tree, the vectorization engine tries to detect
failure branches early, allowing to traverse a much smaller part of the search
space without missing any relevant part.

To further restrict the search space, pairs of scalar variables that can not
occur as part of any solution are filtered out before vectorization is started.

The scalar DAG traversal order can have a profound impact both on the
solution order and on the vectorization runtime. Earlier versions of the vector-
izer [7, 15] always started at the outputs of the DAG, i. e., store instructions,
traversing the DAG in a bottom-up fashion.

To improve on this, we added a top-down traversal style and borrowed the
concept of domain variables [18] from constraint programming (CP). Domain
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variables allow the vectorizer to keep track of all pairs of scalar variables that may
be formed in the future. When traversing the scalar graph, the scalar variable
that occurs in the smallest number of pairs, is picked as the next node to be
visited (first-fail principle).

The combination of these traversal methods allows finding the optimal vec-
torization even for relatively large codes that use exclusively real arithmetic—a
class of codes notoriously hard to vectorize.

Vectorization may yield more than one solution. A branch-and-bound based
method is used to gradually find better and better solutions, until either opti-
mality is proven or a time limit is reached. Generally, finding an optimal solution
takes much less time than proving its optimality.

While all previous prototypes of the vectorizer have been specifically adapted
to exactly one target architecture, the new version uniformly supports all target
architectures taking target-specific data (as presented in Table 1) as input.

4 The MAP Optimizer for Blue Gene

The MAP optimizer only focuses on improving local structures (peepholes),
rewriting sequences of instructions logically connected by data dependencies.
Because of the locality of the approach, the global structure of the code, deter-
mined by the vectorizer, remains largely unchanged.

Implemented as a committed-choice term rewriting system, the optimizer is
based on one or more sets of rewriting rules, each with a different priority. Out of
all applicable rules, the rewriting engine picks one with the highest priority, and
uses it to substitute instructions within a peephole with a semantically equivalent
sequence of instructions. If no rule is applicable, a fixed-point is reached and the
optimization terminates.

The optimizer uses two kinds of rules working in synergy. (i) Improving rules
aim at an immediate improvement in code quality. Examples include rules for
fusing two neighboring instructions into one, or rules handling horizontal SIMD
instructions with neighboring SIMD swaps. (ii) Assisting rules do not immediate
improve the code, but rather adapt the DAG such that improving rules may
be applied. Examples include rules moving SIMD swaps or multiplications by
constants within the DAG.

Apart from commonplace compiler optimizations [16], the optimizer tries to
(i) shorten path lengths within peepholes, (ii) reduce the number of source
operands by identifying domain-specific code patterns (e. g., the butterfly-ish
code patterns typically occuring in FFT codes), and (iii) reduce the total number
of instructions, both by eliminating superfluous instructions and by hiding some
instructions in other ones, in particular by utilizing variants of SIMD FMAs.

5 The MAP Backend for Blue Gene

Unlike the two previously presented components, the MAP backend consists of
a relatively large number of parts.
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5.1 Effective Address Generation

All integer instructions in the code produced by the MAP compiler are devoted
to either fulfilling the ABI calling convention or to calculating effective addresses.

While the code for fulfilling the calling convention has a constant size (regard-
less of the actual size of the procedure to be compiled) for procedure prolog and
epilog, the code for the calculation of effective addresses may grow linearly with
the number of memory accesses in the procedure to be compiled.

Experiments have shown that the portion of the code needed for the calcu-
lation of effective addresses often has a significant negative performance impact
in case of algorithms having a high ratio of the memory access count compared
to the number of arithmetic operations. All fast algorithms for linear signal
transforms possess this property.

The IBM PowerPC 440 FP2 processor has DSP-like addressing mode limita-
tions for SIMD loads/stores, minimizing the number of integer auxiliary instruc-
tions in of particular importance.

Basic Ideas. The calculation of effective addresses of elements of variably
strided arrays (the actual stride is not known at compile time) can be done
straightforwardly by using integer multiplication instructions. However, these
instructions are expensive (low throughput, high latency) on all general purpose
processors, including the IBM PowerPC 440 FP2.

The common approach to addressing this problem is strength reduction, which
replaces complex instructions with sequences of simpler (high throughput, low
latency) instructions like integer additions, subtractions, and shifts.

Implemented Solution. Doing strength reduction in a hard-coded fashion
implies making instruction selection decisions without properly considering the
temporal context, thereby missing opportunities to (i) reuse already calculated
factors still residing in the register file and (ii) pick factors that could be benefi-
cial for some proximate address calculation to be carried out in the near future.

To produce high-quality code, the MAP backend interleaves integer instruc-
tion selection and integer register allocation, thus removing a classical compiler
optimization barrier.

Premature commitment to one particular factorization or reduction is avoided
by utilizing a blended mixture of well-established search methods, depth-first
iterative deepening (DFID) and dynamic programming (DP).

As exhaustive search for an optimal solution may not be possible for all but the
smallest codes, the backend (i) looks at reasonably sized sub-problems, (ii) solves
these sub-problems optimally, and (iii) combines the respective optima to one
solution of the original problem. The quality of this solution depends on the
amount of overlap of the sub-problems considered and on the size of these sub-
problems.

To control the amount of search performed, the backend offers a set of pa-
rameters to directly control the speed and quality of the search, allowing to
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trade compilation time for code quality, by specifying the size and the amount
of overlap of the sub-problems.

5.2 Register Allocation

The MAP backend performs register allocation for all register files holding non-
integer data in one pass, using the farthest-first policy [1, 10].

5.3 Scheduling

The MAP backend implements a set of various schedulers, covering a wide range
from domain-specific high level scheduling to target-processor specific low level
code reordering.

High Level. Two high level schedulers are part of the MAP backend. Both of
them aim at a minimization of the register pressure.

The first high level scheduler implements an FFT specific topological sort of
the computation DAG, attempting to enhance locality by minimizing variable
life-span. This scheduler is directly derived from the scheduler of genfft, the
program generator of Fftw.

The second high level scheduler performs local code reordering, trying to
further reduce the register pressure for codes exhibiting a non-regular structure,
e. g., SIMD-vectorized FFT codes.

Medium Level. The medium level scheduler reorders instructions taking la-
tencies into account, thereby increasing the register pressure. By avoiding all
dispensable movement, it preserves the original instruction order—obtained by
high level scheduling—as much as possible.

Low Level. The low level scheduler specifically addresses execution properties
of the target processor, implementing a list-scheduling algorithm that provides a
runtime estimation of a given basic block. This scheduler is based on an in-order,
super-scalar execution model of the target processor and handles both pipelined
and non-pipelined instructions (like integer multiplication) well.

Execution models incorporate information about (i) instruction latencies, (ii)
instruction throughput, (iii) issuing and decoding constraints, (iv) the mapping
of instructions to functional units, and (v) register forwarding features.

6 Performance Results

To assess the performance impact of the presented techniques on Blue Gene sys-
tems, we compiled the compute-intensive numerical kernels of Fftw 2.1.5 with
the following setups. xlc scalar uses the XL C compiler without automatic vec-
torization. xlc vect uses XL C with automatic vectorization. xlc mapvect uses the
MAP vectorizer and optimizer, producing C code with SIMD intrinsics compiled
by XL C. map vect uses the MAP vectorizer, optimizer, and backend.
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Fig. 1. Performance of Power-of-two 1D FFTs on the IBM PowerPC 440 FP2
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Fig. 2. Performance of Non-power-of-two 1D FFTs on the IBM PowerPC 440 FP2

Figs. 1 and 2 show the single-processor FFT performance achieved on Blue
Gene systems by using various compilers and settings. All performance data are
displayed in pseudo-Gflop/s, i. e., 5N log N/T .

Performance of Power-of-two Sizes. With very short vectors, calling the
FFTW framework dominates the total cost. For medium sizes (23 to 29), all
data fits into L1 cache, and the performance peaks—the MAP generated code
for length 27 has 2230 pseudo Mflop/s, as opposed to 709 pseudo Mflop/s of the
XL C compiled code. For transform lengths bigger than 210, data no longer fits
into L1 cache, and the performance falls sharply.

Performance of Non-power-of-two Sizes. The performance shown in Fig. 2
is much more uneven than in the power-of-two case, because the chosen vector
lengths have a larger number of different factors, leading to the use of many
relatively small routines.
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Effect of the Backend. We have examined the performance attributed to
the compiler backend used (xlc mapvect vs. map vect), finding that the MAP
backend produces much better code for compilation units consisting of one large
basic block, while XL C profits from being able to perform its optimizations on
units larger than one basic block, e. g., by loop unrolling.

It is noticeable that the backend does not give a significant performance gain
in the non-power-of-two case (Fig. 2). This is due to the fact that FFTW nor-
mally does not include large kernels for non-power-of-two sizes as base cases. A
comparable performance level as in the power-of-two case could be obtained if
large non-power-of-two kernels were included into the library.

Instruction Count. For all codes investigated, the MAP vectorizer and op-
timizer for Blue Gene significantly reduced the instruction count by utilizing
FP2 SIMD instructions. While the biggest part of the gain can be attributed to
vectorization, the optimizer also has its share in code quality, by utilizing FP2
specific instructions, eliminating many SIMD swaps and multiplications.

For SIMD codes, the address generation part of the backend improves the
code quality, by minimizing the number of integer instructions.

As Fftw kernels can be very large, minimizing the instruction count helps
avoid hitting L1 instruction cache capacity limits.

Superior Performance Level. In the best cases, code produced by the MAP
compiler runs at 80% of the performance that the best algorithm known in the
literature could theoretically achieve on the target hardware.

MAP-compiled Fftw codelets enabled the material science code Qbox [11] to
run with a sustained performance of 60 Tflop/s on BlueGene/L, thus reaching
the second highest performance ever achieved by an application code.

7 Conclusion

The MAP compiler tool chain covers all stages of compilation that are important
for achieving high performance in numerical software for linear signal processing
transforms.

First, the code produced by a special purpose program generator, like Fftw’s
genfft, is vectorized, seeking an optimal utilization of the 2-way SIMD floating-
point unit of IBM’s PowerPC 440 FP2 processors.

Next, the MAP optimizer tries to minimize SIMD data reordering overhead
and maximize utilization of FMAs and other FP2 specific idioms.

Finally, the code is compiled down to assembly, using (i) an optimal algorithm
for register allocation for basic blocks, (ii) several levels of scheduling, and (iii) a
clever instruction selection method for dealing with effective address generation
on a processor with DSP-like addressing mode restrictions.

Performance data gathered in experiments with Fftw by itself and in the
context of large application codes demonstrate the impressive performance—up
to 60 Tflop/s—to be obtained by using the MAP compiler tool chain.
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