
The Price of Approximate Stability
for Scheduling Selfish Tasks on Two Links

Eric Angel, Evripidis Bampis, and Fanny Pascual

Université d’Évry-Val d’Essonne, IBISC CNRS FRE 2873,
523 place des Terrasses, 91000 Évry, France

{angel, bampis, fpascual}@lami.univ-evry.fr

Abstract. We consider a scheduling game, where a set of selfish agents
(traffic loads) want to be routed in exactly one of the two parallel links of
a system. Every agent aims to minimize her own completion time, while
the social objective is the makespan, i.e. the time at which the last agent
finishes her execution. We study the problem of optimizing the makespan
under the constraint that the obtained schedule is a (pure) Nash equilib-
rium, i.e. a schedule in which no agent has incentive to unilaterally change
her strategy (link). We consider a relaxation of the notion of equilibrium
by considering α-approximate Nash equilibria where an agent does not
have sufficient incentive (w.r.t. the value of α) to unilaterally change
her strategy. Our main contribution is the study of the tradeoff between
the approximation ratio for the makespan and the value of α. We first
give an algorithm which provides a solution with an approximation ratio
of 8

7 for the makespan and which is a 3-approximate Nash equilibrium,
provided that the local policy of each link is Longest Processing Time
(LPT). Furthermore, we show that a slight modification of the classical
Polynomial Time Approximation Scheme (PTAS) of Graham allows to
obtain a schedule whose makespan is arbitrarily close to the optimum
while keeping a constant value for α. Finally, we give bounds establish-
ing relations between the value of α and the best possible value of the
approximation ratio, provided that the local policies of the links are LPT.

1 Introduction

The scheduling setting that we consider in this paper is the following one: we are
given a simple network of two parallel links and a set of n selfish agents. Each
agent has some (positive) traffic load and wants to use exactly one of the parallel
links to route it through. Equivalently, every agent can be viewed as a task, and
each link as a machine. Every agent aims to maximize her own profit, and there
are two basic models depending on what is considered as the individual profit
of the agents:

– In [2], the profit of an agent is the inverse of the completion time of the
machine on which she is assigned to. This model is known as the KP model.

– In [1], the profit of an agent is the inverse of her completion time. This model
is known as the CKN model.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 157–166, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

158 E. Angel, E. Bampis, and F. Pascual

In both cases, the social optimum (or global objective function) is the
makespan, i.e. the time at which the last agent terminates her execution.

Our aim is to obtain a schedule which minimizes the makespan and which
at the same time is stable, i.e. such that no agent has incentive to unilaterally
change her link. More precisely, we assume that each processor uses a local policy
(known by all the agents) in order to schedule the tasks assigned to it, and if
a task decides to leave, in the proposed schedule, its current machine to go on
another machine, knowing its local policy, it can calculates its new completion
time. Therefore, the solution we seek is a best Nash equilibrium w.r.t. the global
objective function. A new measure for evaluating the impact of searching a stable
solution, i.e. a Nash equilibrium, has been introduced by Schultz et al. [3] and
by Anshelevich et al. [4]: the price of stability is defined as the ratio of the
objective function in a best Nash equilibrium and a global optimum schedule
(this maximum is taken over all solutions). This measure can be viewed as the
optimistic price of anarchy [2].

In the KP model there always exists a pure Nash equilibrium which is an
optimal solution w.r.t. the makespan, and so the price of stability is 1 for this
model. This result is a direct corollary of the following fact: it is always possible
in the KP model to transform (nashify) an initial solution into a pure Nash
equilibrium without increasing the value of the makespan [7]. It is then natural
to ask if this is also possible for the CKN model. Notice that the the price of
stability depends on the local policies of the links. We assume that each link
schedules the tasks assigned to it using the Longest Processing Time (LPT)
order, i.e. each link schedules its tasks from the largest one to the smallest one.
In that case, it is not difficult to see that there is only one pure Nash equilibrium
and that this schedule can be obtained using the classical LPT list scheduling
algorithm. This shows that the price of stability in that case is 7/6, i.e. the
approximation ratio of the LPT algorithm [6].

A natural way to improve this ratio, is to relax the definition of a “stable”
schedule. We consider that a schedule is stable if it is an α-approximate Nash
equilibrium (α ≥ 1), i.e. a schedule in which no agent has sufficient incentive to
unilaterally change its behavior. We say that an agent does not have sufficient
incentive to unilaterally leave the link on which it is scheduled, if and only if
this does not increase its profit by more than α times its current profit1. We
can define now the price of α-approximate stability as the ratio of the objec-
tive function in a best α-approximate Nash equilibrium and a global optimum
schedule (this maximum is taken over all solutions). If α = 1 we get the price
of stability defined before. Thus, if the price of α-approximate stability is γ,
it means that no algorithm (even an exponential one) with an approximation
ratio smaller than γ can return schedules which are always α-approximate Nash
equilibrium.

1 Note that this definition is different from the definition of an ε-Nash equilibrium in
[5]: in [5], if a solution is an ε-Nash equilibrium, then if an agent unilaterally changes
strategy, her profit should be smaller than or equal to her current profit plus ε (and
not times α as in our definition).

The Price of Approximate Stability 159

Example: Let us consider two machines using LPT policy, and the following
tasks: two tasks t1 and t2 of length 3 and 3 tasks t3, t4 and t5 of length 2.
The only pure Nash equilibrium is the schedule where the tasks of length 3 are
scheduled at time 0, and are followed by the tasks of length 2. This solution has a
makespan of 7, whereas the makespan of the optimal solution is 6. In the optimal
solution, let us consider the task of length 3 which starts at time 3. By going
on the second machine, this task would be the largest one of this machine and
would then be scheduled in the first position. Its completion time would then be
3 instead of 6. Since this task can reduce its completion time by a factor of 2 by
changing machine, we will say that this task is 2-approximate. Each task of this
schedule can reduce its completion time by at most 2 by changing machine, so
this schedule is a 2-approximate Nash equilibrium.

Our contribution: We give relations between α and the approximation ratio
for the makespan, provided that the policies of the links are LPT. We show
that the price of α-approximate stability is at least 8

7 for all α < 2.1, and at
most 8

7 for all α ≥ 3. We give in Section 2 an algorithm which shows this last
bound: it achieves an approximation ratio of 8

7 for the makespan and returns
a 3-approximate Nash equilibrium. We show that the price of α-approximate
stability is larger than or equal to 1 + ε for any α ≤ k, where k is a certain
constant in Θ(ε−1/2), and that it is smaller than or equal to 1 + ε for any α ≥ 1

ε
(see Section 3). This last bound is obtained by analyzing the PTAS of Graham
(slightly modified) [6]. Section 4 shows a summary of the negative and positive
results of this paper.

2 A Variant of LPT

For simplicity in the sequel, we adopt the classical terminology of scheduling
theory. We want to schedule n tasks {t1, . . . , tn} on 2 identical machines, and
we want to minimize the maximum completion time of the last task scheduled,
i.e. the makespan. We denote by P1 the machine with maximum load, and by
P2 the other machine. Let ni be the number of tasks scheduled on Pi. Let xi be
the ith task on P1, and yi the ith task on P2. We denote by l(ti) the execution
time (or length) of task ti.

We represent a schedule by two sets A and B, where A (respectively B) is
the set of the tasks scheduled on P1 (respectively P2). On each machine, the
tasks are scheduled in the decreasing order of execution times. Let ξ = (A, B)
be a schedule of the n tasks on the two machines. Let a (respectively b) be a
subset of tasks scheduled on P1 (respectively P2). We denote by swap(ξ, a ↔ b)
the schedule ((A \ a) ∪ b, (B \ b) ∪ a). In this new schedule, each machine still
executes its tasks using the LPT policy (if two tasks have the same lengths, the
one with the smallest identification number is scheduled first).

Let us now consider the following algorithm LPTswap.

Theorem 1. The algorithm LPTswap achieves an approximation ratio of 8
7 for

the makespan.

160 E. Angel, E. Bampis, and F. Pascual

Order tasks by non increasing execution times. At each step i, for 1 ≤ i ≤ n,
schedule the current task ti on the machine which has the smallest completion
time. Let LPT denote the schedule obtained in this way.
Let S =

∑n
i=1 l(ti).

if n2 ≥ 2 and ((n1 = 3 and l(x1) + l(x2) + l(x3) > (4
7)S) or (n1 = 4)) then

if n1 = 3 then
Let ξ1 = swap(LPT, {x1} ↔ {y2}), ξ2 = swap(LPT, {x2} ↔ {y2}) and
ξ3 = swap(LPT, {x1} ↔ {y1}).
Return a schedule which minimizes the makespan among the schedules:
LPT, ξ1, ξ2 and ξ3.

end
if n1 = 4 then

Let ξ4 = swap(LPT, {x3, x4} ↔ {y2}).
Return a schedule which minimizes the makespan among the schedules:
LPT and ξ4.

end
end
else

Return LPT .
end

Algorithm LPTswap

Proof: Let us assume that ξ is a LPT schedule which does not achieve a
8
7 -approximation ratio. We show that the algorithm LPTswap transforms this
schedule into a schedule which achieves a 8

7 -approximation ratio.
Let tmax be the last task scheduled on P1 (the machine with maximum load).

We say that a task is large if its execution time is greater than or equal to the
execution time of tmax. A task is small if its execution time is smaller than the
one of tmax.

x1 x2 x3 x3 = tmax

y1 y2

Δ
P2

P1

Fig. 1. A LPT schedule

Claim: There are 3 or 4 tasks on P1 and exactly 2 large tasks on P2.
Let us show that we have exactly two large tasks on

Let us call Δ the difference between the completion time of the last task
of P1 and the last task of P2 (see Figure 1). The makespan of the schedule
ξ is

∑ n
i=1 l(ti)+Δ

2 . Since ξ does not achieve a 8
7 -approximation ratio, we have

∑ n
i=1 l(ti)+Δ

2 > 8
7OPT . Since the makespan OPT of an optimal solution is at

least
∑ n

i=1 l(ti)
2 , we have Δ

2 > (8
7 −1)OPT , and so Δ > 2

7OPT . Let ε > 0 be such
that Δ = (2

7 + ε)OPT .

The Price of Approximate Stability 161

We know that l(tmax) ≥ Δ (because in a LPT schedule, at each step, we add
a task on the machine with the smallest load), so the minimum execution time of
a large task is Δ. We also know that the completion time of the last task on P2
is smaller than or equal to OPT − (1

7 + ε1)OPT , with ε1 > 0, because otherwise
the schedule ξ would achieve a 8

7 -approximation ratio. So the maximum number

of large tasks on P2 is equal to �OPT−(1
7+ε1)OPT

Δ � = � 1−(1
7 +ε1)

2
7+ε

� = 2.
Moreover we can deduce that there are at least two large tasks on P2 because

otherwise the schedule ξ would be an optimal schedule.
Let us show now that there are either 3 or 4 tasks on P1. There are at least 3

tasks on P1 because otherwise the schedule ξ would be optimal. Indeed, if there
is only one task on P1 it is trivial that ξ is optimal. If there are two tasks on
P1 and l(x1) ≤ l(y1) then we would not decrease the makespan by putting x2
and y1 on the same machine (because P1 is the machine which has the largest
load). If there are two tasks on P1 and l(x1) > l(y1), then l(y2) ≥ l(x2) (schedule
LPT): if we add x2 to the large tasks of P2 (y1 and y2) we do not decrease the
makespan (x2 starts before the completion time of y2), and if we add to x1 one
of the large tasks of P2 (i.e. we exchange x2 with y1 or y2), we do not decrease
the makespan because the execution time of each of these tasks (y1 or y2) is
greater than or equal to the execution time of x2.

Let us now show that there are at most 4 tasks on P1.
We know that l(tmax) ≥ Δ > 2

7OPT , and each task on P1 is larger than
or equal to tmax. Since the maximum makespan of a LPT schedule on two
machines is at most 7

6OPT [6] then the maximum number of tasks on P1 is

� (7
6)OPT

Δ � = � (7
6)OPT

(2
7+ε)OPT

� = � 49
12� = 4.

We have shown that if a LPT schedule does not achieve a 8
7 -approximation

ratio, then it has 3 or 4 tasks on P1, and at least 2 tasks on P2. Moreover,
∑

ti∈P1
l(ti) > (8

7)OPT ≥ 8
7 (

∑ n
i=1 l(ti)

2) = 4
7

∑n
i=1 l(ti). Thus all the conditions

to enter in the first “if” of the algorithm LPTswap are fulfilled. Due to space
limitation, the sequel of the proof which proceeds by cases analysis, is omitted
here. �

Theorem 2. The schedule returned by LPTswap, on two machines whose poli-
cies are LPT, is a 3-approximate-Nash equilibrium.

Proof: Let ξ be a LPT schedule of the n tasks and ξs be the schedule returned
by LPTswap. Let mξ denote the makespan of ξ, and mξs the makespan of ξs. If
ξs = ξ, then ξs is a LPT schedule and it is a Nash equilibrium. Else ξs �= ξ, and
LPTswap has done a swap: ξs is then equal to ξ1, ξ2, ξ3 or ξ4. Let us show that
each task of ξs does not have incentive to go on the other machine.

First of all, x3 and all the small tasks (the tasks whose lengths are smaller
than the one of tmax) do not have incentive to go on the other machine because
if they change they will always be started after at least two large tasks, that
is a length greater than mξs

3 , and without changing they are always completed
before or at mξs . Indeed, l(x3) ≤ mξs

3 and if a small task (or x3) changes, it will

162 E. Angel, E. Bampis, and F. Pascual

be scheduled at the earliest at mξs − l(x3) ≥ mξs − mξs

3 >
mξs

3 . Likewise, it is
trivial that the tasks which are scheduled at the beginning of the schedule (e.g.
x1 and y1 in ξ2) do not have incentive to swap.

We then prove by case analysis that every large task of ξ1, ξ2, ξ3 or ξ4 does
not have incentive to change machine. Due to space limitations, the end of the
proof is omitted here. �

Corollary 1. The price of α-approximate stability is at most 8
7 , for all α ≥ 3.

Theorem 3. Let ε be any small constant such that ε > 0. The price of α-
approximate stability is at least 8

7 , for all α ≤ 2.1 − ε.

Proof: Let ε be a small number such that ε > 0. Consider the following tasks:
a task of length 3.3− ε, a task of length 3+ ε, and three tasks of length 2.1. The
optimal schedule (for the makespan) of these tasks is achieved if and only if the
tasks of length 2.1 are on the same machine, and the other two tasks are on the
other machine (see Figure 2 Left). The makespan of this schedule is OPT = 6.3.
In this schedule, the completion time of the task of length 3 + ε is 6.3 but this
task could be on the first position if it goes on the other machine (because the
policies of the machines are LPT), and its completion time would then be 3+ ε.
So this schedule is 6.3

3+ε > (2.1 − ε)-Nash approximate.

1P 1P

2P2P 2.1 2.1 2.1

2.1

2.1 2.1

Makespan = Makespan =

3.3 − ε3.3 − ε

3 + ε

3 + ε

7.2 + ε6.3

Fig. 2. Left: Optimal schedule for the makespan. This is a 6.3
3+ε

-approximate Nash
equilibrium. Right: Approximate schedule for the makespan.

Notice that all the other schedules have a makespan of at least 7.2 + ε >
8
7 OPT . So if we want a schedule which is 8

7 -approximate, this schedule will not
be an α-approximate Nash equilibrium, with α < 2.1 − ε. Thus the price of
α-approximate stability is at least 8

7 , for all α ≤ 2.1 − ε. �

An interesting question concerns the relation between the approximation ratio
and α, i.e. what happens if we consider other values of the approximation ratio
we wish to obtain, or other values of α ? In particular, does there exist algo-
rithms with smaller approximation ratios and which return α-Nash approximate
equilibria, with α bounded (and as small as possible)? The following section
gives an answer to this question.

3 A Variant of Graham’s Algorithm

We are now interested in (1+ ε)-approximate schedules, for any ε > 0. We show
that the price of α-approximate stability is smaller than (1 + ε) if α is at least
equal to k, where k is a constant smaller than 1

ε .

The Price of Approximate Stability 163

We consider the algorithm of Graham [6], slightly modified:
(i) Let k be some specified and fixed integer.
(ii) Obtain an optimal schedule for the k longest tasks, such that:

– Once tasks are assigned to each machine, they are scheduled on their ma-
chines in order of decreasing lengths (i.e. for a given machine, tasks are
scheduled from the largest one to the smallest one).

– If two tasks have the same length, the one which has the smallest identifica-
tion number is scheduled the first.

(iii) Schedule the remaining n − k tasks using the LPT rule.

This algorithm is a polynomial time approximation scheme (PTAS), and its
approximation ratio is 1+ ε, where ε is equal to 1

2+2 � k
2 �

, if the k largest tasks of
the schedule are optimally scheduled [6]. Let us now show that this algorithm,
denoted by OPT-LPT(k), returns α-approximate-Nash equilibria, with α < k−2.

Theorem 4. The schedules returned by algorithm OPT-LPT(k) are α-approxi
mate-Nash equilibria, with α < k − 2.

Proof: Let us show that each task of an OPT-LPT(k) schedule either does not
have incentive to change machine, or does not decrease its completion time by
a factor larger than or equal to k − 2, by going on the other machine. The n − k
smallest tasks of the schedule are scheduled using the LPT rule, so they do not
have incentive to change machine. Thus we consider the case of the k largest
tasks. Let OPT be the optimal solution of these tasks, such as computed by
OPT-LPT(k). We now consider three cases.

• In the first case, there are, in OPT , only one task on a machine (w.l.o.g.
on P1), and k − 1 tasks on the other machine. Since this schedule is an optimal
solution, the task on P1 is necessarily the largest task on the schedule, and this
schedule is a LPT schedule. So no task has incentive to change machine in this
case.

• Let us now consider the case where there are exactly two tasks on a machine
(w.l.o.g. on P1) in OPT . The others k − 2 tasks are then on P2.

We first show that no task scheduled on P2 has incentive to go on P1. By
construction, we know that l(x1)+ l(x2) is larger than or equal to the sum of the
lengths of the k − 3 first tasks of P2,

∑k−3
j=1 yj . Let i be the largest number such

that l(x1) ≥
∑i

j=1 yj : the i + 1 first tasks of P2 (i.e. the tasks who start at the
latest at the end of x1) do not have incentive to go on P1, otherwise they would
be scheduled after P1 and would not decrease their completion times. Moreover,
we know that l(x2) ≥

∑k−3
j=i+2 yj : thus the tasks from yi+2 to yk−3 do not have

incentive to change machine. Likewise, yk−2 does not have incentive to change:
if it is smaller than x2, then it would be scheduled on P1 after x2, and would
not decrease its completion time, since OPT is an optimal solution. If yk−2 is
larger than x2, then yk−2 starts to be executed before (or at the same time as)
x2. Thus, if it goes on P1, yk−2 will be scheduled after x1, and then will not
decrease its completion time.

164 E. Angel, E. Bampis, and F. Pascual

The only task which may have incentive to change machine is x2. If x2 is
smaller than all the other tasks, then it does not have incentive to change.
Otherwise, since OPT is an optimal solution, we know that at least a task of P2
starts at the same time or after x2. In the best case, x2 can go to the first position
on P2: by doing this, it starts on P2 before at most k − 3 tasks which started
before it when it was on P1. These k − 3 tasks are smaller than x2: the sum of
their completion time, S, is thus smaller than (k−3) l(x2). The completion time
of x2 decreases with this change, from S + l(x2) < (k − 2) l(x2) to l(x2). Thus
x2 is, in OPT , α-Nash-approximate, with α < k − 2.

• Let us now consider the case where there are exactly a < k − 2 tasks on P1,
and b < k − 2 tasks on P2. Let t be a task on P1 (respectively P2) which has
incentive to change machine. When it changes machine, t overtakes p tasks of
P2 (respectively P1), i.e. it starts to be executed before p tasks which started to
be executed before t before the change. We know that p is smaller than k − 2
because there are less than k − 2 tasks on each machine. Moreover, these tasks
have a length smaller than the one of t, otherwise t would not overtake them.
Thus, in the best case, t overtakes k −3 tasks of length almost equal to l(t), and
the completion time of t decreases from a value smaller than (k − 2) l(t) to l(t).
Thus t is α-Nash-approximate, with α < k − 2. �

Theorem 5. Let ε be any small number such that 0 < ε < 1. OPT-LPT(k) can
return α-approximate Nash equilibria, with α ≥ k − 2 − ε and k ≥ 5.

Proof: Let ε′ = ε
k−2−ε , and let us consider the following instance: a task of

length k − 3 − ε′, a task of length 1 + ε′ denoted by t, and k − 2 tasks of
length 1. In the only optimal solution for this instance, it can be shown that t is
(k−2−ε)-approximate. The schedule returned by OPT-LPT(k) on this instance
is an α-approximate Nash equilibrium, with α ≥ k − 2 − ε. �

We can deduce from Theorem 4, and from the fact that the approximation ratio
of OPT-LPT(k) is 1

2+2 � k
2 �

, the following result:

Corollary 2. Let k be any integer larger than or equal to 5. The price of α-
approximate stability is at most 1 + ε, where ε = 1

4+2 � k
2 �

< 1
k , for all α ≥ k.

Note that if we want to get an algorithm 8
7 -approximate which returns solutions

as stable as possible, then LPTswap is better than OPT-LPT(k): indeed, the
solution of LPTswap can be found faster (in OPT-LPT(k) we have 64 schedules
to compare, whereas in LPTswap there are at most 4 schedules to compare), and
the OPT-LPT(k) returns 4-approximate-Nash equilibria (versus 3-approximate
Nash equilibria for LPTswap). On the other hand, OPT-LPT(k) is useful if
we wish algorithms with smaller approximation ratios, since OPT-LPT(k) is
a PTAS.

The Price of Approximate Stability 165

4 Tradeoffs

We first show that if we want a price of α-approximate stability smaller than or
equal to (1 + ε), then α must be larger than a certain constant in Θ(ε−1/2).

Theorem 6. Let ε > 0 and k > 0 such that ε = 1
k (k+1) . Then to get a price of

α-approximate stability smaller than 1 + ε, we have to set α ≥ k.

Proof: Consider the following instance: a task of length k − 1, a task of length
1, and k + 1 tasks of length k

k+1 . The optimal schedule (for the makespan) of
these tasks is achieved if and only if the tasks of length k

k+1 are on the same
machine, and the other two tasks are on the other machine (see Figure 3 Left).
The makespan of this schedule is OPT = k. This schedule is a k-approximate
Nash equilibrium. Indeed, the completion time of the task of length 1 is k but
this task could be on the first position if it goes on the other machine (because
the policies of the machines are LPT), and its completion time would then be 1
(which is n times smaller than its current completion time).

1P

2P
1P

2P 1

1k − 1 k − 1
.k

k+1
k

k+1
k

k+1
k

k+1

k
k+1

k + 1 tasks k tasks

Fig. 3. Left: Optimal schedule for the makespan. This is a k-approximate Nash equi-
librium (the policies of the machines are LPT). Right: Approximate schedule for the
makespan.

Figure 3 Right shows the second smallest makespan schedule with these tasks:
all the schedules which are not the optimal one have a makespan greater than or
equal to the makespan of this schedule. This makespan is k − (k

k+1) + 1. So the

ratio between this makespan and OPT is
k−(k

k+1)+1
k = 1+ 1

k − 1
k+1 = 1+ 1

k (k+1) .
Thus if we want a schedule which is (1 + ε)-approximate, with ε < 1

k (k+1) , this
schedule will not be an α-approximate Nash equilibrium, with α < k. �

We can also prove:

Theorem 7. The price of α-approximate stability is at least 1.1 (respectively
9
8), for all α ≤ 10

3 (respectively α ≤ 8
3).

Figure 4 illustrates the tradeoffs between the approximation ratio of an algo-
rithm, and the stability of the schedules it can returns. The dark grey zone
illustrates the results showed in Theorem 6 (for 2 ≤ k ≤ 10), Theorem 3, and
Theorem 7. Each point (x, α) belonging to the dark grey zone represents a neg-
ative result, i.e. it means that there is no x-approximate algorithm which re-
turns α-Nash equilibria. The light grey zone illustrates the results showed by

166 E. Angel, E. Bampis, and F. Pascual

Theorem 4 and Theorem 1: each point (x, α) belonging to the light grey zone
represents a positive result, i.e. it means that there is an x-approximate algo-
rithm which returns α-Nash equilibria (this algorithm is either OPT-LPT(k) or
LPTswap). If a point (x, α) belongs to the white zone, then it means that we do
not have any algorithm corresponding to this point, nor any impossibility result.

1

1.11.051

5

4

3

2

6

7

8

10

9

Policies of the links = LPT

LPTswap

1.158
7

7
6

α

approx. ratio

Fig. 4. Light grey (respectively Dark grey): Relation between α and approximation
ratios that it is possible (respectively it is not possible) to obtain if we wish an algorithm
which returns α-approximate Nash equilibria

References

1. G. Christodoulou, E. Koutsoupias, A. Nanavati Coordination mechanisms. In Proc.
of ICALP 2004, LNCS 3142, pages 345-357.

2. E. Koutsoupias, C. H. Papadimitriou Worst-case equilibria. In Proc. of STACS 1999,
LNCS 1563, pages 404-413.

3. A. S. Schulz, N. Stier Moses On the performance of user equilibria in traffic networks.
In Proc. of SODA 2003, pages 86-87.

4. E. Anshelevich, A. Dasgupta, J. Kleinberg, É. Tardos, T. Wexler, T. Roughgarden
The price of stability for network design with fair cost allocation. In Proc. of FOCS
2004, pages 295-304.

5. R. Lipton, E. Markakis, A. Mehta Playing Large Gamed Using Simple Strategies.
ACM Conference on Electronic Commerce, pp. 36-41, 2003.

6. R. Graham Bounds on Multiprocessing Timing Anomalies. SIAM Jr. on Appl.
Math., 17(2), pp.416-429, 1969.

7. D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, P. Spirakis, The
structure and complexity of nash equilibria for a selfish routing game. In Proc. of
ICALP 2002, LNCS 2380, pages 123-134.

	Introduction
	A Variant of LPT
	A Variant of Graham's Algorithm
	Tradeoffs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

