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Abstract. There is a large range of image processing applications that
act on an input sequence of image frames that are continuously received.
Throughput is a key performance measure to be optimized when execu-
ting them. In this paper we propose a new task replication methodology
for optimizing throughput for an image processing application in the field
of medicine. The results show that by applying the proposed methodo-
logy we are able to achieve the desired throughput in all cases, in such a
way that the input frames can be processed at any given rate.

1 Introduction

There is a large range of emerging applications in which data generated in a
given external environment is pushed asynchronously to servers that process
this information. These applications are characterized by the need to process
different instances of an input data stream in a timely and responsive fashion.
Hereafter, we refer to such applications as streaming applications [1] [2] [3] [4].

There are two distinct criteria for judging the quality of an execution for
these streaming applications: latency and throughput. Latency is the time taken
to process individual data, while throughput is the aggregate rate at which
the instances of the input data stream are processed. Throughput can also be
measured in terms of its inverse, the Iteration Period (IP), which corresponds to
the interval of time existing between the execution of two consecutive instances
of data.

In this paper, we deal with image-processing applications executing in a
streaming manner. These applications are typically composed of a set of com-
putation stages performing different functions. The usual computations in the
stages of these kinds of applications are blurring, filtering, interpolation, etc. As
they are independent functions, they can be arranged in a set of consecutive
stages that at a given time can be simultaneously processing different image
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frames in pipeline fashion. The sequence of input frames is continuously re-
ceived. Thus, throughput is a key performance measure to be optimized in these
executions [2] [5].

In this context, we address the problem of maximizing the throughput of
an image processing application in the field of medicine. The application under
study is devoted to the detection of the real arterial structure from a sequence of
Intra-Vascular Ultrasound (IVUS) images, captured by a transducer at a specific
rate. Real-time constraints must be met in order for images to be processed at
the same rate as that at which they are captured [6].

We first define the task model of the IVUS application by capturing its salient
computational features. Based on this model, we propose a methodology that
performs an innovative task replication technique for those tasks that can process
independent input frames in such a way that a given throughput can be achieved.
Then, the replicated application is executed in a simulation framework using a
task mapping mechanism that considers its iterative behaviour.

We show through experimentation that the task replication technique allows
us to reach the given throughput constraint in all cases. Additionally, we show the
effectiveness of the whole strategy of replication and mapping in the optimization
of processor utilization, as well as the speedup that is achieved.

The rest of the paper is organized as follows. Section 2 exposes the main
characteristics and the steps that are performed in the IVUS imaging applica-
tion. Section 3 describes the proposed methodology of task replication to exploit
throughput. Section 4 outlines the main contributions of the literature in rela-
tion with the optimization problem that is undertaken in this paper. Section 5
shows the experimentation results that are obtained for the application under
study. Finally, Section 6 outlines the main conclusions.

2 The IVUS Imaging Application

This is a study of an image processing application, in the field of medicine,
for the detection of the real arterial structure (called adventitia) [7]. The input
of the application is a sequence of IVUS frames that are captured by a radio-
frequency transducer installed in a catheter. The captured data are sent out to
be processed and then converted to images.

Tissue characterization is a fundamental tool for studying and diagnosing the
pathologies and lesions associated to the vascular tree. This is an arduous job
that requires specialists to manually identify the tissues and visualise them. IVUS
imaging is a highly suitable visualization technique for the task as it provides
a cross-section of the coronary vessel, revealing its histological properties and
tissue organization [6].

As it is so time consuming and due to the subjectivity of the classification de-
pending on the specialist, there is an increasing interest among the medical com-
munity in using automatic tissue characterization procedures. These automatic
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Fig. 1. Stages of the IVUS imaging application

procedures are time-critical, and consequently should provide answers in a mini-
mum time. Figure 1 shows the main stages of the process that are explained below.

1. Characterization of the interest zone. Because the original image of adven-
titia is circular, it is transformed to polar coordinates. In this coordinate
system, the adventitia appears as a dark horizontal line. By means of a dif-
fusion method, the image is de-noised and the target structure is enhanced.
Then, the band of interest is determined in order to reduce computational
cost.

2. Adventitia characterization. The three following filters are applied to the
image: horizontal edges, radial standard deviation and mean accumulative
radial. The three filtered images provide the necessary information for dis-
criminating between four different sets: adventitia, calcium, fibrous struc-
tures and the remaining pixels.

3. Anisotropic contour closing (ACC). The previous step characterizes the ad-
ventitia with a collection of fragmented curve segments. These segments are
interpolated using ACC to join them.

4. B-Snake. Since the above interpolation process still presents gaps in side
branches and calcium sectors, a parametric B-snake is used on the ACC
closure in order to close it and obtain a compact and explicit representa-
tion. Finally, the identified adventitia is returned to cartesian coordinates to
visualize its original circular shape.

3 The Optimization Problem

One of the key problems that arise when executing image-processing applications
that act on an input sequence of image frames is having enough throughput to
permit their processing at a given rate. We address the optimization of the
throughput of these applications by considering the definition of computation
stages that can run in pipeline.
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The proposed methodology is based on two steps: in the first, the task graph
model of the application is obtained. Based on this model, in the second step
we apply the convenient replication of tasks that makes it possible to reach a
desired throughput.

3.1 The Task Model

To exploit parallelism in streaming image processing applications, the main issue
is to identify the sequence of different functions (steps) that are carried out for
each input frame. Then, a parallel design of the application can be undertaken
in such a way that the different functions are implemented as tasks that can run
overlapped in pipeline for different image frames of the input stream.

The task model that we extracted for the IVUS imaging application is com-
posed of 12 tasks that can be modeled using the directed acyclic graph (DAG)
structure, G(V,E), illustrated in Figure 2(a). The graph is composed of a set
of nodes V, each node representing a task. Each task Ti∈V has an associated
computation time µ(T i). E is the set of arcs representing task precedences. Each
arc (Ti,Tj)∈E has an associated communication volume c(Ti,Tj), in bytes, to be
transferred between tasks.

Fig. 2. (a) Task graph model of IVUS imaging application. (b) Functionality and com-
putation time of each task.

Each step of the application can have several tasks performing different func-
tions as indicated in the graph. Figure 2(b) shows the different functions that
were identified and their correspondence with the tasks in the graph, together
with the task execution time, in seconds. To obtain these task execution times we
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profiled the execution of the different functions that conform a task in the IVUS
sequential algorithm. We also computed the data structures that are shared be-
tween functions to determine the communication volume of data that has to be
transferred between tasks. The sequential application was programmed in Mat-
lab and executed on a Pentium IV processor at 3GHz with 512 Mb of RAM
running windows.

3.2 Task Replication Method

In this subsection, we expose the methodology that is proposed in this paper to
achieve a given throughput for streaming applications running in pipeline. We
assume that the instances of the input stream have no temporal dependencies
between themselves, as is the case with IVUS imaging. Thus, different image
frames can be processed concurrently in the same step with replicated tasks.
Consequently, throughput is improved, since multiple images are processed in
parallel. We propose this methodology instead the typical data parallel approach
at the application level, in order to exploit the task parallel capacity without
penalizing latency.

Given an IP to be achieved, the replication problem consists of determining
the tasks that should be replicated and the number of replications for each. It is
established in the literature that the optimum IP in a pipeline execution is given
by the maximum computation time µ(T i), considering that communications are
performed concurrently [4][8]. We enhance this model by taking into account
the fact that on several platforms communications cannot be overlapped. Thus,
the optimum IP is also influenced by the global amount of communications that
are transferred from one task. With these considerations in mind, we propose a
replication methodology that consists of the two following steps:

1. Determine the tasks to be replicated
All the tasks are evaluated to decide whether they have to be replicated
or not. Each specific task Ti∈V with a communication to Tj∈V, will be
replicated if it has accomplished one of the following two conditions: (a) The
computation time of Ti is greater than IP or, (b) the communication time
to transfer volume c(Ti,Tj) is greater than IP. Taking these conditions for
replication into account, the algorithm shown in Figure 4 determines the
tasks to be replicated, joined in subgraphs (replicable subgraphs). Starting
from the DAG graph of the application, for each task Ti∈V it calls the
recursive procedure group(T i), which returns the set of successor-replicable
tasks that form the replicable subgraph to which Ti belongs.

From the identified subgraph, it ascertains whether there is an intersection
with the previously found subgraphs that are stored in subgraph set. Should
the subgraph have a task in common with another, these are joined into a
single subgraph. Then, the subgraph of replicable tasks is the chosen entity
to which replication will be applied in the next step.

2. Calculate the number of replications
In this step the number of copies is calculated for each replicable subgraph
and the number of copies for each task inside the subgraph. This provides



1100 F. Guirado et al.

us with the most appropriate number of replications for each task, instead
of replicating the same number of copies for all the tasks, which, in some
cases, would be an excessive replication.

To illustrate this step consider the example of Figure 3(a) where we can see
a replicable subgraph with tasks Ti and Tj, along with 2 and 4 replications
respectively. Figure 3(b) shows the result that would be obtained if the tasks
were replicated individually, which leads to a large amount of dependencies.
This could lead to an excessive overhead when communication from the
same tasks is serialized as we have considered. Figure 3(c) illustrates the
replication result applied on the subgraph level as proposed.

Figure 5 shows the algorithm to be applied to each replicable subgraph,
which proceeds as follows. For each task Ti in the subgraph, the correspon-
ding number of replications is calculated as the maximum between compu-
tation and communication, divided by the given IP. To calculate the number
of replications of the graph we identify its initial tasks. Among these initial
tasks, we chose the one with the lowest number of replications assigned. This
determines the number of the replications of the whole subgraph.

Fig. 3. (a) Replicable subgraph. (b) Result of replication if it was applied on a task
level. (c) Result of replication with our method.

subgraph set=∅ function group(T i)
non evaluated tasks={Ti; Ti∈V} adjacent set=∅
for each Ti ∈ non evaluated tasks non evaluated tasks=non evaluated tasks-{Ti}
subgraph=group(T i) if is replicable(Ti)
if subgraph �= ∅ adjacent set={Ti}

for each H ∈ subgraph set for each task successor task Tj ∈ V and
if H

⋂
subgraph �= ∅ then is replicable(Tj)

subgraph = subgraph
⋃

H adjacent set=adjacent set
⋃

group(Tj)
end for end for
subgraph set= end if
=subgraph set

⋃
subgraph return adjacent set

end if end function group
end for

Fig. 4. Algorithm for identifying replicable subgraphs of tasks
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function replication
for each subgraph ∈ subgraph set

for each Ti ∈ subgraph
number replications[Ti]=�max(μ(Ti),max(∀Tj successor of Ti comm(Ti→Tj)))

iteration period
�

end for
Tinit = initial task of subgraph with lowest number replications[Ti]
number replications subgraph = number replications[Tinit]
for each Ti ∈ subgraph

number replications[Ti]= � number replications[Ti]
number replications[Tinit]

�
end for

end for
end function replication

Fig. 5. Algorithm for determining the number of replications of the subgraphs and
their internal tasks

Table 1 shows the development of the replication method when it is applied
to the task graph of the IVUS application for a desired throughput of 214 ms. In
this case, we identify three replicable subgraphs (two with a single task). Figure
6 graphically shows the result of this replication method in IVUS application.

Table 1. Development of the replication method for IVUS application

Rep.subgraphs n rep.[Ti] n rep. inside subgraph n rep subgraph

T2 → T3 T2:2 2/2=1 2
T3:8 8/2=4

T10 T10:2 2/2=1 2

T12 T12:3 3/3=1 3

Fig. 6. Ivus replicated graph
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4 Related Work

The optimization of throughput in streaming applications running in pipeline
has been undertaken by several proposals in the literature. Some authors provide
generic solutions to exploit throughput under different constraints without con-
sidering replication. Hoang and Rabey in [2] propose an algorithm that solves a
resource-optimization problem and maximizes throughput. Hoang and Rabey’s
proposal was later improved by Yang et al in [3]. This starts the task assign-
ment with the ETF algorithm that is based on a classic DAG heuristic [9]. From
the obtained assignment, it processed additional reassignment steps in order to
exploit the iterative behaviour of applications. In all these approaches, the ma-
ximum throughput is given by the maximum computation time of the tasks in
the application, which also indicates the minimum IP achievable.

In order to improve throughput there are approaches that introduce the con-
cept of replication to their techniques, dividing the input frame into several parts
and applying data parallelism to each [4] [8]. Lee et al in [5] apply a replication
technique where the tasks of the same stage have to be identical. Unlike these
previous works, our approach considers the possibility of replication on the task
level for applications with arbitrary task structure and without constraints on
the kind of tasks within each stage. The replicated tasks perform the same com-
putation for different frames of the input stream. This facilitates the applicability
of the replication method as the code of the task does not need to be modified
and provides a more feasible solution for improving throughput.

5 Experimentation Results

In this section, we conducted an experiment to show both the applicability and
the benefits provided by the proposed approach of task replication when used to
execute the IVUS imaging application in a cluster environment.

From the obtained IVUS task graph model, we executed the application in
the simulation framework pMAP [10], which simulates the execution of message-
passing applications in distributed systems. The underlying system was modelled
by defining a set of homogeneous nodes with the same characteristics as those
used in the sequential execution. The network was modelled as a Gigabit Ether-
net.

The replication method was evaluated for a desired IP that is based on µ(T 3),
which is the highest computation time in the graph and consequently indicates
the maximum throughput that is achievable. Thus, we replicated the application
tasks using our methodology in order to increase throughput by 2, 3, 4, 8 and
16 times, indicated as x2, x3, x4, x8 and x16 respectively. The tasks of the repli-
cated graph were assigned to the processors using a specific mapping mechanism
for pipeline applications [11] that makes it possible to exploit throughput and
optimize the number of processors.

Figure 7 shows the throughput, in frames/second, that was obtained for the
application using our methodology, compared with the maximum throughput



Exploiting Throughput for Pipeline Execution 1103

that can be theoretically obtained for the different number of replications. As
can be observed, we obtained significant similarities for both values. Thus, the
replication method is able to achieve the given throughput constraints for the
IVUS imaging application.

Fig. 7. Throughput

As the number of processors that are used is increased due to task replication,
we evaluated the processor utilization in the executions. For each experiment,
Figure 8(a) shows the number of required processors with the corresponding
average utilization. As can be observed, the worst case is an average utilization of
68% when 4 replications were applied. In all the remaining cases, the percentage
utilization is greater that 70%. Thus, the mapping mechanism applied after
replication is able to optimize resource utilization.

Finally, we evaluated the speedup in order to analyse the influence of the
increase in the number of tasks and processors due to replications. As shown in
Figure 8(b), the obtained speedup has the same tendency as the maximum, and
the difference between both becomes more significant only when 36 processors
were used in the x16 experiment.

Fig. 8. (a) CPU utilization. (b) Speedup.
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6 Conclusions

Optimization of throughput is a key performance measure for optimization in
image processing applications that act on an input sequence of image frames. In
this work, we addressed the exploitation of throughput based on a real applica-
tion, IVUS imaging, in the field of medicine.

We have proposed a task replication methodology that consists of two steps:
(a) obtaining the task graph model of the application and, (b) applying the
convenient replication of tasks to enable the desired throughput.

The effectiveness of the proposed approach was evaluated for the IVUS ima-
ging application. For different values of throughput to be obtained, we applied
replication, and the replicated application was executed through simulation in
a cluster environment using a task mapping mechanism that considers its ite-
rative behaviour. The results show that the proposed replication method fol-
lowed by the mapping mechanism is able to achieve the desired throughput for
the application under study while maintaining good utilization of resources.
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