
Early Experiences with KTAU on the IBM

BG/L

Aroon Nataraj, Allen D. Malony, Alan Morris, and Sameer Shende

Performance Research Laboratory, Department of Computer and Information Science
University of Oregon, Eugene, OR, USA

{anataraj, malony, amorris, sameer}@cs.uoregon.edu

Abstract. The influences of OS and system-specific effects on applica-
tion performance are increasingly important in high performance
computing. In this regard, OS kernel measurement is necessary to un-
derstand the interrelationship of system and application behavior. This
can be viewed from two perspectives: kernel-wide and process-centric.
An integrated methodology and framework to observe both views in
HPC systems using OS kernel measurement has remained elusive. We
demonstrate a new tool called KTAU (Kernel TAU) that aims to pro-
vide parallel kernel performance measurement from both perspectives.
KTAU extends the TAU performance system with kernel-level monitor-
ing, while leveraging TAU’s measurement and analysis capabilities. As
part of the ZeptoOS scalable operating systems project, we report early
experiences using KTAU in ZeptoOS on the IBM BG/L system.

Keywords: Kernel, performance, measurement, analysis.

1 Introduction

As High Performance Computing (HPC) moves towards ever larger parallel en-
vironments, the influence of OS and system-specific effects on application per-
formance are increasingly important to include in a comprehensive performance
view. These effects have already been demonstrated ([10], [16]) to be poten-
tial bottlenecks, but an integrated methodology and framework to observe their
influence relative to application activities and performance has yet to be fully
developed. Such an approach will require OS performance monitoring. OS per-
formance can be observed from two different perspectives. One way is to view
the entire kernel operation as a whole, aggregating performance data from all
active processes in the system and including the activities of the OS when ser-
vicing system-calls made by applications as well as activities not directly related
to applications (e.g. servicing interrupts or keeping time). We will refer to this as
the kernel-wide perspective, which is helpful to understand OS behavior and to
identify and remove kernel hot spots. Unfortunately, this view does not provide
insight into what parts of an application spend time inside the OS and why.

Another way to view OS performance is within the context of an application’s
execution. Application performance is affected by the interaction of user-space

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 99–110, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

100 A. Nataraj et al.

behavior with the OS, as well as what is going on in the rest of the system. By
looking at how the OS behaves in the context of individual processes (instead
of aggregate performance) we can provide a view that details interactions be-
tween programs, daemons, and system services. This process-centric perspective
is helpful in tuning the OS for a specific workload, tuning the application to bet-
ter conform to the OS configuration, and in exposing the source of performance
problems (in the OS or the application).

Both these perspectives are important in OS performance measurement and
analysis on HPC. The challenge is how to support both while providing a mon-
itoring infrastructure that provides detailed visibility of kernel actions and that
is easy to use by different tools. For example, the interactions between applica-
tions and the OS mainly occur through five different mechanisms: system-calls,
exceptions, interrupts, scheduling, and signals. It is important to understand
all forms of interactions as the application performance is influenced by each.
However, some are easier to observe than others.

Our approach to the challenges above is the development of a new Linux Ker-
nel performance measurement facility called KTAU, which extends the TAU [4]
performance system with kernel-level monitoring. KTAU allows both a kernel-
wide perspective of the OS performance as well as a process-centric perspec-
tive which merges kernel-space measurements with user-space performance data
measured by TAU. KTAU is part of the ZeptoOS [5] research project to study
operating systems for petascale systems and is included in the ZeptoOS distri-
bution for the IBM BG/L I/O nodes. Below we describe the design of KTAU
in Section 2, the BG/L in Section 3, KTAU’s integration in the ZeptoOS and
our early experiences on the IBM BG/L platform in Section 4, Related work is
given in Section 5. Section 6 offers final remarks and future directions.

2 KTAU Design and Implementation

Kernel Tuning and Analysis Utilities (KTAU) is a toolkit for profiling and trac-
ing the Linux Kernel. The toolkit is unique in its ability to produce both a
kernel-specific and process-specific view of performance. Its main strength is in
analyzing program behavior within the context of the kernel. KTAU generates
performance data compatible with the TAU performance system [4], allowing
TAU’s analysis tools to be used.

As shown in Figure 1, KTAU consists of five distinct parts, namely,

– the Kernel Instrumentation
– the Kernel Infrastructure
– the KTAU proc filesystem
– the libKtau user-space library
– and clients of KTAU including the integrated TAU framework and daemons

2.1 Kernel Source Instrumentation

The kernel instrumentation is composed of easy to use C macros and functions.
The instrumentation allows KTAU to intercept the kernel execution path and

Early Experiences with KTAU on the IBM BG/L 101

Fig. 1. KTAU Architecture

at each point measurement data is recorded. Profiling and tracing share the
same instrumentation points. Instrumentation points are coarsely grouped based
on various aspects of the kernel such as the subsystem in which they occur
(e.g. scheduling, networking) or in what contexts they occur (e.g. system calls,
interrupt, bottom-half handling). Compile-time configuration options and boot-
time parameters control which groups of instrumentation points are turned on.

Three different types of macros are provided, namely mapping, timer and
event macros. The mapping macro is necessary in every function that contains
the other two types of instrumentations. It performs the function of provid-
ing identities to instrumentation points and mapping performance data to the
instrumentation points. The next macro is a start-stop timer that calculates
time elapsed between an entry and exit point. To obtain high-granularity timing
resolution, low-level hardware timers are used. Lastly the event macro is used
for events that do not conform to the entry/exit semantics or for events with
non-monotonically increasing values.

102 A. Nataraj et al.

2.2 Kernel KTAU Infrastructure

The infrastructure consists of the main in-kernel component that collects per-
formance data and manages the lifecycle of profile/trace data structures. These
structures are managed on a per-process basis and are initialized at the process
creation time. KTAU adds a member of type struct ktau prof ∗ to the process’
task struct which is the process control block in Linux. Small changes are also
made to process creation and termination subroutines.

struct ktau prof comprises of a profile table of configurable size, a fixed-size
circular trace buffer and various other state variables for synchronizing access,
inclusive/exclusive time calculation and merging of user and kernel profile data.

2.3 KTAU proc Filesystem

The proc filesystem component interfaces user-space clients with the kernel in-
frastructure component. It exposes two entries under /proc/ktau called profile
and trace. User-space clients perform IOCTLs on these files to access kernel
performance data.

To accommodate frequent use clients, such as daemons that repeatedly
retrieve data at small intervals, a memory-mapped buffer strategy (using get
user pages and vmap() kernel routines in Linux) is being experimented with.
This removes the need to repeatedly copy to/from userspace.

2.4 libKtau – User Library and API

The User API to KTAU provides a small set of easy to use functions that hide
the details of the proc filesystem protocol, shielding applications from changes to
KTAU kernel components. It provides control (merging, overhead calculation),
data retrieval, data conversion (ASCII/binary) and formatted output.

All requests from user-space are grouped into three accessing schemes namely
’self’, ’others’ and ’all’, referring to the set of processes of interest. For ’self’
requests, kernel-mode performance data of the same process as the user-space
client making the request is accessed. ’other’ requests are for a set of processes
(one or more) explicitly named in the request. And ’all’, just an extension of
’other’, is a convenience sparing clients from having to find the pids of all the
processes on the system. The reason for having different modes has to do with
reducing or removing the need for locking(a process accessing its own kernel-level
profile does not need synchronization as it cannot race against itself).

2.5 KTAU Clients

KTAUD - KTAU Daemon. KTAUD periodically extracts performance data
from the kernel. It can be configured to extract information for all or a subset of
processes. Although it supports extracting profile data, its periodic nature suits
it to dumping trace data, as trace buffers within the kernel can become full.

Early Experiences with KTAU on the IBM BG/L 103

Integrated TAU Framework. The TAU measurement framework has been
integrated with KTAU and is a client of libKtau. Applications instrumented with
TAU automatically have access to kernel performance data of their own process
(i.e. they will be self-profiling clients, using the ’self’ mode of libKtau). When
enabled through configuration, TAU will generate merged user/kernel profile
information. This is supported only on KTAU-patched Linux OSes.

runKtau. Another type of client is similar to how the ’time’ command under
UNIX works. ’time’ spawns a child process, executes the required job within that
process, and then gathers rudimentary performance data by doing a waitpid on
the child’s pid. Similarly ’runktau’ extracts the process’ detailed KTAU profile.

3 The BG/L and Its Performance Observation

3.1 Brief Description of the Blue Gene/L

The Blue Gene L(BG/L) is a recent massively parallel supercomputer system
from IBM, developed in collaboration with LLNL, that scales to 65,536 compute
nodes [13]. Its architecture includes dual-processor Compute Nodes, I/O Nodes,
front-end nodes and a Service node. Five different interconnect networks provide
file I/O, control, debugging and interprocessor communication. Our focus is cur-
rently toward the compute and I/O nodes. We provide only a brief description
of those aspects relevant to the current work as other work describes all aspects
of the BG/L architecture and system software in detail([11],[6]).

The dual-processor (700 Mhz PPC 440) compute nodes, running a proprietary
IBM operating system called the Compute Node Kernel (CNK) act as the main
computation engines. The CNK is a small, light-weight OS, written in C++,
without multitasking or virtual memory support allowing as many cycles as
possible to application processing. File I/O is not directly implemented by the
CNK and instead is call-forwarded to dedicated I/O nodes.

The I/O nodes serve two purposes. They participate in control of compute
nodes including initialization, program launch and termination. They also per-
form all File I/O processing on behalf of the compute nodes. Multiple Compute
nodes share a single I/O node. The ratio of I/O to compute nodes is configurable
during system setup with values ranging from 1:8 to 1:128. The I/O node along
with the compute nodes connected to it, forms a partition set (or pset).

The IO node OS is a modified Linux kernel (called the IO Node Kernel or
INK). Modifications include patches to change interrupt/exception handling, add
device drivers and floating point unit support. Due to the nodes being disk-less,
a ramdisk containing shells and utilities is loaded into memory during bootup
and forms the root filesystem. After bootup remote filesystems can be mounted
onto the I/O Node based on the configuration of the ramdisk.

The Control and Input/Output daemon (CIOD) running on the I/O Node
manages the control and file I/O of compute nodes in its pset. It listens for and
accepts requests for processing of forwarded I/O system calls from the compute

104 A. Nataraj et al.

node applications. The file-I/O is blocking on the application side. The CIOD re-
issues the system-calls through the VFS (Virtual File system) on the I/O Node
which in turn is implemented by the file-system in use (e.g. NFS or PVFS2).

A tree network connects the Compute Nodes in a pset to their corresponding
I/O node. The tree is used for collective operations as well as file I/O.

3.2 The Performance Measurement Problem

The BG/L system involves different nodes and multiple interacting software
components within the nodes. Our approach is to place a unified measurement
framework, based on TAU and KTAU, that can observe the applications, the
system software and the operating systems and can correlate the performance
data from the disparate sources.

The compute and I/O nodes tend to influence application performance the
most. The I/O node being a shared resource within a pset, it is important to
understand aspects of sharing such as fairness and utilization. Key questions re-
garding configuration of CIOD and the kernel, kernel version, choice of filesystem
(NFS, PVFS2, Lustre etc) need to be answered with reference to performance
data. The problem can be further split as follows:

1. Measurement of the Compute Node applications and the CNK and correla-
tion of both performance results across compute nodes. This is (partially) tackled
by using applications instrumented with TAU. TAU instrumentation allows trac-
ing/profiling the applications and libraries such as MPI (using the MPI profiling
interface). The CNK is closed and proprietary (akin to a black-box) and hence
cannot be profiled or traced. But it is considered to be light-weight and built to
stay out of the way of the application. We do not go into the details of using the
TAU system on the compute nodes any further in this paper.

2. Measurement and correlation of performance of the CIOD, system daemons
and IO Node Kernel. This is the focus of out current work including the integra-
tion with the ZeptoOS IO Node kernel on the Blue Gene/L at Argonne National
Labs and our early experiences and results in using KTAU on the IO Nodes. The
black-box nature of the CIOD is one of the challenges in measuring I/O node
performance. The next section describes our approach.

3. Correlation of performance between the compute and I/O nodes within a
pset and across multiple psets. This faces the problem of two black-boxes (CNK
and CIOD) obscuring the call flow between the Compute and I/O-nodes, making
correlation of events challenging. This is the target of future work.

4 KTAU On BG/L

Figure 2 shows a simplified view of the architecture of the BG/L’s I/O and
Compute Nodes within a pset and the main software components on those nodes.
The ZeptoOS Linux kernel on the IO Node has been patched with KTAU support
and KTAUD has been added to the IO Node utilities. On the compute node side,
the applications can be instrumented with TAU to generate profiles or traces.

Early Experiences with KTAU on the IBM BG/L 105

IO-Node

CIOD

User-space

Gigabit
Ethernet

Storage
and External Network

System
Processes

CIOD

KTAU-D

User-space

IO-Node Kernel
with

KTAU
Kernel-space

Kernel Threads

Tree
Network

32 Compute Nodes

User-spaceKernel-space

TAUCompute-Node
Kernel

User-spaceKernel-space

TAUCompute-Node
Kernel

User-spaceKernel-space

TAUCompute-Node
Kernel

User-spaceKernel-space

Application
with
TAU

Compute-Node
Kernel

Paraprof
(profile)

Vampir/
Jumpshot

(trace)

Visualization

KTAU
Kernel

Profile/Trace

TAU
Application

Profile/Trace

Output
Processing

Fig. 2. KTAU on IBM BG/L

KTAU’s process-centric kernel level profiling and tracing support is used to
observe the CIOD despite it being closed-source. Its interactions at the kernel-
level are the only way to peer into it. While utilities such as ’strace’ are being used
for this purpose, the perturbation caused by strace’s trap-and-signal mechanism
can cause significant differences between observed and ’real’ behavior.

The integration with ZeptoOS (see [1] for details) includes patching and con-
figuration changes to the Kernel source and the ramdisk image.

4.1 Performance Observation Capabilities Demonstrated

The following experiments aim to show KTAU’s fine-grained performance ob-
servation capabilities on the BG/L IO Nodes. The experimental setup consists
of a single pset (a single I/O node with 1 to 32 compute nodes). The compute
nodes run a MPI I/O benchmark called iotest (used at ANL) which produces ag-
gregate bandwidth numbers over varying block-sizes, number of processors and
iterations. While the benchmark is run on the compute nodes, the CIOD services
the read and write calls on the I/O node. On the I/O node while KTAU captures
the kernel interactions, KTAUD periodically queries and saves the KTAU trace
or profile information. Paraprof and Vampir [17] are used for visualization.

1. Fine Grained CIOD Tracing: We first show a trace fragment of the CIOD
along with a zoomed in view in Figure 3. The groups of kernel functions shown in
the upper image include TCP/IP, Socket calls, Interrupts, bottom half handling
and scheduling. The lower zoomed-in image shows a typical CIOD kernel inter-
action when servicing a write system call from the compute node. The CIOD

106 A. Nataraj et al.

Fig. 3. KTAU Trace of CIOD – Bottom is Zoomed-In view of Top

calls sys write on the IO node which in turn gets translated into socket and
bottom half handling. UDP, instead of TCP, is used due to the filesystem being
NFS (but the UDP activity is not shown as those instrumentation points were
not enabled). The fine grained detail also shows interrupts occurring in between
(do IRQ). The ’node 266’ in the title refers to process-id 266 (of the CIOD).

2. Effect of Increasing Compute Jobs on CIOD: As the I/O Node is a shared
resource among the compute nodes in the pset, the load on the CIOD will no-
doubt increase as the iotest benchmark is run in parallel over multiple compute
nodes. Using KTAU we are able to capture the effect on the CIOD through its
increasing interactions with the INK as it tries to service all of the compute
nodes. Figure 4 shows five runs each with varying number of compute jobs.

3. Correlating behavior of Daemons and Kernel threads: It is possible to loosely
correlate activity between different interacting daemons and kernel threads using
traces collected from them. While no actual causal relationships can be directly
deduced from the traces, intelligent guesses can be made based on timestamps
and functionality of the processes. Figure 5 shows trace fragments from two pro-
cesses on the IO node namely the CIOD and the RPCIOD (RPC I/O daemon).
CIOD can be seen to repeatedly make sys write calls and then be scheduled-
out. At the same time, RPCIOD can be seen to be scheduled-in and perform
sock sendmsg followed by bottom-half handling. This behavior can be explained
by the fact that with the underlying filesystem being NFS, the CIOD’s sys write
calls are being handled by the RPCIOD.

4. Effect of Filesystem choice on CIOD: The backend filesystem mounted by
the IO Node after bootup can be varied. By default on the ANL BG/L this
is NFS, but a PVFS2 based configuration is also supported. The choice and
configuration parameters of the backend filesystem can significantly influence
I/O performance. To demonstrate KTAU’s characterization of this effect two

Early Experiences with KTAU on the IBM BG/L 107

Fig. 4. KTAU Trace of CIOD - Effect of Increasing Compute Nodes from 2 to 32

runs of the benchmark were conducted, one under NFS and the under PVFS2.
The traces1 show clear differences in behavior (including obvious ones such as
the use of TCP in the PVFS client versus the use of UDP in the RPCIOD).

5. Profiling support on the IO Node: Profiling support is important to provide
as it can quickly help locate performance bottlenecks. While trace information
can be post-processed to provide profiles, direct online profiling has much lower
overheads. KTAU can collect profiling data, in addition to above mentioned
traces, that can be visualized in Paraprof. The profiles1 show inclusive and ex-
clusive times taken by various kernel routines in the context of the CIOD.

5 Related Work

It is interesting to compare KTAU to other kernel instrumentation and measure-
ment projects. We discuss below a few of the tools presented in Table 1.

KTAU is clearly distinguished from tools that use dynamic instrumentation
rather than modify the kernel source. In KernInst [8] and DTrace [9] kernel
routines are instrumented by splicing in measurement code dynamically at run-
time. While kernel measurement can be modified during execution, the overhead
of changing instrumentation can be greater than direct code instrumentation.
KernInst, by itself, does not support merging user and kernel related performance
information. Dtrace’s user-level instrumentations also trap into the kernel, mak-
ing it a costly choice for measurement of parallel HPC codes.
1 Not shown here due to lack of space.

108 A. Nataraj et al.

Fig. 5. Correlating CIOD Activity with RPC-IOD

In contrast to KernInst and DTrace, the Linux Trace Toolkit (LTT) [12]
is based on source instrumentation. The actual source code of the Linux ker-
nel is modified to include LTT macros in specified functions and LTT based
data structures for holding the trace information. Other tools that fall into this
category are K42 [14] and KLogger [18]. All of these only provide tracing.

5.1 Measured and Statistical Profiling Tools

SGI’s KernProf [3] (under call-graph modes) is an example of measured-
profiling tools. It uses compiler (gcc -pg option) generated profiling support.
Every function is instrumented at compile-time with code to track a call-count
and which functions called it and which functions were called from it. This is
used to generate a call-graph of the kernel.

Oprofile [2], a statistical profiler, is meant to be a type of continuous profiler
for Linux meaning always turned on. It performs both user-mode and kernel-
mode profiling across the system providing merged user/kernel information. Its
shortcomings include its inability to provide online information and the costly
requirement of a daemon. SGI KernProf’s flat-profile mode also uses sampling.

5.2 Merged User-Kernel Performance Analysis Tools

These tools explicitly provide support to merge the performance information
between the application and the kernel. This enables understanding program-
OS interaction and being able to pin-point bottleneck location in overall pro-
gram/OS stack. It may also allow identifying intrusive effects such as excessive
scheduling or interrupts that can steal cycles from applications.

CrossWalk [7] is a tool that walks a merged call-graph across the user-kernel
boundary in search of the real source of performance bottlenecks. Using a spec-
ified performance threshold, it tries to find routines that take longer than the
threshold starting its search from the main() function and examining the en-
tire user/kernel control flow. DeBox [19] and [15] are also merged performance

Early Experiences with KTAU on the IBM BG/L 109

measurement tools. All three suffer from the fundamental problem of not pro-
viding merged support, unlike KTAU, for interrupts, exceptions and scheduling.

5.3 Discussion

The tools mentioned above are unable to produce valuable merged information
for all aspects of program-OS interaction. In addition, online OS performance
information and ability to function without a daemon is not widely available.
Most of the tools do not provide explicit support for collecting, analyzing and
visualizing parallel performance data. KTAU aims to explicitly support online
merged user/kernel performance analysis for all program-OS interactions in par-
allel HPC execution environments while using existing visualization tools.

Table 1. Related Work (N/E stands for ’No Explicit support’)

Tool Instr. Measurement User+Kernel Parallel SMP OS

KernInst Runtime Flexible N/E N/E Yes Sun
DTrace Runtime Flexible Trap into OS N/E Yes Sun

KLogger Static Src. Trace N/E N/E Yes Linux
LTT Static Src. Trace N/E N/E Yes Linux

OProfile Not App. Stat. Prof. Partial N/E Yes Linux
KernProf(Flat) Not App. Stat. Prof. N/E N/E Yes Linux

KernProf(C Path) gcc -pg Call Path N/E N/E Yes Linux

LACSI’05 Static Src. Trace Syscall Only N/E No Linux
CrossWalk Runtime Flexible Syscall Only N/E Yes Sun

DeBox Static Src. Meas. Prof., Trace Syscall Only N/E Yes Linux
KTAU+TAU Static Src. Meas. Prof., Trace Full Explicit Yes Linux

6 Conclusions and Future Work

The desire for a kernel monitoring infrastructure that can provide both a kernel-
wide and process-centric performance perspective led us to the design and de-
velopment of KTAU. KTAU is unique in its ability to measure the complete
program-OS interaction, its support for joint daemon and program access to
kernel performance data, and its integration with a robust application perfor-
mance measurement and analysis system, TAU. In this paper, we described us-
ing KTAU as part of a performance measurement framework on Argonne’s IBM
BG/L system within the scope of the ZeptoOS project. Our early experiences
indicate that KTAU along with TAU can be used to perform fine-grained perfor-
mance measurement across the system. We demonstrated KTAU’s measurement
capabilities showing tracing/profiling of the I/O Node processes.

The I/O Node and the BG/L system as a whole provide many interesting
performance questions that KTAU can be used to answer. We intend to deepen
these early efforts through full-fledged experiments to study BG/L I/O perfor-
mance and scaling under different backend filesystems, application loads and IO

110 A. Nataraj et al.

Node (and CIOD) configurations. Another area we intend to explore is corre-
lating performance observations between the Compute and I/O nodes. As the
ZeptoOS project matures, KTAU will be also be used to provide kernel perfor-
mance measurement and analysis for dynamically adaptive kernel configuration.

References

1. KTAU / ZeptoOS Integration. http://www.cs.uoregon.edu/research/ktau/
docs.php.

2. Oprofile. http://sourceforge.net/projects/oprofile/.
3. Sgi kernprof. http://oss.sgi.com/projects/kernprof/.
4. TAU: Tuning and Analysis Utilities. http://www.cs.uoregon.edu/research/

paracomp/tau/.
5. ZeptoOS: The Small Linux for Big Computers. http://www.mcs.anl.gov/zeptoos/.
6. A. Gara et. al. Overview of the Blue Gene/L system architecture. IBM Journal of

Research and Development, 49(2/3):195–212, 2005.
7. A. Mirgorodskiy et. al. Crosswalk: A tool for performance profiling across the

user-kernel boundary.
8. A. Tamches et. al. Fine-grained dynamic instrumentation of commodity operating

system kernels. In Operating Systems Design and Implementation, 1999.
9. B. M. Cantrill et. al. Dynamic instrumentation of production systems. In Proceed-

ings of the 2004 USENIX Annual Technical Conference, Boston, MA, USA.
10. F. Petrini et. al. The case of the missing supercomputer performance: Achieving

optimal performance on the 8,192 processors of ASCI Q. In SC ’03: Proceedings of
the 2003 ACM/IEEE conference on Supercomputing, Washington, DC, USA, 2003.

11. J. E. Moreira et. al. Blue Gene/L programming and operating environment. IBM
Journal of Research and Development, 49(2/3):367–376, 2005.

12. K. Yaghmour et. al. Measuring and characterizing system behavior using kernel-
level event logging. In USENIX ’00: Proceedings of the 2000 USENIX Annual
Technical Conference, Boston, MA, USA, 2000.

13. N.R. Adiga et. al. An overview of the Blue Gene/L supercomputer. In SC ’02:
Proceedings of the 2002 ACM/IEEE conference on Supercomputing, 2002.

14. R. W. Wisniewski et. al. Efficient, unified, and scalable performance monitoring
for multiprocessor operating systems.

15. S. Sharma et. al. A Framework for Analyzing Linux System Overheads on HPC
Applications. In LACSI ’05: Proceedings of the 2005 Los Alamos Computer Science
Institute Symposium, Santa Fe, NM, USA, 2005.

16. T. Jones et. al. Improving the scalability of parallel jobs by adding parallel aware-
ness to the operating system. In SC ’03: Proceedings of the 2003 ACM/IEEE
conference on Supercomputing, Washington, DC, USA, 2003.

17. W. E. Nagel et. al. VAMPIR: Visualization and analysis of MPI resources. Super-
computer, 12(1):69–80, 1996.

18. Y. Etsion et. al. Fine Grained Kernel Logging with KLogger: Experience and
Insights.

19. Y. Ruan et. al. Making the “Box” Transparent: System Call Performance as a First-
class Result. In USENIX ’04: Proceedings of the 2004 USENIX Annual Technical
Conference, Boston, MA, USA, 2004.

	Introduction
	KTAU Design and Implementation
	Kernel Source Instrumentation
	Kernel KTAU Infrastructure
	KTAU $proc$ Filesystem
	libKtau -- User Library and API
	KTAU Clients

	The BG/L and Its Performance Observation
	Brief Description of the Blue Gene/L
	The Performance Measurement Problem

	KTAU On BG/L
	Performance Observation Capabilities Demonstrated

	Related Work
	Measured and Statistical Profiling Tools
	Merged User-Kernel Performance Analysis Tools
	Discussion

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

