
Creating and Maintaining Replicas in Unstructured
Peer-to-Peer Systems�

Elias Leontiadis1, Vassilios V. Dimakopoulos2, and Evaggelia Pitoura2

1 Department of Computer Science, University College London, United Kingdom
2 Department of Computer Science, University of Ioannina, Ioannina, Greece

Abstract. In peer-to-peer systems, replication is an important issue as it im-
proves search performance and data availability. It has been shown that optimal
replication is attained when the number of replicas per item is proportional to the
square root of their popularity. In this paper, we focus on updates in the case of
optimal replication. In particular, we propose a new practical strategy for achiev-
ing square root replication called pull-then-push replication (PtP). With PtP, after
a successful search, the requesting node enters a replicate-push phase where it
transmits copies of the item to its neighbors. We show that updating the repli-
cas can be significantly improved through an update-push phase where the node
that created the copies propagates any updates it has received using similar pa-
rameters as in replicate-push. Our experimental results show that replicate-push
coupled with an update-push strategy achieves good replica placement and con-
sistency with small message overhead.

1 Introduction

The popularity of file sharing systems (such as Napster and Gnutella) has resulted in
attracting much current research in peer-to-peer (p2p) systems. Peer-to-peer systems
offer a means for sharing data among a large, diverse and dynamic population of users.
An issue central in such systems is resource location, i.e. given a user query for data, to
discover the peers with matching data items.

There are two basic approaches for building p2p systems for efficiently locating data.
In structured p2p systems, data items are assigned to specific peers using some form
of distributed hashing. Locating peers with matching data is then guaranteed to take
place by visiting a bounded number of peers, normally logarithmic to the total num-
ber of peers in the system. In unstructured p2p systems, there is no assumption about
the placement of data items. New nodes connect to some other nodes in the p2p sys-
tem randomly. When compared with structured p2p systems, unstructured p2p systems
usually provide no guarantees for search performance but do not suffer from the cost
induced from maintaining the structure and from load balancing procedures necessary
in structured p2p systems.

In this paper, we focus on the problem of replication in unstructured p2p systems.
Replication improves the performance of search as well as data availability. Availabil-
ity issues are especially critical in p2p systems, since peers leave the system very often,

� Work partially supported by the Integrated Project IST-15964 AEOLUS.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 1015–1025, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1016 E. Leontiadis, V.V. Dimakopoulos, and E. Pitoura

thus making their data unavailable. Previous work on the topic [1,2] showed that opti-
mal (with respect to search performance) replication is achieved when the number of
copies per data item is proportional to the square root of their popularity. Here, we pro-
pose a new practical strategy for achieving square root replication called pull-then-push
replication (PtP). With PtP replication, after a successful search for a data item, the node
that posed the query enters a replicate-push phase during which it pushes copies of the
item to its neighbors.

We also propose consistency maintenance protocols for copies created using the opti-
mal replication strategy. We show that updating the copies can be significantly improved
through an update-push phase where the node that created the copies propagates any
updates it receives to its neighbors. Although, replica consistency protocols have been
previously proposed (e.g., in [3]), our main contribution is that we study the problem in
conjunction with the strategy used to create the copies. Our experiments show that the
best results are achieved when update-push uses similar parameters with replicate-push.

2 Optimal Replication

Suppose there are in total m different data items in the network, and that, collectively,
the peers have capacity for storing R items1. Also, assume that the query rate for item i
is qi, i = 1, . . . , m. Cohen and Shenker [1] developed a theory for optimally replicating
the data items in unstructured peer-to-peer networks, given the restriction of R. In par-
ticular, they studied different replication strategies and showed that the expected search
cost is minimized when the ith item has ri replicas, where ri is proportional to

√
qi.

In their analysis the authors assumed a theoretical random probes (RP) search me-
thod: the inquiring node repeatedly probes peers in random and asks for the item, until
the item is found. As the authors argued, the RP method captures the essential behav-
ior of the blind search strategies (such as flooding) usually employed in p2p systems
because in unstructured networks the topology is unrelated to the location of data. The
problem with square-root (SR) replication is that it requires knowledge of the query
rate for each item. To alleviate this, the following scheme was proposed: after each suc-
cessful search, the item is copied to a number of nodes equal to the number of probes.
It was shown that, with an analogous rate of item removals, this scheme leads to SR
replication.

However, even this scheme is not easily implementable. Keeping track of the number
of queried nodes is simply impractical when the usual flooding-based search algorithms
are used, due to the excessive number of messages required. But even if a practical way
of counting the queried nodes existed, this number would not be equal to the number
of random probes that would have been required. The reason is that the theoretic RP
strategy stops immediately after locating the item. All practical strategies, however,
unleash parallel search paths — if the item is found in one of the search paths, the rest
might continue querying nodes until, for example a time-to-live (TTL) parameter was
exhausted.

In conclusion, practical strategies for approximating the number of probes are re-
quired. In [2], the authors examined a number of such algorithms, namely

1 Data items can be actual copies of the data or just pointers to them.

Creating and Maintaining Replicas in Unstructured Peer-to-Peer Systems 1017

owner-replication, path-replication and random-replication. In owner-replication, the
inquiring node is the only one that makes a copy of the resource — leading clearly to
suboptimal replication. In the other two strategies, the node that provides the resource
creates a number of replicas, equal to the distance (in hops) between the inquiring and
the offering node. The last two strategies differ only in where the replicas are placed.
Path and random replication approach SR replication but not quite accurately. The rea-
son is that if the distance between the inquiring and the offering node is t hops, the RP
strategy may not have located the item within just t probes, unless a single path was
used for the search. The authors used multiple random walkers, which naturally visit a
multiple of t nodes. We next propose a simple but effective scheme.

2.1 Pull-Then-Push Replication

The proposed scheme is based on the following idea: the creation of replicas is dele-
gated to the inquiring node, not the providing node. The scheme consists of two phases.
The pull phase refers to searching for a data item. After a successful search, the in-
quiring node enters a push phase, whereby it transmits the data item to other nodes
in the network in order to force creation of replicas. We call this the Pull-then-Push
(PtP) replication. One can conceive variations of the PtP strategy by utilizing differ-
ent algorithms for the pull and push phases. Path replication as suggested in [2] could
be considered as a type of PtP replication, where the pull phase uses multiple random
walkers, while the push phase uses a single path.

In order to reach SR replication, we need to create a number of replicas equal to the
number of probed nodes. Consequently, one should utilize the same algorithm for the
push and the pull phases, so that the push phase visits approximately the same nodes the
pull phase visited. For example, if a random BFS search algorithm is used for the pull
phase, the same algorithm should be used to broadcast the item during the push phase.

All practical search strategies produce multiple search routes, and utilize some form
of TTL to limit the search space (and the resulting message overhead). If during the
pull phase the item was found at distance t hops from the inquirer, then the push phase
should also stop after t hops. This means that the TTL utilized for the push phases
should not be set according to the TTL used during pull, but rather according to t.

However, because of the multiple search routes produced, the tth step may contact
quite a large number of nodes. In [4], it was shown that for pure flooding, the number of
messages grows exponentially with the TTL; most of those messages are sent in the last
step of the search. For example, assume a random network with each peer connected to
d other nodes, and a pure flooding strategy, where each peer propagates the query to all
its neighbors. If a search returned an item at the 3rd step, approximately d + d2 + d3

different peers would have been visited, although only one node at distance 3 had the
item. This means that d+d2+1 probes could be enough and as a result, the best strategy
for the push phase would be to use a TTL of 2, not 3. In general, the TTL used for the
push phase should be equal to the hop distance at which the item was found minus one.

Recapping, our proposed PtP strategy adheres to the following rules: (a) After a
successful search, the requester pushes the item back to the network; (b) The same
algorithm is used for both pull (search) and push; (c) The TTL for push is equal to
t − 1, where t is the hop distance where the resource was found; (d) All peers receiving

1018 E. Leontiadis, V.V. Dimakopoulos, and E. Pitoura

the push message create a replica of the item. In the next section we provide simulation
results which confirm that this simple PtP strategy does indeed lead to SR replication.

2.2 Experimental Results

The PtP strategy has been evaluated through extensive simulations. In our simulator,
we construct a network of peers/nodes, where each peer is connected to d other peers
in random, called its neighbors. Each peer offers a number of data items and also has
a fixed number of slots for replicating other items. Initially, all replica slots are empty.
Then, we continuously perform searches originating at random peers, for random items.
After each search, a push phase occurs, where replication is forced according to the
strategy used. If a peer has to replicate an item and has no available slot, a uniformly
random slot is emptied so that room is created for the new replica. Results are collected
after a sufficiently large number of searches; the single most important metric we extract
is the number of replicas, ri, for each item.

The simulator is capable of utilizing a number of different search (pull) strategies.
In all these strategies, a peer that receives a query for a data item, first checks whether
it knows about the item; if not, it propagates the query to its neighbors. The strategies
differ in the set of neighbors where the queries are propagated, and include [2,4,5]:

– Pure flooding. Peers propagate the query to all their neighbors.
– Random walkers or random paths. For a single random path, each peer propagates

the query to exactly one of its neighbors, in random. Multiple walkers searching in
parallel is a variation to decrease the average number of hops: the inquiring node
sends the query to a number of its neighbors, each one unleashing a random walker.

– Random BFS or teeming. Peers propagate the query to each of their neighbors with
some fixed probability φ. A decay parameter may be utilized so that φ decreases
with the distance from the inquiring node. If a node is in distance t from the inquir-
ing peer, then the probability of contacting a neighbor is given by: φt = φ(1 − c)t,
where φ0 = φ and c is the decay parameter. For c = 0 we have simple teeming,
while if in addition φ = 1, the strategy is pure flooding.

The same algorithms are used for the push phase. Of course, in this case the peers do
not receive queries but just items to propagate immediately to some of their neighbors.

In Fig. 1, we present results for a random network of 1000 peers, each with 4 neigh-
bors on average. A peer has storage space for 10 items, out of a total of R = 100 differ-
ent items. The replication strategies employed are owner, path and PtP replication. For
PtP we experimented with all the algorithms presented above and with different param-
eters. In Fig. 1, we show the results for two of them, one with 5 random walkers and
TTL = 10 and one with teeming, TTL = 5 and a decay parameter of c = 0.4. The other
algorithms exhibited the same behavior, and were omitted for clarity. The plot shows
the normalized number of replicas (ri/R) for each of the items. To make the square-root
trend clearer, for this particular plot, we have assumed query rates proportional to the
id of the item, so the x-axis could also be named ‘query rate’. The plot includes the op-
timal square-root distribution (SR), drawn with a thick line. We have also experimented
with other query rates, including Zipf-like ones, and the results were identical.

Creating and Maintaining Replicas in Unstructured Peer-to-Peer Systems 1019

Fig. 1. Distribution of replication ratios under various replication strategies

It should be clear from Fig. 1, that owner replication is far from the optimum. Path
replication is better, but does not result in SR replication. Both PtP strategies, although
different by nature, led to almost perfect SR replication. This also comes to confirm
our intuition that the exact strategies used for the pull/push phases of PtP are not very
important, as long as they are the same in both phases. Here we only show PtP’s ability
to approximate SR replication. Results on PtP’s performance and the achieved search
gains can be found in [6].

3 Consistency Maintenance

Replication induces the need for consistency maintenance, that is, keeping the replicas
up to date whenever changes occur. For the discussion that follows, we assume that each
data item has a single owner, which is also the single peer that is allowed to modify the
item. Upon modification, the replicas which have been spread over the network must be
made consistent with the most recent version of the data item.

The problem of consistency maintenance appears in many contexts [7,8]. In [3,9],
various strategies were proposed in the context of peer-to-peer systems. In general, up-
dates of a data item are broadcast by the owner and/or are searched for by the peers that
have the replicas. Thus, solutions to the consistency maintenance problem utilize (a)
owner-initiated update push, so that peers with replicas are communicated the update,
(b) replica holder-initiated pull, either when needed or periodically, so as to discover
new updates, if any, or (c) a combined push/pull scheme.

It has been shown that usually a combined push/pull strategy (P/P for short) con-
stitutes the best tradeoff between consistency levels and message overhead [9,5]. The
owner performs a limited push of the updates and the peers pull periodically, just in
case the owner-initiated push did not reach them.

A basic problem in these P/P protocols is when should a peer pull. Pulling too often
creates substantial message overhead. Pulling infrequently may result in missing im-
portant updates. Adaptive pull strategies try to minimize the communication overhead,
while maintaining good consistency levels by having each replica holder pull at specific
intervals. These intervals are determined by a time-to-refresh (TTR) parameter, which

1020 E. Leontiadis, V.V. Dimakopoulos, and E. Pitoura

is adaptively adjusted depending on the previous pull results. If after the last pull the
item was found unchanged, TTR is increased so as to pull less frequently; otherwise,
TTR is decreased so as to check for updates more often.

Our premise is that efficient consistency maintenance can be achieved only in con-
junction with efficient replication. If the number of replicas and their placement is well-
planned, then the algorithms for maintaining them under updates can be much more
effective. To this end, we propose a novel push/pull update strategy that utilizes knowl-
edge about replica creation so as to improve update efficiency. Our experiments have
shown that consistency maintenance can be achieved quite efficiently when replication
is done in the optimal way, using the PtP strategies. Optimal replication not only mini-
mizes the average search costs but also reduces the average update costs when combined
with a suitable update strategy.

3.1 Updates Under Optimal Replication

From now on we assume that items have been replicated in the network and that replica-
tion has been done using the PtP strategy. As discussed earlier, the PtP strategy requires
that, after a successful search, the peer that found the item creates a number of replicas,
through a replicate-push phase, or R-push for short, with an appropriate TTL value.
The basic idea now is to let this peer be held “responsible” for updating the replicas
it created, as explained next. With respect to a particular data item, the nodes in the
network fall into one of the following three categories:

– owner: the single peer that produces new versions of the data item
– responsible: a peer that searched for the item in the past (and thus forced the cre-

ation of replicas of the item)
– indifferent: a peer that was forced to hold a replica of the item.

The strategy, which we call PtPU, is a combination of push/pull. The owner broad-
casts new updates to the network, through an update-push, or U-push for short. When-
ever a “responsible” peer receives a new version of the item (either through an update-
pull that it itself performed or an U-push that the item owner initiated), it undertakes the
task of updating the replicas it created. In other words, it performs a U-push itself for
the new version of the item. Moreover, this U-push should employ the same TTL pa-
rameter as the one used in the R-push, thereby reaching approximately the same nodes
that were previously reached in order to create replicas.

This scheme has the potential of reducing the overhead of consistency maintenance
significantly. A peer that is “responsible” for a resource should check (pull) frequently
for newer updates of the item, using a smaller TTR value. Peers which were forced to
have replicas of this item (“indifferent” peers) do not need to pull (or, they could pull
quite infrequently; cf the discussion in Section 4), relying on some “responsible” peer
to provide an update for them. Summarizing, our strategy behaves as follows:

– The owner pushes the new versions of the item
– “Responsible” peers pull periodically, and push any updates they become aware of

to their neighborhood exactly as when they created the replicas (i.e. with the same
parameters as in the push phase of PtP).

Creating and Maintaining Replicas in Unstructured Peer-to-Peer Systems 1021

– The other peers do nothing; they rely on “responsible” peers to keep them updated.

For the periodic pulls of the “responsible” peers, we follow an adaptive scheme [9],
whereby the time-to-pull-next (TTR) is decreased or increased according to the per-
ceived version of the item. If the last pull did not return a newer version, the estimate
for the next TTR will be increased by some constant: TTRe = TTR+C. If, on the other
hand, a more recent version of the item was found, the next TTR should be decreased. It
should be decreased in proportion to the difference, D, in versions between the pulled
item and the one the peer had — the higher the difference D, the more the missed up-
dates, and hence the more frequent the pull should be. Thus, the estimate for the new
TTR is: TTRe = TTR/(D + β), where β is a parameter that provides some reduction
in TTR in the case of D = 1. The next TTR is a weighted average of the current TTR
and the estimate:

TTR ←− wTTRe + (1 − w)TTR,

where, w is a parameter determining the rate of change — smaller values of w make
TTR change very slowly, while larger values make TTR adapt quickly to variations.

3.2 Experimental Evaluation

We have evaluated the performance of both the P/P and the PtPU strategies through
extensive simulations. The network of peers is constructed and the data items are repli-
cated using the PtP strategy as described in Section 2.2. After creating the replicas, we
initiate simulation sessions. Each session runs for a number of rounds (turns). During
each turn, the owner of an item creates a new version of the item with a given update
probability pu (update rate) and pushes it to the network. In the P/P strategy, all peers
with replicas pull for new versions using adaptive pull. With PtPU, only the “responsi-
ble” peers pull using, again, adaptive pull. In addition, the “responsible” peers push any
received updates to their neighbors using exactly the same strategy used when the repli-
cas were created (for example, using teeming with the same decay and TTL values).

We evaluate the performance of the update strategies with respect to two parameters:
the achieved consistency and the associated message overhead. The consistency level is
measured as the percentage of replicas that are up-to-date. We experimented with differ-
ent strategies for propagating the updates (i.e., pure flooding, random walkers, teeming
and teeming with decay). The results attained were qualitative the same, thus, we re-
port here only the results obtained when using teeming with decay, which is the method
that gives us the most flexibility in terms of tuning the extend of the propagation. In
particular, we present results when using three variations of teeming as summarized in
the table that follows. Wide teeming visits more peers, while narrow teeming produces
smaller message overhead.

Extend of teeming c (decay) TTL

Wide 0.1 5
Medium 0.3 5
Narrow 0.4 4

Regarding the adaptive pull, the tuning of its parameters is beyond the scope of this
paper. A set of values that were found to work well in adapting the TTR is: w = 0.8,

1022 E. Leontiadis, V.V. Dimakopoulos, and E. Pitoura

b = 0.5, and C = 10 turns, and those are the values that were used in all the experiments
presented here. The reader is referred to [10,7] for a detailed discussion of the topic.

Performance with respect to the update rate. The goal of the first set of experiments
is to depict the behavior of plain P/P and PtPU under different update rates. We consider
two cases: frequent updates (pu = 0.1), and infrequent updates (pu = 0.025). The
owner pushes the updates using narrow teeming. The reason for using such a rather
limited push is to make the effect of pull more clear. To discover a general trend, we let
both strategies utilize exactly the same pull characteristics (i.e. the same variations of
teeming) and see how they compare with each other.

The results are shown in Fig. 2 for high update rates and in Fig. 3 for infrequent
updates. Each strategy is simulated for pulling with wide, medium and narrow teeming.
In the case of high update rates, peers are forced to a high pull overhead in the P/P
strategy so as to be frequently updated. In the PtPU case, though, pull is limited. Push
messages are more since the “responsible” peers also propagate any updates they re-
ceive. For a low update rate, it is easier for any strategy to keep good consistency levels,
utilizing fewer messages. Even in this case, though, PtPU achieved consistency levels
above 92%, while plain P/P is, at best, a little above 80%. PtPU consistently outper-
forms P/P by any measure. It results in better consistency levels and, at the same time,
fewer messages.

Comparison of the two update policies. In this set of experiments, we compare fur-
ther the two methods. In particular, we show (i) the level of consistency achieved when
the two methods produce the same number of messages and (ii) the number of messages
required by each method for achieving the same consistency level. Here, we consider a

Fig. 2. Performance of the two strategies under high update rates

Creating and Maintaining Replicas in Unstructured Peer-to-Peer Systems 1023

Fig. 3. Performance of the two strategies under low update rates

Fig. 4. Number of messages when all strategies result in consistency levels of approximately 82%

medium update rate (pu = 0.05). For each strategy we repeatedly alter the pull parame-
ters until we achieve the same value for the metric of interest (i.e. the consistency level
or the number of messages) among all strategies.

The results are presented in Figures 4–6. In the plots, we also consider the perfor-
mance of P/P and PtPU, for the case where the creation of replicas does not follow
the PtP strategy. Instead, after the replication phase, the replicas get scattered across
the network. Our goal is to show that loosing the locality induced by the PtP strategy
results in worsening the performance of both the P/P and PtPU strategies. Note that the
number of replicas is kept the same; what differs is their placement in the network. The
strategies under random placement of the replicas are marked with an “(R)” in the plots.

In Fig. 4 the owner uses a narrow push to propagate the updates. We run the sim-
ulator tuning the pull parameters until all strategies achieved approximately the same

1024 E. Leontiadis, V.V. Dimakopoulos, and E. Pitoura

Fig. 5. Number of messages when all strategies result in consistency levels of approximately 95%

Fig. 6. Consistency quality when all strategies generate the same number of messages

consistency level of 82%. The resulting message counts show that plain P/P required
43% more messages than PtPU to achieve the same consistency. In Fig. 5 the owner uses
a medium push to propagate the updates, so as to make it easier for the inferior strate-
gies to achieve higher consistency levels (but, of course, with higher message overhead).
The achieved consistency levels where approximately 95%. Once again, plain P/P re-
quired 46% more messages than PtPU. In Fig. 6 all strategies generated approximately
62000 messages. PtPU required a narrow pull while P/P’s adaptive pull resulted in a
wider teeming. The superiority of the PtPU strategy is shown vividly, as it managed to
achieve more than 90% consistency.

Another conclusion from these plots is that, indeed, the random placement of replicas
makes the performance of P/P and PtPU worse. This validates our intuition that the
inherent locality of replica creation through PtP results in more efficient updates.

4 Discussion

In this paper, we consider replication in unstructured p2p systems. The idea behind
our approach is that developing protocols for consistency maintenance which utilize
knowledge about the strategy used to create the copies increases the efficiency of such
protocols. Based on this, we develop a simple strategy for achieving square-root replica-
tion, which was previously proved to be optimal for unstructured peer-to-peer systems,
and a consistency maintenance protocol that is tuned for our replication strategy.

Creating and Maintaining Replicas in Unstructured Peer-to-Peer Systems 1025

Our experimental results show that our protocols achieve significantly better consis-
tency for a smaller communication cost than protocols that do not exploit knowledge of
the underlying replication strategy. A more detailed version of this work can be found
in [6].

In our experiments we have assumed that the network does not change during the
replication and update phases. We are currently studying the behavior of our strategies
in more dynamic settings where peers enter or leave the system at will. In such envi-
ronments the PtPU strategy may encounter the following problem: a “responsible” peer
could depart from the network, leaving thus a number of “indifferent” nodes without
anybody to update their replicas for them. Thus, it is almost imperative that “indiffer-
ent” peers should pull, too, just in case the “responsible” node is not near them anymore.

References

1. Cohen, E., Shenker, S.: Replication Strategies in Unstructured Peer-to-Peer Networks. In:
Proc. ACM SIGCOMM’02. (2002)

2. Lv, D., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and Replication in Unstructured Peer-
to-Peer Networks. In: Proc. ICS’02, 16th ACM Int’l Conference on Supercomputing, New
York, USA (2002)

3. Datta, A., Hauswirth, M., Aberer, K.: Updates in highly unreliable, replicated peer-to-peer
systems. In: Proc. of ICDCS 2003, 23rd Int’l Conference on Distributed Computing Systems,
Providence, Rhode Island (2003) 76–85

4. Dimakopoulos, V.V., Pitoura, E.: Performance analysis of distributed search in open agent
system. In: Proc. IPDPS ’03, Int’l Parallel and Distributed Processing Symposium, Nice,
France (2003)

5. Leontiadis, E., Dimakopoulos, V.V., Pitoura, E.: Cache Updates in a Peer-to-Peer Network of
Mobile Agents. In: Proc. P2P2005, 4th Int’l Conference on Peer to Peer Computing, Zurich,
Switzerland (2004) 10–17

6. Leontiadis, E., Dimakopoulos, V.V., Pitoura, E.: Creating and Maintaining Replicas in Un-
structured Peer-to-Peer Systems. Technical Report TR2006-01, Univ. of Ioannina, Dept. of
Computer Science (2006)

7. Srinivasan, R., Liang, C., Ramamritham, K.: Maintaining temporal coherency of virtual data
warehouses. In: Proc. RTSS ’98, 19th Real Time Systems Symp., Madrid, Spain (1998)

8. Urgaonkar, B., Ninan, A., Raunak, M., Shenoy, R., Ramamritham, K.: Maintaining mutual
consistency for cached web objects. In: Proc. ICDCS 2001, 21st Int’l Conference Distributed
Computing Systems, Phoenix, AZ, USA (2001)

9. Lan, J., Liu, X., Shenoy, P., Ramamritham, K.: Consistency maintenance in peer-to-peer file
sharing networks. In: Proc. of WIAPP’03, 3rd IEEE Workshop on Internet Applications, San
Jose, CA, USA (2003) 76–85

10. Lan, J.: Cache Consistency Techniques for Peer-to-Peer File Sharing. Technical report, MSc
Thesis, Dept. of Computer Science, Univ. of Massachusetts (2002)

	Introduction
	Optimal Replication
	Pull-Then-Push Replication
	Experimental Results

	Consistency Maintenance
	Updates Under Optimal Replication
	Experimental Evaluation

	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

