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Abstract. Berners-Lee’s vision of the Semantic Web describes the idea
of providing machine readable and processable information using key
technologies such as ontologies and automated reasoning in order to cre-
ate intelligent agents.

The prospective amount of machine readable information available
in the future will be large. Thus, heterogeneity and scalability will be
central issues, rendering exhaustive searches and central storage of data
infeasible. This paper presents a scalable peer-to-peer based approach to
distributed querying of Semantic Web information that allows ordering of
entries in result sets and limiting the size of result sets which is necessary
to prevent results with millions of matches. The system relies on the
graph-based W3C standard Resource Description Framework (RDF) for
knowledge description. Thereby, it enables queries on large, distributed
RDF graphs.1

1 Introduction

The Semantic Web [3] envisions to make the huge information resources of the
Web available for machine-driven evaluation. Electronic agents are supposed to
locate information necessary for their objectives, process them, generate conclu-
sions and new information, and finally present the results to either a human user
or to other electronic agents.

The Resource Description Framework (RDF, [11]) has been proposed by the
W3C in order to formally describe resources. In combination with RDF Schema
(RDFS, [4]) it provides sufficient expressibility to describe taxonomies of classes
and properties and to infer information from taxonomies described with different
schemas.

Query languages like SPARQL [15] with implementations like ARQ of Jena
[2] (see http://esw.w3.org/topic/SparqlImplementations for other imple-
mentations) allow to query and infer information from RDF databases. These
implementations, however, assume that all RDF triples are located in a cen-
tral data repository, which is a questionable assumption given the growth of
information available on the web.
1 Partially supported by the EU within the 6th Framework Programme under contract
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In [9] we have presented a scalable P2P based RDF querying strategy, which
allows for distributed storage of information and selective collecting of RDF
triples necessary to answer RDF queries. As current search engines of the web
demonstrate, it is conceivable that RDF queries on real-world data will some-
time deliver millions of results as well. Therefore, an evaluation procedure which
retrieves every matching subgraph is neither desirable nor scalable. Typically,
the user is not interested in an exhaustive collection of every matching result,
but rather seeks for some matches which are good for her.

In this paper, we restrict to problem to finding the k best results (called Top k
results) with respect to a single optimization criterion. I.e., the user might specify
single variables in an ORDER BY clause of the query, but no complex expressions,
and limit the number of results k by the LIMIT clause.

A simple solution would be to adapt the exhaustive search so that the results
are ordered and filtered after the evaluation. However, a main goal of the Top k
search is to enhance the scalability. Thus, we have to move away from the strategy
to exhaustively collect all candidates before starting the final evaluation. We will
rather start the final evaluation immediately, and fetch the candidates from the
network step by step as needed. This avoids retrieving parts of the model graph
which are never used during the query evaluation, when only k matches are of
interest.

In the following section, we will provide an overview of the Top k query
algorithm using an example. After that, section 3 describes the algorithm in
detail and explains the caching strategies. The evaluation is given in section 4.
Section 5 presents related work and section 6 concludes the paper.

2 Overview

In order to locate the RDF triples of various sources that are relevant to a query,
we insert each triple three times into a distributed hash table (DHT) which is
realized with Pastry [16]. Each triple is inserted into the hash map using the
subject, the predicate, and the object as a key to the actual triple. That way,
it is possible to look up all triples with a common subject for example and to
perform the query processing by starting with one triple that has a URI in either
subject, predicate, or object and to proceed from there on, fetching new triples
and checking that their values to not contradict previous variable assignments.

Figure 1 shows an example query which consists of the following three triples:
t1 = 〈v1, U1, v2〉, t2 = 〈v1, U2, v3〉, t3 = 〈v3, v1, v2〉. U1 and U2 are fixed URIs,
whereas v1, v2, and v3 are variables. Assume that the user expects the value of
v2 to be a floating point value, and that she looks for matches with values of v2
to be as large as possible.

As t1 and t2 have a bound value (the predicate) – a precondition for DHT
lookups – either one can serve as a start for the query evaluation and we choose t1
arbitrarily. By using U1 as a DHT index and asking the responsible node to send
triples with predicate U1, we receive candidates for the variables v1 and v2. As
the number of possible values of v1 and v2 can be very large, it is not desirable to
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Fig. 1. Example RDF Query

fetch a complete list of matching triples. We rather need a way to query chunks
of triples so that we can retrieve more candidates later, in case the first chunk
did not deliver a sufficient number of matches. Thus, we ask the node to deliver
the triples in order, so that we can later specify the highest known candidate to
retrieve the next chunk. Because of scalability reasons, the target nodes do not
store any state information. Therefore, the client node has to know the current
chunk position and send it later to the other node to fetch the next chunk.

Assume the first chunk of five candidates gets retrieved and stored in a table
as depicted in figure 2a. By selecting the first candidate, v1 gets bound to A and
v2 to 10. As t2 has a bound subject and predicate now, we can choose this as
the next triple to proceed recursively. Here, we have to fetch candidates which
respect the current variable bindings. As the predicate is bound to U2, we can
use U2 as DHT index, and retrieve all triples with predicate U2 which have the
subject A. We sort the results by ascending order of v3.

Assume that the result are two triples, 〈A, U2, X〉 and 〈A, U2, Y 〉. These triples
are stored as candidates for t2 and the first one is selected in the backtracking
procedure.

t1

v1 U1 v2

A U1 10
C U1 9
B U1 8.5
A U1 7
B U1 7

t2

v1 U2 v3

t3

v3 v1 v2

(a) Candidate Lists.

t1

v1 U1 v2

A U1 10
C U1 9
B U1 8.5
A U1 7
B U1 7

t2

v1 U2 v3

A U2 X

A U2 Y

t3

v3 v1 v2

X A 10

(b) First match.

Fig. 2. Query evaluation

Finally, we fetch candidates for the last triple. As it consists only of variables,
we have to use the current binding of one of the variables as DHT index. We
choose v1, and thus use A as DHT index. The remaining two variables are already
bound to v3 = X and v2 = 10. That means that we ask for the existence of the
triple 〈X, A, 10〉. As the triple exists, we have generated the first match (see
figure 2b). Afterwards, we backtrack to t2, select the second candidate, and ask
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for the existence of 〈Y, A, 10〉 (see figure 3). By this procedure, we generate the
top matches step by step, only retrieving the candidates as needed. After having
generated the requested number of matches, the procedure stops.

However, as we can see e.g. from the last step, it might be useful to have a
kind of look-ahead when fetching the candidates. We have contacted the node
for URI A twice in short succession to ask for the existence of triple 〈X, A, 10〉
and then 〈Y, A, 10〉. During the first lookup, the second candidate for t2 was
already known, and therefore, it should have been possible to ask directly for
the existence of the second triple in order to save one communication step.

t1

v1 U1 v2

A U1 10
C U1 9
B U1 8.5
A U1 7
B U1 7

t2

v1 U2 v3

A U2 X

A U2 Y

t3

v3 v1 v2

X A 10
Y A 10

Fig. 3. Second match

3 Top k algorithm and Caching Strategy

In this section we present an evaluation strategy with look-ahead caches that
efficiently reduce the amount of information transferred over the network and
the number of messages passed between nodes.

The evaluation function, as we can see in figure 4, resembles the basic back-
tracking strategy as described in the previous section. Its parameters nr matches
and k specify the number of matches found already and the number of matches
to be delivered in total respectively. The ordered list of triples (Ti) describes
the query and i represents the recursion depth, as query triples are matched to
RDF graph triples with backtracking. We follow the notation of [9] by denoting
with L the set of labels (XML literals and URI references) and with B the set of
blank nodes. With this notation, we can describe the binding of variables {vi}
to their actual nodes in the RDF graph as a partial function

B : {vi} → L ∪ B. (1)

Similarly, we maintain a set of candidates that can possibly be assigned to vari-
ables, with

C : {vi} → Pow(L ∪ B). (2)

Finally, we define a set of caches that allow retrieving candidates for the RDF
query triples. Each triple in the query has one individual cache, but we employ
different kinds of caches as we will see later on.

The general idea of the evaluation function is to iterate over all possible as-
signments to triples (variable j serves as an index for the iteration), assume one,
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function eval(nr matches , k, (Ti), i, B, C, Caches)
if i = |(Ti)| + 1 then

record B as a match found; /* all triples are bound */
return nr matches + 1;

end if
j := 0; /* counter of inspected candidate triples for Ti */
loop

t := Caches .getCache(Ti).getNextCandidate(B, C, j);
/* the candidate will respect the bindings in B */

j := j + 1;
if t = null then

break; /* no more candidates available */
end if
/* update bindings and candidates: */
B′ := B ∪ Bindings of t;
C′ := C ∪ Candidates of t;
nr matches := eval(nr matches , k, (Ti), i + 1, B′, C′, Caches);
if nr matches ≥ k then

break;
end if

end loop
return nr matches ;

end function

Fig. 4. Evaluation algorithm

and proceed to a recursive evaluation until we encounter contradictions, find a
complete match, realize that we have found a sufficient number of matches, or
until we cannot assign any more triples. The caches allow to perform this search
efficiently even though data are distributed among the peers of the network.

We will describe the strategy of the caches with the example of fetching can-
didates for triple t3 = (v3, v1, v2) in figure 2b. As described before, we use the
predicate v1 = A as the DHT key and have two remaining components of the
triple to look up; v3 and v2. These variables are already bound to the valued
v3 = X and v2 = 10. If the cache knows whether the resulting triple 〈X, A, 10〉
exists or does not exist, it can return this answer. Otherwise it has to retrieve
the information of the node that is in charge of triples with predicate A. Instead
of fetching just one triple it queries this and a chunk of additional queries, antic-
ipating that they will be requested later. As we know from the first occurrences
of v1 and v3 in columns of figure 2b, the candidates of v1 are {A, C, B}, and the
candidates of v3 are {X, Y }. The cross product of both candidate sets defines a
super set of values of possible interest. The cache asks not only whether the triple
〈X, A, 10〉 exists but also asks for additional c − 1 unknown triples of the cross
product, where c is the chunk size. That way, we hope to retrieve information
that will be requested later.

Each triple can be split into one component which defines the key of the DHT
and two remaining components. If possible, we choose a fixed URI as DHT key,
otherwise we iterate over all possible candidates of a variable. In the previous
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example, the predicate served as DHT key, and subject and object served as the
remaining components. The latter ones were both bound variables, but this does
not need to be the case. In general we can encounter six different cases, where
the two remaining components are:

1. two unbound variables,
2. an unbound variable plus a bound variable,
3. an unbound variable plus an fixed URI or literal,
4. two bound variables,
5. a bound variable plus an fixed URI or literal, and
6. two URIs / literals

A component is bound if it consists of a variable that was seen before in a higher
recursion level, unbound with a variable that occurs for the first time, or fixed
if it is a URI or literal. The binding of a variable is the known candidate set,
where the variable was found the first time. For each of these cases we define a
specially optimized type of cache. These caches are depicted in figure 5.

F
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U1

U2

(a) fixed/fixed
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�

U2

U1
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B

��
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U

F

U1

(d) fixed/unbound

U

B

U3

U2
U1

(e) bound/unbound

U

U

(f) unbound/unbound

Fig. 5. Cache Types

The caches have to query the next chunk of up to c triples for a query. They
deliver these chunks triple by triple. For scalability reasons, the peer who will
process the query, does not store any state information, so the requesting peer
is in charge of submitting the state along with the actual request. The state can
consist of the set of triples we want to gather information about (first three cases
below) or of a set of markers, which define the last triples for which we know
information already (last three cases below).
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The simplest cache for fixed/fixed components (see fig. 5a), which occur if a
RDF query contains a triple with three URIs, does a simple lookup without look-
ahead. The state of the cache can be “triple exists in RDF graph” (represented
by a check mark in the figure), “triple does not exist in RDF graph” (cross), or
“unknown whether triple exists in RDF graph” (circle).

For fixed/bound component pairs (see fig. 5b) the caching is simple as well.
A peer requests a chunk of triples by specifying the fixed component and a set
of candidates for the bound component for which it wants to retrieve the state.

For bound/bound components (see fig. 5c) we build up a request containing
a set of unknown combinations of already known values for the bound variables.

The fixed/unbound cache (see fig. 5d) is similar to the fixed/bound cache,
except that it is sufficient to request the next c elements starting after a given
position. Therefore, we submit the fixed element and the last inspected value for
the unbound element as the request.

The bound/unbound cache (see fig. 5e) extends this by storing and submitting
markers for the last known elements in several rows. The peer who processes a
request starts sending triples at the first marker until c triples have been sent or
continues at the next marker if the row (candidates) do not provide c triples.

For the unbound/unbound cache (see fig. 5f) it is again sufficient to submit a
single marker which determines the next triples to be delivered.

4 Evalution

For the evaluation of the strategy described we have generated random resource
descriptions that follow the data guide of the JSDL specification [7]. The gener-
ation was based on rough but arbitrary estimations (e.g.: of the many operating
systems available, the first three will account for the majority of offers and re-
quests). The data generation approach is very similar to the Lehigh University
Benchmark (LUBM), see for example [8]. The resource descriptions consist of
11.3 RDF triples on average (standard deviation: 2.6). Queries are less specific
than resource descriptions and consist of 3.9 RDF triples on average (s.d.: 1.8).
This ensures big result sets which are focus of the Top k strategy.

We have evaluated the Top k strategy for k = 10 with a look-ahead of 10
triples against an optimized exhaustive search described in [9]. This exhaustive
search employs sophisticated means based on Bloom filters to fetch a minimal
set of triples necessary to do a full evaluation locally. For the evaluation, we
have processed 100 queries on databases of 100,000, 500,000, and 1,000,000 RDF
triples, spread on a P2P network of 64 nodes.

Our main goals were to reduce the number of triples sent over the network
and to reduce the number of messages sent over the network.

Figure 6a shows the aggregated number of queries each individual peer had
to sent to process all 100 queries on the database of 100,000 triples. We see
that some nodes were not involved at all, when trying to find just the first 10
matches. On average, each peer sent 634.7 triples in 308.2 messages for a Top 10
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Fig. 6. Empirical analysis

evaluation, while the exhaustive evaluation sent an average of 31485 triples in
18886 messages per node.

We further hypothesize that restricting the number of results gets increasingly
important the larger the database is. Therefore, we have analyzed the ratio of
triples sent over the network with Top k strategy devided by the number of
triples sent with optimized exhaustive search for all three databases. In two of
one hundred test queries, the exhaustive search was slightly faster than the Top k
search on 100,000 triples because the triple ordering strategy in the Top k search
is less optimized. These two queries had very small result sets. In all 98 other
test queries, the Top k strategy was superior. In order to disregard these outliers,
we describe the median values for the ratios instead or the mean values.

The experimental results support our hypothesis (see fig. 6b). The median
ratio of triples sent over the network for Top k divided by the the number of
triples sent for an exhaustive search of 100 queries was just 0.89% for a database
of 100,000 triples, 0.13% for 500,000 triples, and 0.05% for 1,000,000 triples. The
mean ratios were 5.7%, 2.8%, and 0.87% respectively. We see that the Top k is
on average significantly faster than the optimized exhaustive search if result sets
are big.

Decreasing the look-ahead from 10 triples to 1 increases the total number of
triples sent over the network by a factor of 1.61 and the total number of messages
by a factor of 1.95 on the database of 100,000 triples.

5 Related Work

The general idea of the semantic web [3] paints the vision of a web where infor-
mation can be automatically processed by software. The Resource Description
Framework (RDF) together with RDF Schema [11,4] is one of the upcoming
standards which will help to make this vision a reality.
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Kokkinidis and Christophides describe in [12] a P2P based middleware for
evaluating queries in the RDF Query Language (RQL) using RDF Schema
knowledge. They focus on the construction and optimization of query plans.
Their basic approach is different from ours as they require mandatory schema
information encoded in RDFS. In our approach, schema information is not re-
quired for query processing.

In [5], dynamic query execution for schema-based P2P networks in the con-
text of the Edutella project [14] is described. This work focuses on dynamic
query planning and execution. Queries are evaluated in a distributed fashion;
the optimizer tries to evaluate operators local to the data.

Kokkinidis et al. do not address Top k evaluation explicity. Nejdl et al. propose
a Top k evaluation strategy in [13] but this is fundamentally different from our
approach as it is based on a P2P network with super-peer architecture.

The idea of using URIs as the key to distribute information over an DHT-
based P2P network has been described in several papers. We have used it in
[10] to distribute knowledge based on Description Logics and it has been used in
BabelPeers [9], the GridVine project [1], and RDFPeers [6] to distribute RDF
triples. The distribution of triples used in this paper is similar to these ideas.

6 Conclusion

In this paper, we have focussed on querying large amounts of distributed
RDF-based knowledge. While the Semantic Web is a prominent use case for
our algorithm, we argue that other applications like Grid resource discovery are
important as well. In most use cases, only a small fraction of the results are
relevant for the user. Thus, we devised a Top k query algorithm which delivers
only the k best results according to a sorting attribute. The algorithm operates
on RDF data distributed over an DHT-based P2P network. It uses caching and
look-ahead strategies to reduce both the number of messages and their size.

In the evaluation, we showed that the algorithm indeed reduces network usage
significantly compared to an exhaustive evaluation. We further showed that the
positive effect increases the larger the underlying RDF knowledge-base grows.
Thus our strategy is efficiently increasing scalability of RDF-based P2P data
management systems.
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