
Analyzing the Interaction of OpenMP Programs
Within Multiprogramming Environments on a

Sun Fire E25K System with PARbench

Rick Janda, Wolfgang E. Nagel, and Bernd Trenkler

Center of Information Services and
High Performance Computing

Dresden University of Technology
01162 Dresden, Germany

rick.janda@zih.tu-dresden.de, bernd.trenkler@tu-dresden.de,
wolfgang.nagel@tu-dresden.de

Abstract. Nowadays, most high performance computing systems run
in multiprogramming mode with several user programs simultaneously
utilizing the available CPUs. Even though most current SMP systems
are implemented as ccNUMA to reduce the bottleneck of main memory
access, the user programs still interact as they share other system re-
sources and influence the scheduler decisions with their generated load.
PARbench was designed to generate complete load scenarios based on
synthetic jobs and to measure the job behavior during the execution of
these scenarios. The E25K is a ccNUMA system with up to 72 dual core
CPUs and a crossbar-based connection network. This paper describes the
results of the examination of such a Sun Fire E25K system with PAR-
bench. First, PARbench was used to investigate the performance impact
caused by the interactions of jobs on fully loaded and overloaded ma-
chines. Second, the impact of operating system tasks to the performance
of OpenMP parallelized programs in scenarios of full load as created by
the cluster batch engine is quantized, especially when these system tasks
are not considered in the initial load calculation. Additionally, the gen-
erated scenarios were used for a statistical analysis of the scheduling of
OpenMP programs, focusing on data locality and migration frequency.

1 Introduction

Current installations of high performance computing systems often contain sys-
tems with several hundred processors. Not all user programs need this huge
amount of CPUs. Thus, the systems run several user jobs simultaneously in
multiprogramming mode. While these jobs can often use a subset of the avail-
able CPUs almost exclusively, they nevertheless share common resources like
data connections, caches, or the I/O subsystem. The scheduler may also migrate
jobs to other CPUs in order to assign resources equitably. Such migrations and
saturated memory connections are major causes of performance degradations.
The performance impact becomes more and more substantial as the proces-
sor/memory speed gap widens.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 89–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



90 R. Janda, W.E. Nagel, and B. Trenkler

OpenMP is a widely used approach to parallelize calculations on SMP systems.
In the past a lot of work has been presented that assesses the performance
of OpenMP programs on dedicated SMP systems or measures the runtime of
different OpenMP directives. However, these benchmarks assess the machine’s
performance under quite favorable circumstances and say nothing about the
interaction of several user jobs in production environments. They also do not
consider the load generated by the operating system itself, that may be much
higher in real production environments than in benchmark situations.

PARbench was designed to address exactly this issue. It permits the user to
generate synthetic jobs with various characteristics based on sequences of simple
benchmark kernels. After that, several of these jobs can be executed simulta-
neously. This permits the composition of almost arbitrary workload scenarios.
During the execution of the whole scenario the runtime and the CPU time of
each job is measured. Thereby, PARbench can not only generate sequential jobs
but even tightly coupled parallel programs based on OpenMP. The first version
of PARbench had been designed from 1988-1990 to measure the interaction of
several programs during execution in multiprogramming mode [1], [2]. In 2001
PARbench was ported to the SGI Origin 3800 by Sebastian Boesler and the use
of OpenMP as a standard for parallelization was introduced [3]. Meanwhile, the
vector systems NEC SX-4 and SX-5 and the IBM p690 series were also analyzed
[4], [5].

Object of this investigation were the Sun Fire E25Ks of the RWTH Aachen
with 72 dual core UltraSPARC IV CPUs each, running on Solaris 9. The PAR-
bench code was compiled with the Sun Studio 9 Compiler Collection. A compre-
hensive view of the architecture of the Sun Fire E25K can be found in [6]. More
details about the UltraSAPRC IV CPU can be found in [7].

The work is parted in the following sections: The first part of the investigation
will be a general assessement of the scalability of the crossbar-based ccNUMA
architecture with dual core CPUs. The second part will examine the operation
mode driven by the cluster batch engine (Sun N1 Grid Engine 5.3). The perfor-
mance impact to OpenMP programs due to operating system tasks, which are
not considered in the load calculation of the batch engine, will be elaborated.
The last part is dedicated to a statistical analysis of the scheduling and will
reveal some weaknesses in the treatment of OpenMP programs.

2 Performance of Sequential Jobs Under Full Load and
Overload

The main reason for applying the ccNUMA for large symmetric multiprocessor
systems is to effectively widen the memory access bottleneck in comparison to
UMA systems. Therefore, ccNUMA systems should scale significantly better for
a larger number of CPUs. The first question, that was to be answered by this
investigation, is how well the E25Ks do scale. The amount of interaction between
the user jobs, due to sharing system resources and maintaining cache coherency
in the system, was examined.



Analyzing the Interaction of OpenMP Programs 91

�����
�
�
�

��������
��
��
��

�������
�
�
�

������
��
��
��

�������
�
�
�

����������
��
��
��

�������� ��
��
��
��

���������
�
�
�

���������
�
�
�

����������
��
��
��

�����������
�
�
�

������
��
��
��

����������
����
����
����

���� �
�
�
�

���� ������
��
��
��

����������
��
��
��

�����������
���
���
���

��������
��
��
��

�
�
�
�

��������
����
����
����

��������
��
��
��

�
�
�
�

�����
�
�
�

��������
��
��
��

�������
�
�
�

���������
���
���
���

�
�
�
�

������
��
��
��

�����
�
�
�

�
�
�
�

�����
���
���
���

����������
��
��
��

���
���
���
���

������
��
��
��

������������
��
��
��

��
��
��
��

�����
�
�
�

���������
�
�
�

��
��
��
��

������
��
��
��

���������
���
���
���

��
��
��
��

������
��
��
��

������������
��
��
��

��
��
��
��

����
��
��
��

���������
�
�
�

������ �
�
�
�

�
�
�
�

������
��
��
��

�
�
�
�

���
�
�
�

����������
��
��
��

����
��
��
��
��

��
��
��
��

�� ��
��
��
��

�
�
�
�

�����
�
�
�

�� ����
��
��
��

������������
��
��
��

��
��
��
��

������
��
��
��

144x1_various_kernels => SF−E25K  SunOS 5.9        19.01.2005 10:57

user:15216.39s

idle:

system:
105.67s

378.65s

0.11s

14837.63s 97.51%

0.00%

2.49%

15194.24s

356.50s

real:

wait:

overall:

bench:

0 50 100 150 200

BP001

BP144

������

��

user

system

wait

Fig. 1. 144 different jobs on the Fire E25K

2.1 Full Load

To obtain a first overview about the scalability of the architecture, 36 jobs with
different kernel numbers and 100 seconds runtime each were generated. These
kernels covers all of the 17 internally used math cores, do not perform any
I/O operations and span as much as possible of the available data matrices to
run out of the caches and stress the memory subsystem. After the generation all
generated jobs were executed simultaneously with four copies each to achieve 144
jobs. The result is shown in fig. 1. Some jobs clearly distinguish from other by
their increased CPU usage but none of the jobs suffers from a crucial performance
impact. Even the most affected job took only 120 seconds which correspond to
a relative increase of just 20%. From this point of view the hardware scales very
well.



92 R. Janda, W.E. Nagel, and B. Trenkler

2.2 Specifying the OS Load

In the previous test the jobs showed some waiting time. This was caused by
operating system tasks that need a CPU from time to time to do their work.
The short interruptions of the user jobs may lead to increased rates of cache
misses due to the system jobs replacing the cache lines with their own data
or the user jobs being migrated to other CPUs by the scheduler to assure fair
resource assignment. Therefore, 144 user jobs at once as well as the system
tasks results in a slightly overloaded system. The impact on sequential jobs by
these circumstances will be investigated in a next step. Additionally it may
be of interest, to what extend the influence increases within clearly overloaded
systems.

For this reason the load created by the operating system itself is quantified
in order to build tests, that consider this load and avoid interruption of the
user jobs. PARbench measures CPU usage time and real time for every job and
calculate the overall waiting time for a scenario. A simple scenario with 144
sequential jobs shows, that the jobs remained without CPU in about 2% of their
runtime. The experiment was repeated with gradually reduced number of user
jobs until the overall waiting time became almost zero at 140 user jobs.

2.3 Overload

For a next test, a core sequence merely based on only one kernel version was
generated to take 100 seconds. Then several copies of this jobs were run at once,
first with 140 copies to consider the system tasks, second with 144 copies which
comply to the load factor achieved by the cluster batch engine and do not con-
sider system task and third with 164 jobs to overload the system. This test was
repeated for various kernel versions. Table 1 compares the results. As one can
see, most of the kernels do not show any relevant influence from slight or con-
spicuous overload in comparison to their CPU usage time in a full loaded system
with 140 user jobs plus system jobs. Only version 241, 281 and 301 consume rec-
ognizable more CPU time on the clearly overloaded system. For a analysis of this
behavior, some additional data from the jobs, like cache usage and percentage
of write-accesses, is needed. This can be achieved with the performance counters
of the UltraSPARC IV CPU but is not yet included in PARbench. The code
of the math cores, however, reveals that these cores contains some really odd
access patterns to confuse the cache usage and stress the memory subsystem.
Hence, their generated load in the memory subsystem is not typical for scientific
computations. In the outcome sequential jobs are practical not affected by the
system tasks.

3 Influence of Operating System Processes on OpenMP
Programs

The cluster batch engine of the RWTH Aachen uses a simple scheme to avoid over-
loading the systems. The users have to specify the number of processes or threads



Analyzing the Interaction of OpenMP Programs 93

Table 1. Relative increase in CPU usage time with raising load factor for different
kernel versions

Kernel version MREFS FLOPS Relative average CPU time
single 140x 144x 164x

126 765.7 770.1 100% 100.1% 100.1% 100.1%
111 406.9 638.6 100% 100.2% 100.4% 100.2%
101 451.3 702.3 100% 100.4% 100.3% 100.4%
151 919.8 893.2 100% 100.4% 100.3% 100.4%
81 205.2 410.6 100% 102.5% 102.6% 102.4%
226 669.0 79.0 100% 104.5% 104.5% 103.0%
61 71.5 286.0 100% 106.7% 106.5% 106.5%
246 311.2 1.4 100% 107.4% 107.4% 107.5%
221 485.1 54.1 100% 111.5% 113.0% 108.4%
121 309.5 309.6 100% 109.1% 108.9% 108.8%
141 130.7 126.7 100% 118.6% 118.6% 118.4%
281 8.5 0.0 100% 117.6% 120.0% 122.0%
241 325.2 0.1 100% 109.1% 109.1% 124.7%
286 75.1 0.6 100% 124.6% 124.7% 124.8%
201 593.9 119.3 100% 125.3% 125.3% 124.8%
301 63.3 31.7 100% 124.4% 127.0% 135.2%

that they want to use for their MPI or OpenMP jobs. The batch engine then ex-
ecutes only as many jobs simultaneously on the according system that each MPI
instance and each thread of the OpenMP programs can theoretically use a CPU
exclusively. For the E25K systems the batch engine adjust the number of user pro-
grams and threads to 144, which is the number of CPU cores. However, operating
system tasks are not considered at all, thus, the system runs slightly overloaded.
As it could be seen in the previous section, sequential programs do not suffer much
from the short interruptions caused by system tasks. On the other hand, paral-
lelized programs, especially fine-grained parallelized programs like OpenMP pro-
grams, may experience much more impact from these short interruptions. To en-
sure data validity, OpenMP programs contain a lot of synchronization barriers,
that have to be reached by all worker threads before the calculation can proceed.
In order to obtain efficiently parallelized programs, the work will be spread to ev-
ery worker thread equally. If every thread can use a CPU exclusively, all worker
threads will reach the barriers at the same time and the next part of the work is
spread to the worker threads immediately. But if some worker threads are inter-
rupted by system tasks, all other threads of the OpenMP program will have to
wait on the next barrier for the interrupted thread. Part of the investigation was
to quantify these impact on the performance of OpenMP programs.

For this purpose a job with 200 seconds sequential runtime and no I/O was
created. This job was generated to average 500 MREFS and 500 MFLOPS and
contains about 5000 kernels, which means 5000 implicit barriers for the OpenMP
parallelization. The scenario contains nine copies of this job which were paral-
lelized to eight threads each. First these jobs were executed with 72 sequential



94 R. Janda, W.E. Nagel, and B. Trenkler

Table 2. Average CPU usage time (user+system) and runtime of the parallelized jobs
(9x8) with spinning threads (busy waiting) and different background load in the system

Total number of Test setup CPU usage time [s] Runtime [s]
user threads of the par. jobs (average)

8 1x8 232.4 29.1
72 9x8 234.7 29.3
138 66x1 9x8 238.7 30.0
140 68x1 9x8 239.5 30.1
142 70x1 9x8 248.2 31.4
144 72x1 9x8 272.7 34.9

Table 3. Runtime differences of the parallelized jobs between considering operating
system tasks and not

Threads/job Average runtime of the par. jobs [s] Rel. extension
for total number of user threads [%]

140 144
8 30.1 34.9 15.9%
16 19.3 26.3 36.3%
24 14.1 22.3 58.2%
32 10.7 20.6 92.5%

jobs simultaneously and then with only 68 sequential jobs in parallel to ensure
four free CPUs for the system tasks. Fig. 2 and fig. 3 show the results. Some of
the OpenMP jobs ran notably longer without free CPUs for system jobs. To en-
sure that the impact does not originate from other influences, the measurement
was also repeated without the simultaneous sequential jobs to compare CPU us-
age and runtime with these values. Table 2 contains the average runtime and the
average CPU usage for all of the parallelized jobs and the different scenarios. As
one can see, the runtime does not differ much for lower system loads but does no-
tably increase with more than 140 user threads in the system1. But then again,
an increase to 35 seconds compared to 30 seconds is practically neglectable.

After that the examination was expanded to a higher degree of paralleliza-
tion with up to 32 threads. Again the OpenMP jobs were executed with some
sequential jobs simultaneously to fill the system and then with four sequential
jobs lesser to avoid interruption by system tasks. Table 3 compares the average
runtime of the parallel jobs in the two scenarios for the an increasing number of
parallel threads. One can see, that the impact increases rapidly with higher par-
allelization. The slight overload caused by the operating system has a dramatic
impact on the performance of the OpenMP programs with higher paralleliza-
tion. OpenMP jobs with 32 threads will already run almost twice as long, if the
operating system tasks are not considered in the load calculation and slightly
overload the system.

1 Sequential programs are counted as one thread.



Analyzing the Interaction of OpenMP Programs 95

��
�
�
�
�

������
��
��
��

�����
�
�
�

����
���
�
�
�

���
�
�
�

�������
�
�
�

����
��

��
��
��
��

�����
�
�
�

�������
�
�
�

����
�����
�
�
�

�����
�
�
�

�������
�
�
�

���
�
�
�

���
�
�
�

�����
�
�
�

���
�
�
�

����
�
�
�
�

���
�
�
�

�����
�
�
�

�����
�
�
�

��������
��
��
��

72x1_9x8 => SF−E25K  SunOS 5.9        12.01.2005 18:08

user:9749.39s

idle:

system:
67.70s

106.30s

1.11s

9641.98s 98.90%

0.01%

1.09%

7547.22s

−2095.87s

real:

wait:

overall:

bench:

0 50 100 150 200 250 300 350 400 450

BP001

BP081

����

�
�
�
�
�
�
�
�

������
����

������

�
�
�
�

������
����

����

������

�����������������������������������������������������������������������������������
�
�
�

��������������������
��������������������
��������������������
��������������������

���������������������������������������������������������������������������������������
�
�
�

���������������������
���������������������
���������������������
���������������������

��������������������������������������������������������������������������������������������������
��
��
��

�������������������
�������������������
�������������������
�������������������

��

user

system

wait

Fig. 2. 144 user threads within the SF-E25K (144 CPUs)

��
��
��
��

����

����

��
����

�
�
�
�

��
��

��
��

�
�
�
�

����

68x1_9x8 => SF−E25K  SunOS 5.9        12.01.2005 18:04

user:8960.65s

idle:

system:
64.00s

17.03s

1.04s

8942.58s 99.80%

0.01%

0.19%

7062.76s

−1880.86s

real:

wait:

overall:

bench:

0 50 100 150 200 250 300 350 400 450

BP001

BP077

��������
�������
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����������
��
��
��

�������
�
�
�

��
��
��
��

��
�
�
�
�
�
�
�
�

�������������
�
�
�
�
�
�
�

���������
�
�
�
�
�
�
�

����
�
�
�
�
�
�
�
�

�
�
�
�

��
����
�
�
�
�

����
�
�
�
�
�
�
�
�

���
�
�
�
�
�
�
�

������
��
��
��
�
�
�
�

��
��
��
��

���
�
�
�
�
�
�
�

������
�������
�
�
�

������
������
��
��
��
��
�
�
�
�

����
�
�
�
�

������������������
������������������
������������������
������������������

�����������������������������������������������������������������������������
�
�
�

�������������������
�������������������
�������������������
�������������������

�������������������������������������������������������������������������������
�
�
�

������������������
������������������
������������������
������������������

��������������������������������������������������������������������������������

��

user

system

wait

Fig. 3. 140 user threads within the SF-E25K (144 CPUs)

4 Scheduling Analysis

PARbench allows assessing the performance of jobs in different multiprogram-
ming scenarios. The measured interaction, however, may caused by hardware
limitation as well as by unfavorable scheduling. To obtain a direct access to the
decisions of the scheduler the PARbench startup script was extended in order to



96 R. Janda, W.E. Nagel, and B. Trenkler

run the Solaris prstat tool during the workload execution. The tested workloads
were reduced by one sequential job to achieve the same load factor as without
prstat. The prstat tool is a program similar to the widely known top utility
but additionally offers precise information about every thread of the running
programs. In this case prstat was run in batch mode to log the process and
thread assignment to the CPUs every second. After the experiments, the gath-
ered data was analyzed regarding migrations and data locality. The sequence of
used CPUs was determined for every user job and for each of their threads.

A migration always occurred, if the CPU number changed between two snap-
shots. Since most of the performance of the UltraSPARC IV CPU is related
to its huge level two cache, programs will only obtain this performance, if they
utilize this cache effectively. If a process or thread is migrated to another CPU,
the cache usage will be disturbed. To compare the migrations, a migration rate,
which set the counted migrations in ratio to the total number of snapshots made
for each thread or process, was calculated.

The home board rate is the second ratio calculated from the gathered data. The
home board of a process is the system board, where a process was first executed
and where it allocated its data structures in main memory (first touch policy).
Within a system board, the latency to main memory is almost the same but data
access across the central crossbar switch takes much longer. Thus, the Solaris
scheduler tries to bind processes to its home board and avoid migrations to other
system boards. The board number is related to the CPU numbers, so it is quite
simple to determine, if a process was being executed on its home board during
a snapshot. The threads of an OpenMP program should also gain fast access to
the data, consequently they should also be executed on the home board of the
according process. As a system board contains only 4 UltraSPARC IV CPUs
with two cores each, it makes only sense to examine OpenMP programs with up
to 8 threads. Hence, the home board rate for a thread or process was calculated
by counting the number of snapshots the thread or process was executed on its
home board and setting this value in ratio to the total number of snapshots for
the according thread or process.

Table 4 lists the results for the full load scenarios with and without con-
sideration of the operating system tasks, divided into the sequential and the
parallel jobs. For the sequential jobs the average was taken over the values of
each sequential job. For parallel jobs the according rate was calculated for every
thread separately and then averaged. As one can see, the home board binding
works very well for sequential jobs. The migration ratio is very low, too, and

Table 4. Average home board rate and thread migrations rate separated for sequential
an parallelized jobs

Total number of Average home board rate [%] Average migration rate [%]
user threads sequential (x1) parallel (x8) sequential (x1) parallel (x8)

140 98.8 38.4 2.6 8.2
142 96.6 36.3 3.1 11.3
144 95.7 38.2 5.7 16.5



Analyzing the Interaction of OpenMP Programs 97

Table 5. Average executions ratio on the home board separated for the thread numbers

Total number of Test setup Home board rate [%] for thread
user theads 1 (master) 2 3 4 5 6 7 8

140 67x1, 9x8, prstat 98.7 83.2 44.4 33.3 0.0 11.1 19.1 11.5
142 69x1, 9x8, prstat 96.7 62.2 56.3 12.2 11.5 22.2 0.0 22.2
144 71x1, 9x8, prstat 95.7 77.3 67.6 29.6 10.1 21.6 9.3 3.4

does only slightly increase with the small overload caused by the system tasks
in the scenario with 144 user threads. The tide turns for parallelized jobs. All
threads of the OpenMP programs were only executed one third of the time on
the home board and suffer from significantly more migrations than the sequen-
tial jobs. OpenMP programs compiled with the Sun Studio 9 compilers allocate
all threads at the program’s start. In order to save the time for stopping and
starting the threads over and over again, temporarily idle threads do busy wait-
ing per default in order not to loose their CPU. This approach is reasonable, if
the system does not become overloaded and no other jobs are available to use
the freed CPUs. Accordingly, starting and stopping of threads is not the reason
for the higher migration rate.

The assumption was that the scheduler does not distinguish between a se-
quential program and the master thread of an OpenMP program but has no
favorable strategy for further threads. Thus, the same data was analyzed again
but the values were grouped by the thread number. The values of the sequential
jobs and the values of the master thread of the parallel jobs become one group for
averaging, the second group contains the second thread of each parallel program
and so on. Table 5 lists these average home board rates.

The values for the first thread resemble the values of the sequential jobs in the
previous table, which supports the assumption. The binding to the home board
rapidly decrease for larger thread numbers. Starting with thread five the threads
are practically no more subject to any home board binding and will suffer from
slow remote access to their data in the main memory of another CPU board.

5 Conclusions

In this paper, the performance of the Sun Fire E25K in multiprogramming mode
was evaluated. The tests with workloads containing different sequential jobs
indicate that the hardware scales very well and the ccNUMA architecture with
crossbar-based connection network provide sufficient throughput to effectively
eleminate the memory access bottleneck.

In contrast to sequential programs, that are not very influenced by the inter-
ruptions caused by system jobs, tightly coupled parallel programs suffer much
more from those CPU losses. The performance impact increases rapidly with
larger number of threads and it was shown how the consideration of the system
tasks in the load calculation already reduces the runtime of OpenMP jobs with
32 threads in half. Thus, system tasks could not be ignored in the batch engine’s



98 R. Janda, W.E. Nagel, and B. Trenkler

load calculation. On the E25Ks the batch engine should limit the number of user
processes and threads to 140 instead of 144, which is the current configuration.

The statistical analysis of the thread scheduling reveals some weaknesses. The
first thread, which is the only thread for sequential jobs, is tightly coupled to
the board, where the program data was allocated. This ensures fast access to
the data and reduce the usage of the central crossbar switch. Further threads
are not subject to this tight home board binding and suffer from higher memory
access latency for that reason. They also show higher migration rates, which
reduce cache utilization. Better thread scheduling could offer some performance
increases here. Sun promises much improved thread handling with Solaris 10,
which will be subject for further research.

Acknowledgments

The research described in this work was developed using the resources of the
computing center of the RWTH Aachen. We would like to thank Dieter an Mey,
Andrea Lorenz and Hans-Jürgen Schnitzer as members of the HPC team for
providing useful advices and technical assistance.

References

1. Linn, M.A.: Eine Programmierumgebung zur Messung der wechselseitigen
Einflüsse von Hintergrundlast und parallelem Programm. Techn. Report Jül-2416,
Forschungszentrum Jülich (1990)

2. Nagel, W.E.: Performance evaluation of multitasking in a multiprogramming envi-
ronment. Techn. Report KF-ZAM-IB-9004, Forschungszentrum Jülich (1990)

3. Boesler, S.: Performance-Analyse von Hochleistungsrechnern im Multiprogramming-
Betrieb: Untersuchungen auf der SGI Origin. Diplomarbeit, Center for High Per-
formance Computing, Dresden University of Technology (2001)

4. Kowarz, A.: Performance-Untersuchungen mit dem PARbench-System auf unter-
schiedlichen Parallelrechnern. Diplomarbeit, Zentrum für Hochleistungsrechnen,
Technische Universität Dresden (2003)

5. Dietze, H.: Das PARbench-System: Untersuchungen zum Scheduling von parallelen
Programmen auf der IBM p690. Diplomarbeit, Zentrum für Hochleistungsrechnen,
Technische Universität Dresden (2004)

6. Sun Microsystems, Inc.: Sun Fire E25K/E20K Systems Overview. (2004)
7. Sun Microsystems, Inc.: UltraSPARC IV Whitepaper. (2004)


	Introduction
	Performance of Sequential Jobs Under Full Load and Overload
	Full Load
	Specifying the OS Load
	Overload

	Influence of Operating System Processes on OpenMP Programs
	Scheduling Analysis
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




