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Abstract. Accurate recognition of motifs in biological sequences has
become a central problem in computational biology. Though previous ap-
proaches have shown reasonable performances in detecting motifs having
clear consensus, they are inapplicable to the recognition of weak motifs in
noisy datasets, where only a fraction of the sequences may contain motif
instances. This paper presents a graphical approach to deal with the real
biological sequences, which are noisy in nature, and find potential weak
motifs in the higher eukaryotic datasets. We examine our approach on
synthetic datasets embedded with the degenerate motifs and show that
it outperforms the earlier techniques. Moreover, the present approach is
able to find the wet-lab proven motifs and other unreported significant
consensus in real biological datasets.

1 Introduction

The central dogma of molecular biology is that DNA produces RNA, which in
turn produces protein. For the regulation of transcription, a set of proteins called
transcription factors (TFs) bind to short subsequences in the promoter region
and activate transcription machinery. Such subsequences are called transcription
factor binding sites (TFBSs) that, since a TF can bind to several sites in the
promoter regions of different genes, should have common patterns or motifs. A
motif is defined as a representation of a set of subsequences, which are prevalent
in a class of biological sequences and share a similar composition of symbols. For
instance, the TATA box is a motif at the site of transcription initiation. Motifs
such as Shine-Dalgarno sequences (also called Ribosome Binding Sites (RBSs))
are involved in the translational initiation and preserve in most promoter re-
gions of prokaryotic genes. Identification of motifs in DNA sequences provides
important clues for the understanding of the proteins, DN A-protein interactions
and the gene regulatory networks.

Since not much knowledge is known about most TFs and the variability of
their binding sites, the wet-lab experiments to locate related motifs in DNA se-
quences, such as DNAsel Footprinting Assay and Methylation Interference As-
say [I0], are both cumbersome and time consuming. Therefore, computational
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techniques and algorithms, providing efficient and low cost solutions, have been
rapidly developed for motif recognition. Based on different assumptions used
by these techniques and algorithms they are classified into either probabilis-
tic or deterministic. Probabilistic approaches use a weight matrix to represent
a motif and maximize the information content of the alignment of motif in-
stances [TJ2J6ITTIT3]. On the other hand, deterministic approaches exhaustively
enumerate or search for motif consensus sequences [J5I4/17]. Each approach has
its own strength and weakness, depending on the task at hand, while a specific
type of motif recognition approaches may be more useful than others [7I8I18].

It is observed that, for some TFs, the number of sequences that contain TF-
BSs with very similar pattern are insufficient to successfully find the motif using
existing approaches [3]. Some motif consensus may exactly be present in datasets
while others may exist with a small or significant number of de-generations. In
practice, the noises are inevitable in datasets due to experimental errors, the
failure to retrieve a suitable length of the regions containing the motifs, etc. The
problem of weak motif recognition (WMR), that discovers a motif having a sig-
nificant number of degenerations randomly distributed over its relatively short
length, has recently been addressed. The graphical approaches, such as WIN-
NOWER [14], cWINNOWER [12], and MITRA [4] convert the subsequences in
the dataset into vertices and use the edges to indicate their relationships among
possible instances; the random projection methods, such as PROJECTION [2],
Multiprofiler [9], and Planted Motif Search [16], attempt to reduce the sample
space by decreasing the motif length or the effective degenerate positions; the
other approaches, such as SampleBranching [I5] and SP-STAR [I4] optimize a
target function such as the pair-wise scoring function.

Despite such various attempts, it has been hard to develop an efficient al-
gorithm to deal with the WMR problem. The difficulty is mainly due to two
reasons: (1) the large pairwise distance between motif instances of two sequences
evades their detection and an instance could be more similar to a random sub-
sequence than to another motif instance, and (2) the time complexity of the
detection increases and the accuracy decreases when corrupted sequences that
do not contain any motif instance are present in the dataset. Therefore, the
previous WMR approaches are quite time consuming and vulnerable to noises.

Earlier in [I9], Yang and Rajapakse proposed an graphical algorithm (here-
inafter known as GWM) with superior running time and performance that can
find weak motifs in the datasets where each sequence contains at least one motif
instance. However, the robust motif finding algorithm with capabilities of tol-
erating to a certain amount of noise in datasets is of practical significance. In
this paper, we propose a GWM2 approach that extends the previous algorithm
to find weak motifs in noisy datasets containing corrupted sequences. Our al-
gorithm shows better robustness to noises and more accuracy than the earlier
methods. Moreover, GWM2 is able to find the wet-lab proven motifs and other
unreported significant consensus on the real biological datasets. Although the
illustration of our method, in this paper, is limited to only DNA sequences, the
method is generalizable to other biological sequences such as protein sequences.
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2 Method

Suppose that we are interested in finding motifs in m DNA sequences given by the
set D = {x; : i = 1,2,..., m} where the i th sequence x; = (x;1, Z;2, . . . , Tin, ) has
length n;. The elements of the sequences, z;; € {2 for every sequence x; and its j th
element are drawn from the alphabet of nucleotides 2 = {A, T, G, C}. We use ¥
to represent the consensus of the motif that is derived from the alignment of a set
of motif instances. Suppose that K is the number of sequences that contain motif
instances. If K = m, the dataset is called an ezact dataset, otherwise (K < m)
a noisy dataset. Here, we present an approach to the latter case where each se-
quence x; contains either one or zero motif instance. Let the motif be denoted as
a pair (I, d) where [ is the length of the motif and d is the maximum degenerate
positions allowed to differ a motif instance from the consensus. We look for in-
stances, ¥k, k = 1,..., K that satisfy dis(¥,¢) < d where dis(-,-) is a distance
measure, say the Hamming distance, between the two subsequences. d can be set
to large value, but no more than a threshold d’, beyond which random motifs could
be found in the same dataset. The d’ is restricted by the inequality [2]:

AA-(1-p <1 (1)

where the left hand side gives the expected number of random (I, d’) motif oc-
currences, n = max/; n;, and p = Z?/:O(é)(i)i(}l)l’i is the probability for two
random subsequences having length [ to be differed within d’ positions.

In graphical representation of the dataset, each subsequence is represented at
a vertex [I4]. Let vertex v;; represent the subsequence of length [ starting at po-
sition j of the ith sequence, say s; j = (%ij, Tij+1..., Tij4i—1). Therefore, K motif
instances in the dataset are assigned to certain vertices and are determined from
a total of 37" | (n; — I 4+ 1) number of vertices. For a given (I, d) motif ¥ in the
dataset, any two instances of ¥ differ at most 2d positions. If the graph is con-
structed so that any two vertices v;; and vpq, for 1 <4 # p < m, 1 < j < ny,
and 1 < g < ny, are linked if dis(s; j,sp,q) < 2d, the motif instances represented
by vertices in the graph are connected to each other and form a clique of size K.
Then, the motif recognition problem is equivalent to finding K-cliques in a given
graph. Though clique finding in graphs is known as NP-complete problem, in the
present context its complexity is significantly lower because of a small ratio of the
numbers of edges to the number of vertices of graphs for datasets of nucleotide or
amino acid sequences [8]. Our algorithm consists of three steps: graph construc-
tion, clique finding, and rescanning.

2.1 Graph Construction

Let a selected sequence .., for r = 1,...m — K + 1, be referred as reference
sequence and suppose that the potential motif instance in the reference sequence
is represented by the vertex v, where p indicates its starting position. As we are
looking for I-length motifs, for each position p = 1,...,n,, — [ + 1 in the reference
sequence, we build a graph G, = (V,, E,) as follows:
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1. Set V, ={p} and E, = ¢.

2. Fori = r +1,...,m, find subsequence s; ; represented by vertex v;; where
J=1,2,...n; — 1+ 1, and if dis(s; p,s; ;) < 2d: V, = V, [ Jvyj.

3. For two different vertices v;; and vpq € V,, if dis(s; j,sp,q) < 2d: E, = E,
Uew, Upg- As sequence x; is assumed to contain at most one motif instance,
no edge ey, v, , Where j'=1,2,...n; =l +1,is added to E,,.

4. For each v;; € V), define a triangle neighbor set T}, which consists of elements
p, 7+ 1 < p < m, satisfying vy € V, and ey,; 4,, € E, with at least an index
¢: 1 < ¢ < np. Remove vertex v;; from V), and its corresponding edges from
E, if |T;;| < K — 2. This triangle criteria is what Pevzner and Sze called the
k = 2 case [14].

After constructing the graph G, if v,, represents a real motif instance in the
reference sequence x,., the motif instances in other sequences should then be rep-
resented by the vertices in the same graph G,. As such, the tenet of our approach is
to convert the given dataset into a set of graphs G, where p = 1,...,n, —l+1, and
look for cliques of size K such that each of the vertices in these cliques represents
an actual motif instance.

2.2 Clique Finding

If the potential motif instance is represented by the vertex v;,, the motif instances
will be represented by a clique of K vertices in the graph G,. In what follows, we
present an iterative approach to search for K-cliques in the graph G/,.

1. We define the set C(4, j), corresponding to v;; € V,, indicate a set of all pos-
sible k-cliques containing k vertices starting from the vertex v,, to vertex v;;.
Set C1(r, p) = {vrp}-

2. The iterative computation for C (i, j) is then:

(a) Set C(i,j) = ¢.
(b) For each vpq € V,, wherer < p < i
and ey, v,, € Ep, do
For each k-1-clique ¢ € Cx_1(p, ¢) do
If {cli|Jvs; } is a valid k-clique then
Ci (i, 5) = Cr(i, j) U{cUvis}
End If
Repeat
Repeat

3. By increasing k from 2 to K, if a clique of size K exists in the graph G, there
must exist a non-empty set Cy(4, j) for a vertex v;; € V,, that contains vertices
forming a K-clique.

2.3 Rescanning

After obtaining the cliques of size K, motif consensus ¥ could be formed by
alignment of the instances corresponding to the vertices of each clique. As the
lengths of sequences in the dataset become longer, spurious cliques could appear.
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Therefore, an extra step is necessary to rescan the dataset with the motif consensus
derived from the earlier steps and save those instances 1; satisfying the inequal-
ity dis(¥, ;) < d. This guarantees that all the possible motif instances are found
exactly in each sequence, including the spurious instances that are preserved as
good as the real instances.

2.4 Algorithmic Complexity

For exact datasets where K = m, the motif recognition problem is efficiently
solved by Yang and Rajapakse [I9] in O(nmA?), where A = n3 2% (1)(3/4)
(1/4)'=" is the random number instances of a motif (I, d) existing in a sequence
with length n. The present approach GWM2 is a direct extension of our previous
algorithm GWM for noise datasets, where K < m, hence requiring on the order of
(BYnkA? computations. If in the graph G, most vertices are spurious or unrelated
and have been included in the Cy(i, j) repeatedly, it could cost memory and time
for maintaining such sets of cliques. However, as indicated in [14], when the size of
cliques becomes larger, less spurious vertices are included; most C (4, j) become
mostly empty as k increases to K. Therefore, as will be shown in the next section,
the running time of our approach in most cases in the experiments is reasonably
small.

3 Experiments and Results

This section presents our experiments to evaluate the GWM2 approach on syn-
thetic datasets and real biological datasets for TFBSs recognition, and compare
its performance with the earlier methods. In case of real biological datasets, which
are extracted from both prokaryotic and eukaryotic organisms, some sequences are
exact while the others are noisy.

3.1 Synthetic Data

The techniques of motif recognition in our experiments were evaluated based on
two standard performance measures defined as follows: performance coefficient
(PC), PC = |1 N4)|/|1 U 1|, where o) is the set of the known motif instances
and 1) is the set of motif instances predicted [I4], and success rate (SR) [15] is
the ratio of the number of successes to the total number of trials. Because we use
the consensus presentation for the motifs found, SR is used for evaluation of our
algorithm.

Exact Data. The exact datasets are those used in [14]: there are 10 datasets,
each of which consists a total of 20 DNA sequences of length 600 bp and generated
with identical and independent nucleotides distributions. The results of the former
approaches were referenced in [I5J16].

Table [Mlshows the performance measure and running time. It can be seen that
the probabilistic approaches might perform faster than the GWM?2 approach, but
they could not guarantee to find precisely the embedded motifs. Compared with
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Table 1. Comparison of the performance and running time by different approaches on
the datasets used in the Challenge Problem [I4] for finding (I = 15, d = 4) motifs

Algorithm SR PC Running time
GibbsDNA - 0.32 40 s
ProfileBranching - 0.57 80 s
CONSENSUS - 0.20 40 s

MEME - 0.145s

MITRA 100% - 5m

PROJECTION 100% - 2m
MULTIPROFILER 99.7% - 1m

PMS 100% - 217 s
PatternBranching 99.7% -  3s
GWM [19] 100% - 21s
GWM2 100% - 64 s
2z’
£
H

32m

18m

2m 53s &m ¢
29 Tm 28s *
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Fig. 1. Results of GWM2 on noisy datasets. Each dataset has 20 sequences that con-
tain (15,4) motif instances and m’ corrupted sequences without containing any motif
instances.

GWM [19], while both archive 100% success rate, GWM2 has a slower running
time. Since GWM2 was designed to address the motif recognition problem in noisy
datasets which contain corrupted sequences, it has to handle more complex char-
acteristics of the given problem, and was not optimized to recognize the motifs in
exact datasets in the fastest possible way. However, if we allowed only one motif to
be recognized in the dataset, the running time of GWM2 decreased to an average
of 26 seconds at SR = 100%. All performances and the running times reported
were averaged over the datasets.

Noisy Data. To show the tolerance to noise, we further evaluate the GWM2
approach on the noisy datasets by artificially introducing noisy sequences to the
dataset. The noisy datasets were generated that consist of m = 20 sequences hav-
ing motif instances and m’ corrupted sequences. The sequences were chosen from
the previous exact datasets and mixed randomly.
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In accordance with [18], in this experiment we restricted to find the best motif
per each run. Running times for GWM2 were averaged over five random datasets.
As seen from figure[Il while our approach still archived 100% success rate, its run-
ning times were strongly effected by the number of the corrupted sequences in the
dataset. This is because the probability of the motif could reach a threshold that
causes many pairwise similarities to occur by chance [2]]. It may further require
a preprocessing step that handles the variability of the data to filter corrupted
sequences. Fortunately, our approach is considered sufficiently fast for common
applications.

3.2 Real Biological Data

We tested our approach on the following biological datasets: DHFR, preproinsulin,
and c-fos, which consist of upstream regions of eukaryotic genes [9]. These biolog-
ical datasets were also analyzed in [2J9/15]. For all experiments, we set [ = 20
and d = 4. The number of the sequences assumed to contain the number of mo-
tif instances that was initially set to the number of the sequences in the dataset
(K = m), then was decreased until the motifs were found or K < m/2. Once
a motif was found in the dataset, it was likely that if the location of the motif
was shifted to left or right several positions, other preserved motifs might also be
found. Hence, for multiple shifted versions of the motif, only one with the lowest
total distance score was selected. Table 2] lists the motifs that match the refer-
enced known motifs with underlined letters corresponding to the matching areas.
As seen, GWM2 successfully recognized the reference motifs. Moreover, in many
circumstances (results not shown), even the motifs found by GWM2 do not accord
with the motifs identified by wet-labs, they actually match to those reported in [4].
It indicates that our approach is able to find the potentially significant motifs.

Table 2. Performance of GWM2 on eukaryotic promoter sequences, using parameters
1 =20 and d = 4. The motifs that match the motifs found by wet-lab experiments [29]
are listed with underlined letters indicating the matching areas.

Dataset K Best motifs by GWM2 Experimentally
(seqs/bases) defined motifs

preproinsulin - 4 GCAGACCCAGCACCAGGGAA AGACCCAGCA
(4/7689) GAAATTGCAGCCTCAGCCCC CCTCAGCCCC

AGGCCCTAATGGGCCAGGCG  CCCTAATGGGCCA
DHFR (4/800) 3 TGCAATTTCGCGCCAAACTT ATTTCnnGCCAAACT
c-fos (6/4710) 5 CCATATTAGGACATCTGCGT CCATATTAGGACATCTG

4 Discussion

As more high throughput sequence techniques are being available, recognizing
meaningful but weak signals or sites in biological sequences becomes more press-
ing. However, solving the problem of WMR usually involves with two difficulties:
(1) the large pairwise distance between the motif instances cause false pairwise
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distances likely to occur at random elsewhere in the dataset that possibly obscures
the true motifs, and (2) the increased running time with the increase of the motif
length and the noises (the presence of corrupted sequences in the dataset). There-
fore, despite various attempts, the existing computational techniques are far from
achieving satisfactory results [I8/7]. This paper has proposed a graphical approach
named as GWM2 to recognize weak motifs in datasets that bear noise. Through
experiments, our approach GWM2 has tolerated well to noises, where a fraction of
the sequences may not contain any motif instances, while the running time is com-
parable if not faster than the former methods. GWM2 has been applied with real
biological datasets that share the common TFBSs and showed good performance.
Moreoever, as three steps in the present method were designed independently of a
sequence alphabet, GWM2 is generalizable to other biological sequences such as
protein sequences.

One limitation of our approach may be how to determine the motif length [ and
the degenerate positions d. Fortunately, in most cases of real biological dataset,
prior information about the potential motif length is usually provided. Therefore,
we could fix the motif length beforehand while varying the value of d. Even if no
prior information is available, the motif could be recognized by a trial and error
approach with a range of different values of L

Our approach could be further adapted to find (I, d) motifs with large ! and d
values. Recently proposed techniques [2/T6], that find long motifs with acceptable
performance, try to find motifs (I’,d") with I’ < l and d’ < d (d’ < I’) by using
probabilistic sampling techniques. In effect, they change the longer motifs recog-
nition to the shorter ones, then recover the original motifs. However, we believe
that a better way to improve the present approach for recognizing weak motifs in
the large datasets is to reveal the potential motif by using only a small number of
sequences and subsequently validate these motifs with the remaining sequences.
For instance, instead of having to find K-cliques, where K is large, we can find k-
cliques with £ < K and recover the potential motifs. Each potential motif will be
evaluated against the dataset and if in the dataset we find no less than K number
of subsequences having Hamming distance within d different positions from this
potential motif, then it is recognized as a valid motif. We plan to further explore
this possibility.
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