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Abstract. As more and more genomes have been discovered in recent years, it 
is an urgent need to develop a reliable method to predict protein subcellular 
localization for further function exploration. However many well-known 
prediction methods based on amino acid composition, have no ability to utilize 
the information of sequence-order. Here we propose a novel method, named 
moment descriptor (MD), which can obtain sequence order information in 
protein sequence without the need of the information of physicochemical 
properties of amino acids. The presented method first constructs three types of 
moment descriptors, and then applies multi-class SVM to the Chou’s dataset. 
Through resubstitution, jackknife and independent tests, it is shown that the MD 
is better than other methods based on various types of extensions of amino acid 
compositions. Moreover, three multi-class SVMs show similar performance 
except for the training time. 

1   Introduction 

One of the big challenges in biological field is about structure and function 
classification and further characterization of protein sequences, as more and more 
genomes and protein sequences are exploited. It is widely accepted that the 
subcellular localization of proteins plays a crucial role in predicting protein 
functions[1]. Hence a large number of computation methods have been developed 
over the last few years. However most of them are based on amino acid 
composition. 

Originally, Nakashima and Nishikawa[2] indicated that intracellular and extra-
cellular proteins are significantly different in amino acid composition (AAC). The 
subsequent studies showed that AAC is closely related to protein subcellular 
localizations. However, the sequence-order information is ignored in AAC. Hence 
two sequences, different in function and localization but similar in AAC, may be 
predicted as the same localization. To utilize the sequence-order information, some 
novel feature extraction methods have been proposed and may be divided into in the 
following two categories.  

The first category focuses on combining AAC with physicochemical properties of 
amino acids. Feng and Zhang [3,4] considered hydrophobic information and Zp 
parameters respectively. Chou firstly presented an effective method, named Pseudo 
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Amino Acid Composition, to predict protein subcellular localization[5]. Then Zhou, 
Cai and Chou further developed this method[5,7,8,9]. Pan et al also presented a 
stochastic signal processing approach[10] to predict protein subcellular location based 
on pseudo amino acid composition.  

The other makes the direct extension of AAC. Bhasin and Raghava developed a 
web server ESLpred for subcellular localization of eukaryotic proteins using dipeptide 
composition[11] and PSI-BLAST. Park and Kanehisa applied compositions of amino 
acids and amino acid pairs to predict 12-class protein subcellular localizations [12]. Cui 
et al proposed two-segment amino acid composition and developed a tool, named 
Esub8, to predict protein subcellular localizations in eukaryotic organisms[13]. 

 This paper proposes a novel feature extraction method, named moment descriptor 
(MD), which takes into account sequence-order information in protein sequence 
without incorporating physicochemical properties of amino acids. Then MD and 
multi-class SVMs are used to predict subcellular localizations of proteins. 

2   Method 

2.1   Feature Extraction 

Without loss of generality, we assume that there are N protein sequences in the 
dataset, let kL  be the length of the k th sequence kp , and iα  be the i th element of 20 

natural amino acids represented by English letters A, C, D, E, F, G, H, I, K, L, M, N, 
P, Q, R, S, T, V, W and Y respectively.  

Amino Acid Composition. According to amino acid composition, the protein 
sequence kp  can be characterized as a 20-D feature vector: 

1 20, , , , , 1, ,k k k
k iAAC c c c k N⎡ ⎤= =⎣ ⎦L L L  (1) 

where k i
i kc n L= is the normalized occurrence frequency of amino acid iα ，and in  

is the count of iα  appearing in sequence kp . 

However, it is not sufficient to characterize a specific protein sequence only based 
on kAAC  because the position of iα  in protein sequence is not considered. Suppose 

that we have two protein sequences denoted as 1p and 2p  with the lengths of 10 and 

20, respectively. Amino acid iα  is occupied at position 2 and 3 in 1p , and at position 1, 

6, 8 and 15 in 2p . In such case, the information of sequence-order may be needed 

because 1
ic  equals 2

ic exactly. 

Moment Descriptor. Considering the sequence order, we propose a new feature 
extraction method, called moment descriptor (MD). 

Firstly, instead of using above direct definition, we calculate k
ic  by introducing 

position indicator ,
k
i jx  as follows: 
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Obviously, kAAC  in formulation (1) is the sampled statistical mean (raw moment) 

of position indicator. Hence, we choose formulation (2) as the first MD of protein 
sequence. 

Secondly, considering the position of amino acid iα in sequence kp , we define a 

new feature for amino acid iα  

,
1

1 kL
k k
i i j

k j

m x j
L =

= ∑  (4) 

Thus, sequence kp can be characterized as a 20-D feature vector 

1 20, , , , , 1, ,k k k
k iAAM m m m k N⎡ ⎤= =⎣ ⎦L L L  (5) 

where k
im  represents mean of position of iα . kAAM  represents the sampled statistical 

mean of position of amino acids (AAM) in sequence kp . We choose it as the second 

MD. 
Here 1AAM is not equal to 2AAM in general. However, it is not sufficient just 

based on AAM to characterize a protein sequence. For example, there may exist two 
protein sequences 3p and 4p  with the same length of 10. Amino acid iα is occupied at 

position 8 and 10 in 3p , and at position 3, 6 and 9 in 4p . In such case, 3
im  equals 4

im  

exactly although the positions of amino acid iα in both sequences are different. 

It may be still not sufficient to characterize a protein sequence based on both AAC 
and AAM. Suppose there are two protein sequences 5p and 6p  with the same length 

of 10. Amino acid iα  is occupied at position 4 and 6 in 5p , and at position 3 and 7 

in 6p . It is unfortunate that 5
ic equals 6

ic , and 5
im  equals 6

im . Hence it is needed to 

extract further features from protein sequence. 

Thirdly, the sampled variance k
iv  of position of amino acid iα  in sequence kp  is 

considered: 

( )2

,
1

1 kL
k k k
i i j i

k j

v x j m
L =

= −∑   (6) 

Then, we can obtain a 20-D feature vector 

1 20, , , , , 1, ,k k k
k iAAV v v v k N⎡ ⎤= =⎣ ⎦L L L  (7) 
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where k
iv  represents the second-order central moment of position of amino acid iα  in 

sequence kp . kAAV  represents the sampled statistical variance of position of amino 

acids (AAV) in sequence. We choose AAV as the third MD of protein sequence. 
Eventually, we construct a combined 60-D feature vector for sequence kp  by 

combining above three moment descriptors 

[ ], , , 1, ,
T

k k k kX AAC AAM AAV k N= = L  (8) 

2.2   Multi-class SVM 

Several classification algorithms have already been applied to protein subcellular 
localization, such as least Mahalanobis distance [14], neural network[15], covariant 
discriminant algorithm [16], Markov chain [17], fuzzy k-NN [18] and support vector 
machine [9,12,19,20].  

Support vector machine (SVM) [21] has been proved to be a fruitful learning 
machine, especially for classification. Since it was originally designed for binary 
classification, it is not a straightforward issue to extend binary SVM to multi-class 
problem. Constructing Ω-class SVMs ( 2Ω  ) is an on-going research issue [22].  

Basically, there are two kinds of approaches for multi-class SVM. One directly 
processes all data in one optimization formulation [23]. The other decomposes multi-
class into a series of binary SVMs, including “One-Versus-Rest” (OVR) [21], “One-
Versus-One” (OVO) [24], and DAGSVM [25]. Although there are also several 
sophisticated approaches for multi-class SVM, extensive experiments have shown 
that OVR, OVO and DAGSVM are practical [26,27]. 

OVR is probably the earliest approach for multi-class SVM. For Ω-class problem, 
it constructs Ω binary SVMs. The ith SVM is trained with all the positive samples 
from the ith class and all negative samples from the other classes. Given a testing 
sample to classify, all Ω SVMs are evaluated, and the testing sample is labeled the 
class with the largest value of the decision functions. 

For a Ω-class problem, OVO constructs ( 1) 2Ω Ω −  binary SVMs. During the 

evaluation, each of the ( 1) 2Ω Ω −  SVMs casts one vote for its most favored class, 

and finally the class with the most votes wins [24]. 
Compared with OVO, DAGSVM has the same training process but the different 

evaluation. During the evaluation, DAGSVM uses a directed acyclic graph (DAG) [25] 
architecture to make a decision. The idea of DAG is easily implemented. Let 

1,2, ,Τ = ΩL  be a list of class labels. When a testing sample is given, DAG first 
evaluates this sample with the binary SVM, which corresponds to the first and the last 
elements in list T. If the classifier prefers one of the two classes, then the other one 
will be eliminated from the list. After each testing, a class label will be excluded. As a 
result, through 1Ω −  binary SVM evaluations, the last label remaining in the list will 
be the answer. 

Here, SVM software we used is LIBSVM[26] which can be freely downloaded from 
http://www.csie.ntu.edu.tw/~cjlin/libsvm/ for academic research. We can implement 
above three methods just through modifying LIBSVM. 
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2.3   Test and Assessment 

As mentioned in most papers, the prediction quality is often assessed by the 
resubstitution, jackknife, and independent dataset tests [5], respectively. 

Resubstitution test is used to evaluate the self-consistency of prediction system. 
During the process of resubstitution test, the subcellular location of each protein in a 
dataset is predicted by the parameters derived from the same training dataset. 
Jackknife test is always regarded as the most objective and effective one. During the 
process of jackknife test, each protein in training dataset is singled out in turn as a 
testing sample, and the remaining proteins are used as training samples to evaluate the 
testing sample’s class. The quality of independent test indicates the ability of 
generalization of predictive system in practical application. During the process of 
independent test, proteins in training dataset are used as training samples and proteins 
in the independent testing dataset are used as testing samples. 

To assess the quality of three tests, the total prediction accuracy and prediction 
accuracy of each location can be respectively defined as [18,19,20]: 

1

1
( )Total accuracy p

N ω
ω

Ω

=
= ∑  (9) 

( )
( )

( )

p
accuracy

obs

ωω
ω

=  (10) 

where N is the total number of sequences, Ω is the class number, obs(ω) is the number 
of sequences observed in location ω and p(ω) is the number of correctly predicted 
sequences in location ω. 

3   Experiments and Discussion 

Here we train the dataset only with the RBF kernel in all the following experiments. 
In addition, in order to avoid the domination of the features in greater numeric ranges 
over those in smaller numeric ranges and numerical difficulties during the calculation, 
we scale all training data to be in [0,1] and adjust all testing data with the same 
transformation accordingly. 

3.1   Dataset 

The training dataset and independent dataset [5] are used to validate the current 
method. The training dataset consists of 2191 protein sequences, of which 145 are 
chloroplast, 571 cytoplasm, 34 cytoskeleton, 49 endoplasmic reticulum, 224 
extracellular, 25 Golgi apparatus, 37 lysosome, 84 mitochondrial, 272 nuclear, 27 
peroxisomal, 699 plasma membrane and 24 vacuoles. The independent dataset 
consists of 2494 protein sequences, of which 112 are chloroplast proteins, 761 
cytoplasm, 19 cytoskeleton, 106 endoplasmic reticulum, 95 extracellular, 4 Golgi 
apparatus, 31 lysosome, 163 mitochondria, 418 nucleus proteins, 23 peroxisomal, and 
762 plasma membrane. 
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3.2   Results of Prediction 

In this section, the approach for multi-class SVM is OVO, which is implemented 
directly by LIBSVM without any changes.  

Firstly, in order to show the improvement of position of amino acid is statistically 
significant, we measure the performance of AAC, AAM and MD in 10-fold cross 
validation and present mean and standard deviation of prediction accuracies in table 1. 

Table 1. Mean and standard deviation of prediction accuracies (%) obtained with OVO in 10-
fold cross validation 

Method Mean Standard deviation 
AAC 79.78 3.341 
AAM 80.14 2.235 
MD 83.47 2.698 

As shown in Table 1, AAM and MD do improve the classification results with 
more mean and less standard deviation of prediction accuracy. Maybe, positional bias 
of amino acid contains more classification information than its compositional bias in 
protein subcellular localizations. The further exploration is still open. 

Then, we apply MD to Chou's dataset and list the prediction accuracies of 
subcellular localization in Table 2. 

As shown in Table 2, the total accuracy in resubstitution, jackknife and 
independent tests, reaches 99.2%, 79.9% and 85.8% respectively. It seems that 
classifier suffers from overfitting since the accuracies of resubstitution test are much 
higher than those on the independent dataset. However, by varying the SVM trade-off 
parameter from 2-3 to 210, we find that the classifier has no overfitting as a matter of 
fact in our experiments. 

Table 2. Prediction accuracies(%) obtained with OVO in resubstitution, jackknife and 
independent tests, respectively 

Location Resubstitution Jackknife Independent 
Chloroplast 98.6 75.9 84.8 
Cytoplasm 99.7 87.9 88.8 
Cytoskeleton 100.0 44.1 94.7 
Endoplasmic reticulum 98.0 40.8 84.9 
Extracellular 98.2 67.0 80.0 
Golgi apparatus 100.0 32.0 50.0 
Lysosome 100.0 62.2 96.8 
Mitochondrial 96.4 36.9 22.1 
Nuclear 99.3 82.0 86.4 
Peroxisomal 96.3 25.9 65.2 
Plasma membrane 99.7 93.7 97.4 
Vacuoles 100.0 29.2 — 
Total accuracy 99.2 79.9 85.8 
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It is also worthy to note that several small groups including cytoskeleton, 
endoplasmic reticulum, Golgi apparatus, peroxisomal and vacuolar which have 34, 
49, 25, 27 and 24 training samples, obtain poor prediction accuracies 44.1%, 40.8%, 
32.0%, 25.9% and 29.2% in jackknife test, respectively. Better jackknife prediction 
may be achieved by increasing the amount of the training samples from updated 
databases. 

Moreover, mitochondrial gets poor predictions 36.9% and 22.1% in both jackknife 
and independent tests even the amount of its training samples is up to 84. Better 
prediction may be obtained by subdividing mitochondrial into inner membrane, outer 
membrane and matrix proteins. 

3.3   Comparison of Feature Extraction 

Here, in order to show the efficiency of MD, we compare it with other methods which 
make the direct extensions of AAC and extract feature merely from sequence without 
incorporating physicochemical properties. These methods include the traditional 
amino acid composition (AAC)[2], amino acid pair/dipeptide composition(AAP)[11,12], 
and two-segment amino acid composition(2SAAC)[13]. We apply above methods 
respectively to the same Chou's dataset and then compare MD with them. The 
approach for multi-class SVM is also OVO. The comparison results are presented in 
Table 3. 

Table 3. Total accuracies (%) obtained with other methods using OVO in resubstitution, 
jackknife and independent tests, respectively 

Method Dim Resubstitution Jackknife Independent 
AAC 20 92.6 77.2 81.7 
AAP 400 98.7 77.8 81.6 
2SAAC 40 92.4 79.6 83.8 
MD 60 99.2 79.9 85.8 

Compared with AAC, AAP and 2SAAC, MD can obtain about 6.6%, 0.5% and 
6.8% total accuracy improvements in resubstitution test, about 2.9%, 2.3% and 
0.5% total accuracy improvements in jackknife test, and about 3.9%, 4.0% and 
1.8% total accuracy improvements in independent test, respectively. These results 
show that MD is effective and helpful for prediction of protein subcellular 
localization because it can extract more sequence-order information. In the future, 
the further improvement will be achieved by incorporating physicochemical 
properties of amino acids. 

3.4   Comparison of Multi-class SVMs 

In order to make the comparison of three multi-class SVMs mentioned in section 2.2, 
we also train DAGSVM and OVR based on LIBSVM with some modification of its 
source codes and present the results in Table 4. 
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Table 4. Total accuracies (%) obtained with DAGSVM, OVR, and OVO in resubstitution, 
jackknife and independent tests, respectively 

Multi-Class SVM Resubstitution Jackknife Independent 
MD(DAG) 99.2 80.1 85.6 
MD(OVR) 99.2 79.8 85.4 
MD(OVO) 99.2 79.9 85.8 

We find that OVO, OVR and DAG have very similar classification accuracy and 
that the difference is mainly focused on the number of support vectors, the training 
time and the testing time. To validate further these differences, we have run training, 
resubstitution and independent tests for 10 times, and list the number of support 
vectors (SV), the maximum (Max) and the minimum (Min) time of them in Table 5, 
respectively. 

Table 5. The number of support vectors and the consumed time (second) of DAGSVM, OVR 
and OVO for training, resubstitution, and independent tests, respectively 

Training  Resubstitution Independent 
Method 

SV Max Min Max Min Max Min 
MD(DAG) 1603 2.766 2.765 2.000 2.000 2.219 2.203 
MD(OVR) 1686 6.812 6.578 2.328 2.312 2.547 2.422 
MD(OVO) 1603 2.765 2.657 2.110 2.094 2.438 2.312 

Each binary SVM of OVR is optimized on all the N training samples although it 
only requires Ω binary SVMs. OVO or DAG has ( 1) 2Ω Ω −  binary SVMs to train, 

however, the total training time of OVO or DAG is still less because individual binary 
SVM is trained just on the samples from only two classes. We find that OVR has 
heavy training computational burden with almost 2.5 times of training time of OVO 
or DAG in our experiments. 

Because the testing time is still dominated by the kernel evaluations, we find that 
the testing time is almost proportional to the number of support vectors. In addition, 
we also can see that DAG is really a little faster than OVO on the testing time and 
needs extra data structure to index the binary SVMs so that it occupies a little bit 
larger memory than OVO.  

As described above, except for the training time, other performance of DAG, OVO 
and OVR are very similar. Hence, we suggest that DAGSVM and OVO may be more 
suitable in practical use. 

4   Conclusion 

In this paper, we have developed a novel feature extraction method, called moment 
descriptor which extract feature merely from sequence without incorporating 
physicochemical properties, and have applied multi-class SVMs to protein subcellular 
localization for Chou’s protein dataset.  
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Compared with other methods based on various types of extensions of amino acid 
compositions, moment descriptor is shown more effectively in representing the 
protein sequence-order information. Moreover, except for the training time, three 
types of multi-class SVMs show similar performance. The results show that moment 
descriptor may be an effective method of feature extraction for protein localization 
prediction. 
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