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Abstract. Lattice reduction is a hard problem of interest to both public-
key cryptography and cryptanalysis. Despite its importance, extremely
few algorithms are known. The best algorithm known in high dimen-
sion is due to Schnorr, proposed in 1987 as a block generalization of the
famous LLL algorithm. This paper deals with Schnorr’s algorithm and
potential improvements. We prove that Schnorr’s algorithm outputs bet-
ter bases than what was previously known: namely, we decrease all former
bounds on Schnorr’s approximation factors to their (ln 2)-th power. On
the other hand, we also show that the output quality may have intrinsic
limitations, even if an improved reduction strategy was used for each
block, thereby strengthening recent results by Ajtai. This is done by
making a connection between Schnorr’s algorithm and a mathematical
constant introduced by Rankin more than 50 years ago as a generaliza-
tion of Hermite’s constant. Rankin’s constant leads us to introduce the
so-called smallest volume problem, a new lattice problem which general-
izes the shortest vector problem, and which has applications to blockwise
lattice reduction generalizing LLL and Schnorr’s algorithm, possibly im-
proving their output quality. Schnorr’s algorithm is actually based on
an approximation algorithm for the smallest volume problem in low di-
mension. We obtain a slight improvement over Schnorr’s algorithm by
presenting a cheaper approximation algorithm for the smallest volume
problem, which we call transference reduction.

1 Introduction

Lattices are discrete subgroups of R
m. A lattice L can be represented by a basis,

that is, a set of n ≤ m linearly independent vectors b1, . . . ,bn in R
m such

that L is equal to the set L(b1, . . . ,bn) = {
∑n

i=1 xibi, xi ∈ Z} of all integer
linear combinations of the bi’s. The integer n is the dimension of the lattice L.
A lattice has infinitely many bases (except in trivial dimension ≤ 1), but some are
more useful than others. The goal of lattice reduction is to find interesting lattice
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bases, such as bases consisting of reasonably short and almost orthogonal vectors:
it can intuitively be viewed as a vectorial generalisation of gcd computations.
Finding good reduced bases has proved invaluable in many fields of computer
science and mathematics (see [10,7]), particularly in cryptology (see [17,21]).

Lattice reduction is one of the few potentially hard problems currently in use
in public-key cryptography (see [21,17] for surveys on lattice-based cryptosys-
tems). But the problem is perhaps more well-known in cryptology for its major
applications in public-key cryptanalysis (see [21]): knapsack cryptosystems [22],
RSA in special settings [9,5,4], DSA signatures in special settings [12,19], etc.
Nevertheless, there are very few lattice reduction algorithms, and most of the
(recent) theoretical results focus on complexity aspects (see [17]).

The first lattice reduction algorithm in arbitrary dimension is due to Her-
mite [11], and is based on Lagrange’s two-dimensional algorithm [13] (often
wrongly attributed to Gauss). It was introduced to show the existence of Her-
mite’s constant (which guarantees the existence of short lattice vectors), as well
as proving the existence of lattice bases with bounded orthogonality defect. The
celebrated Lenstra-Lenstra-Lovász algorithm [14] (LLL) can be viewed as a re-
laxed variant of Hermite’s algorithm, in order to guarantee a polynomial-time
complexity. There are faster variants of LLL based on floating-point arithmetic
(see [20,25]), but none improves the output quality of LLL, which is tightly con-
nected to Hermite’s historical (exponential) upper bound on his constant. The
only (high-dimensional) polynomial-time reduction algorithm known with bet-
ter output quality than LLL is due to Schnorr [24]. From a theoretical point
of view, only one improvement to Schnorr’s block-reduction algorithm has been
found since [24]: by plugging the probabilistic AKS sieving algorithm [2], one may
increase the blocksize k = log n/ log log n to k = log n and keep polynomial-time
complexity, which leads to (slightly) better output quality. Curiously, in prac-
tice, one does not use Schnorr’s algorithm when LLL turns out to be insufficient:
rather, one applies the so-called BKZ variants [26,27] of Schnorr’s algorithm,
whose complexity is unknown.

Our Results. We focus on the best high-dimensional lattice reduction algo-
rithm known (Schnorr’s semi block-2k algorithm [24]) and potential improve-
ments. Despite its importance, Schnorr’s algorithm is not described in any
survey or textbook, perhaps due to the technicality of the subject. We first re-
visit Schnorr’s algorithm by rewriting it as a natural generalization of LLL. This
enables to analyze both the running time and the output quality of Schnorr’s
algorithm in much the same way as with LLL. It also leads us to reconsider a
certain constant βk introduced by Schnorr [24], which is tightly related to the
output quality of his semi block-2k algorithm. Roughly speaking, βk plays a role
similar to Hermite’s constant γ2 =

√
4/3 in LLL.

We improve the best upper bound known for βk: we show that essentially,
βk � 0.38 × k2 ln 2 ≈ 0.38 × k1.39, while the former upper bound [24] was 4k2.
This leads to better bounds on the output quality of Schnorr’s algorithm: for
instance, the approximation factor (6k)n/k given in [24] can be decreased to its
(ln 2)-th power (note that ln 2 ≈ 0.69). On the other hand, Ajtai [1] recently
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proved that there exists ε > 0 such that βk ≥ kε, but no explicit value of
ε was known. We establish the lower bound βk ≥ k/12, and our method is
completely different from Ajtai’s. Indeed, we use a connection between βk and a
mathematical constant introduced by Rankin [23] more than 50 years ago as a
generalization of Hermite’s constant.

Besides, Rankin’s constant is naturally related to a potential improvement of
Schnorr’s algorithm, which we call block-Rankin reduction, and which may lead
to better approximation factors. Roughly speaking, the new algorithm would still
follow the LLL framework like Schnorr’s algorithm, but instead of using Hermite-
Korkine-Zolotarev (HKZ) reduction of 2k-blocks, it would try to solve the so-
called smallest volume problem in 2k-blocks, which is a novel generalization of
the shortest vector problem. Here, Rankin’s constant plays a role similar to βk

in Schnorr’s algorithm. But our lower bound on βk actually follows from a lower
bound on Rankin’s constant, which suggests that there are intrinsic limitations
to the quality of block-Rankin reduction. However, while Ajtai presented in [1]
“worst cases”of Schnorr’s algorithm which essentially matched the bounds on the
output quality, this is an open question for block-Rankin reduction: perhaps the
algorithm may perform significantly better than what is proved, even in the worst
case. Finally, we make a preliminary study of the smallest volume problem. In
particular, we show that HKZ-reduction does not necessarily solve the problem,
which suggests that block-Rankin reduction might be stronger than Schnorr’s
semi block reduction. We also present an exact solution of the smallest volume
problem in dimension 4, as well as an approximation algorithm for the smallest
volume problem in dimension 2k, which we call transference reduction. Because
transference reduction is cheaper than the 2k-dimensional HKZ-reduction used
by Schnorr’s algorithm, we obtain a slight improvement over Schnorr’s algorithm:
for a similar cost, we can increase the blocksize and therefore obtain better
quality.

Road map. The paper is organized as follows. In Section 2, we provide neces-
sary background on lattice reduction. In Section 3, we revisit Schnorr’s algorithm
and explain its main ideas. Section 4 deals with Rankin’s constant and its con-
nection with Schnorr’s algorithm. In Section 5, we study the smallest volume
problem, discuss its application to the so-called block-Rankin reduction, and
present transference reduction.

2 Background

Let ‖.‖ and 〈., .〉 be the Euclidean norm and inner product of R
m. Vectors will

be written in bold, and we will use row-representation for matrices. For a matrix
M whose name is a capital letter, we will usually denote its coefficients by mi,j :
if the name is a Greek letter like μ, we will keep the same symbol for both the
matrix and its coefficients. The notation 	x
 denotes a closest integer to x.

2.1 Lattices

We refer to the survey [21] for a bibliography on lattices. In this paper, by the
term lattice, we mean a discrete subgroup of some R

m. The simplest lattice is
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Z
n, and for any linearly independent vectors b1, . . . ,bn, the set L(b1, . . . ,bn) =

{
∑n

i=1 mibi | mi ∈ Z} is a lattice. It turns out that in any lattice L, not just
Z

n, there must exist linearly independent vectors b1, . . . ,bn ∈ L such that
L = L(b1, . . . ,bn). Any such n-tuple of vectors b1, . . . ,bn is called a basis of
L: a lattice can be represented by a basis, that is, a row matrix. Two lattice
bases are related to one another by some matrix in GLn(Z). The dimension of
a lattice L is the dimension n of the linear span of L. The lattice is full-rank
if n is the dimension of the space. Let [v1, . . . ,vk] be vectors: we denote by
G(v1, . . . ,vk) their Gram matrix, that is, the k × k symmetric positive defi-
nite matrix (〈vi,vj〉)1≤i,j≤k formed by all the inner products. The volume of
[v1, . . . ,vk] is (det G(v1, . . . ,vk))1/2, which is zero if the vectors are linearly de-
pendent. The volume vol(L) (or determinant) of a lattice L is the volume of any
basis of L.

Direct sum. Let L1 and L2 be two lattices such that span(L1)∩span(L2) = {0}.
Then the set L1 ⊕ L2 defined as {u + v,u ∈ L1,v ∈ L2} is a lattice, whose
dimension is dim L1 + dimL2. It is the smallest lattice containing L1 and L2.

Pure Sublattice. A sublattice U of a lattice L is pure if there exists a sublattice
V of L such that L = U ⊕V . A set [u1, . . . ,uk] of independent lattice vectors of
L is primitive if and only if [u1, . . . ,uk] can be extended to a basis of L, which is
equivalent to L(u1, . . . ,uk) being a pure sublattice of L. For any sublattice U of
a lattice L, there exists a pure sublattice S of L such that span(S) = span(U),
in which case vol(U)/vol(S) = [S : U ] is an integer.

Successive minima. The successive minima of an n-dimensional lattice L are
the positive quantities λ1(L), . . . , λn(L) where λr(L) is the smallest radius of
a zero-centered ball containing r linearly independent vectors of L. The first
minimum is the norm of a shortest non-zero vector of L. Note that: λ1(L) ≤
· · · ≤ λn(L).

Hermite’s constant. The Hermite invariant of the lattice is defined by γ(L) =
(
λ1(L)/vol(L)

1
n

)2
. Hermite’s constant γn is the maximal value of γ(L) over all

n-dimensional lattices. Its exact value is known for 1 ≤ n ≤ 8 and n = 24,
and we have [16]: γn ≤ 1 + n

4 . Asymptotically, the best bounds known are:
n

2πe + log(πn)
2πe ≤ γn ≤ 1.744n

2πe (1 + ◦(1)) (see [8,18]). The lower bound follows from
the so-called Minkowski-Hlawka theorem.

Projected Lattice. Given a basis [b1, ...,bn] of L, let πi denote the orthogonal
projection over span(b1, ...,bi−1)⊥. Then πi(L) is an (n + 1 − i)-dimensional
lattice. These projections are stable by composition: if i > j, then πi ◦ πj =
πj ◦ πi = πi. Note that:

πi(L) = πi (L(bi, . . . ,bn)) = L (πi(bi), . . . , πi(bn))

2.2 Lattice Reduction

We will consider two quantities to measure the quality of a basis [b1, . . . ,bn]:
the first one is the usual approximation factor ‖b1‖ /λ1(L), and the second
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one is ‖b1‖ /vol(L)1/n, which we call the Hermite factor. The smaller these
quantities, the shorter the first basis vector. Lovász showed in [15] that any
algorithm achieving a Hermite factor ≤ q can be used to efficiently find a basis
with approximation factor ≤ q2 using n calls to the algorithm.

Orthogonalization. Given a basis B = [b1, ...,bn], there exists a unique
lower-triangular matrix μ with unit diagonal and an orthogonal family B∗ =
[b∗

1, . . . ,b
∗
n] such that B = μB∗. They can be computed using Gram-Schmidt

orthogonalization, and will be denoted the GSO of B. Note that vol(B) =∏n
i=1 ‖b∗

i ‖, which will often be used. It is well-known [14,17] that:

λ1(L(b1, ...,bn)) ≥ min
1≤i≤n

‖b∗
i ‖ (1)

Size-reduction. A basis [b1, . . . ,bn] is size-reduced with factor η ≥ 1/2 if its
GSO μ satisfies |μi,j | ≤ η for all 1 ≤ j < i. An individual vector bi is size-
reduced if |μi,j | ≤ η for all 1 ≤ j < i. Size reduction usually refers to η = 1/2,
and is typically achieved by successively size-reducing individual vectors. Size
reduction was introduced by Hermite.

LLL-reduction. A basis [b1, . . . ,bn] is LLL-reduced [14] with factor (δ, η) for
1/4 < δ ≤ 1 and 1/2 ≤ η <

√
δ if the basis is size-reduced with factor η and if its

GSO family satisfies the (n− 1) Lovász conditions (δ −μ2
i+1,i) ‖b∗

i ‖
2 ≤

∥
∥b∗

i+1

∥
∥2.

LLL-reduction usually refers to the factor (3/4, 1/2) because this was the choice
considered in the original LLL paper [14]. But the closer δ and η are respectively
to 1 and 1/2, the more reduced the basis. Reduction with a factor (1,1/2) is
closely related to a reduction notion introduced by Hermite [11].

When the reduction factor is close to (1,1/2), Lovász conditions and size-
reduction imply the Siegel conditions [6]: ‖b∗

i ‖
2 � 4

3

∥
∥b∗

i+1

∥
∥2for all 1 ≤ i ≤

n − 1, which limit the drop of the ‖b∗
i ‖. Here, the � symbol means that 4

3
is actually 4

3 + ε for some small ε > 0. In particular, the first vector satisfies
‖b1‖2 �

( 4
3

)i−1 ‖b∗
i ‖

2. Hence, the Hermite factor of an LLL-reduced basis is
bounded by:

‖b1‖ /vol(L)1/n �
(

4
3

)(n−1)/4

= (
√

γ2)
n−1

and (1) implies that the approximation factor is bounded by:

‖b1‖ /λ1(L) �
(

4
3

)(n−1)/2

= (γ2)n−1

The LLL algorithm is an iterative algorithm. At the start of each loop iter-
ation, the first i vectors are already LLL-reduced, then the (i + 1)-th vector is
size-reduced; if it does not satisfy Lovász condition, the consecutive vectors bi+1
and bi are swapped and the counter i is decremented, otherwise i is incremented.
The loop goes on until i eventually reaches the value n. If L is a full-rank in-
teger lattice of dimension n and B is an upper bound on the ‖bi‖’s, then the
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complexity of the LLL algorithm described (using integral Gram-Schmidt) with-
out fast integer arithmetic is O(n6 log3 B). The main reason is that the integer
∏n

k=1 ‖b∗
k‖2(n−k) decreases by at least the geometric factor δ at every swap: thus,

the number of swaps is O(n2 log B). The recent L2 algorithm [20] by Nguyen and
Stehlé achieves a factor of (δ, ν) arbitrarily close to (1,1/2) in faster polynomial
time: the complexity is O(n5(n + log B) log B) which is essentially O(n5 log2 B)
for large entries. This is the fastest LLL-type reduction algorithm known for
large entries.

HKZreduction. A basis [b1, . . . ,bn] of a lattice L is Hermite-Korkine-Zolotarev
(HKZ) reduced if it is size-reduced and if b∗

i is a shortest vector of the projected
lattice πi(L) for all 1 ≤ i ≤ n. In particular, the first basis vector is a shortest
vector of the lattice. Schnorr introduced in [24] a constant to globally measure
the drop of the ‖b∗

i ‖ of 2k-dimensional HKZ bases:

βk = max
L 2k-dim. lattice
H HKZ-basis of L

(
‖h∗

1‖ × · · · × ‖h∗
k‖

∥
∥h∗

k+1

∥
∥ × · · · × ‖h∗

2k‖

) 2
k

which we rewrite more geometrically as,

βk = max
L 2k-dim. lattice
H HKZ-basis of L

(
vol(h1, . . . ,hk)

vol(πk+1(hk+1), . . . , πk+1(h2k))

) 2
k

Schnorr proved that βk ≤ 4k2, and Ajtai recently proved in [1] that there exists
ε > 0 such that βk ≥ kε, but this is an existential lower bound: no explicit value
of ε is known. The value of βk is very important to bound the output quality
of Schnorr’s algorithm. One can achieve an n-dimensional HKZ reduction in
essentially the same time as finding the shortest vector of an n-dimensional
lattice: the deterministic algorithm [24] needs nO(n) polynomial operations, and
the probabilistic algorithm [2] needs 2O(n) polynomial operations.

3 Revisiting Schnorr’s Algorithm

In this section, we give an intuitive description of Schnorr’s semi block-2k-
reduction algorithm and show that it is very similar to LLL. The analogy between
LLL and Schnorr’s algorithm is summarized in Tables 2 and 1. We explain the
relationship between the constant βk and the quality of Schnorr reduced basis,
and we give the main ideas for its complexity analysis. Here, we assume that the
lattice dimension n is a multiple of k.

3.1 From LLL to Schnorr

In the LLL algorithm, vectors are considered two by two. At each loop iteration,
the 2-dimensional lattice Li = [πi(bi), πi(bi+1)], is partially reduced (through



118 N. Gama et al.

a swap) in order to decrease ‖b∗
i ‖ by at least some geometric factor. When all

Li are almost reduced, every ratio ‖b∗
i ‖ /

∥
∥b∗

i+1

∥
∥ is roughly less than γ2 =

√
4
3 ,

which is Siegel’s condition [6].
Schnorr’s semi block-2k-reduction is a polynomial-time block generalization

of the LLL algorithm, where the vectors b∗
i are “replaced” by k-dimensional

blocks Si = [πik−k+1(bik−k+1), . . . , πik−k+1(bik)] where 1 ≤ i ≤ n
k . The ana-

logue of the 2-dimensional Li in LLL are the 2k-dimensional large blocks Li =
[πik−k+1(bik−k+1), . . . , πik−k+1(bik+k)] where 1 ≤ i ≤ n

k − 1. The link between
the small blocks S1, . . . , Sn/k and the large blocks L1, . . . , Ln/k−1 is that Si con-
sists of the first k vectors of Li, while Si+1 is the projection of the last k vectors
of Li over span(Si)⊥. As a result, vol(Li) = vol(Si) × vol(Si+1).

Table 1. Analogy between LLL and Schnorr’s algorithm

LLL Schnorr’s semi block-2k reduction

1: while i ≤ n do 1: while i ≤ n/k do

2: Size-reduce bi

2a: HKZ-reduce Si, do the transfor-
. mations on the basis vectors,
. not just on the projections
2b: Size-reduce bik−k+1, . . . ,bik.

3: B′ ←copy of B
4: Try to decrease ‖b∗

i ‖ in B′:
4a: • by swap of (bi,bi+1)

3: B′ ←copy of B
4: Try to decrease vol(Si) in B′:
4a: •by swap of (bik,bik+1)
4b: •by HKZ reducing Li

5: if ‖b∗
i ‖ can lose a factor δ then

6: • perform the changes on B
7: • i ← max(i − 1, 1)
8: else i ← i + 1

5: if vol(Si) can lose a factor 1
(1+ε)

then
6: •perform the changes on B
7: • i ← max(i − 1, 1)
8: else i ← i + 1

9: endwhile 9: endwhile

Formally, a basis is semi-block-2k-reduced if the following three conditions
hold for some small ε > 0:

B is LLL-reduced (2)

For all 1 ≤ i ≤ n

k
, Si is HKZ-reduced (3)

For all 1 ≤ i <
n

k
,

(
vol(Si)

vol(Si+1)

)2

≤ (1 + ε)βk
k (4)

Like in LLL, the large block Li is reduced at each loop iteration in order to
decrease vol(Si) by a geometric factor 1/(1 + ε). Note that vol(Si)/vol(Si+1)
decreases by 1/(1 + ε)2. By definition of βk, this ratio can be made smaller than
β

k/2
k if Li is HKZ-reduced. For this reason, condition (4) is a block generalization

of Siegel’s condition which can be fulfilled by an HKZ-reduction of Li.
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Table 2. Comparison between LLL and Schnorr’s semi block-2k reduction

Algorithm LLL Schnorr’s Semi-2k reduction

Upper bound on‖b1‖ /vol(L)
1
n ≈

` 4
3

´ n
4 ≈ β

n
4k
k

Upper bound on‖b1‖ /λ1(L) ≈
` 4

3

´ n
2 ≈ β

n
2k
k

time Poly(size of basis) Poly(size of basis)*HKZ(2k)
small block Si πi(bi) = b∗

i [πik−k+1(bik−k+1),
. . . , πik−k+1(bik)]

large block Li [πi−1(bi−1), πi−1(bi)] [πik−2k+1(bik−2k+1),
. . . , πik−2k+1(bik)]

size of small block 1 k

size of large block 2 2k

Quantity to upper bound ‖b∗
i ‖ / ‖b∗

i+1‖ vol(Si)/vol(Si+1)
Method Reduce Li by size-reduction

and swap
HKZ reduce Li

Potential
Qn

i=1 ‖b
∗
i ‖2(n−i) Q n

k
i=1 vol(Si)2(

n
k
−i)

3.2 Complexity Analysis

Each time a large block Li is reduced, vol(Si) decreases by a geometric factor
1/(1+ ε) and since vol(Li) = vol(Si)× vol(Si+1) remains constant, vol(Si+1) in-
creases by the same factor. So the integer quantity

∏n/k
i=1 vol(Si)2(

n
k −i) decreases

by 1/(1 + ε)2. This can occur at most a polynomial number of times: hence the
complexity of the reduction is Poly(size of basis)*HKZ(2k) where HKZ(2k) is the
complexity of a 2k-dimensional HKZ reduction as seen in Section 2.2. In order
to ensure a polynomial complexity, it is necessary to keep k ≤ log n/ log log n or
k ≤ log n if we use the probabilistic AKS algorithm.

3.3 The Hermite Factor of Schnorr’s Reduction

The Hermite factor of a semi block-2k-reduced basis depends mostly on
Condition (4), which implies that vol(S1) � β

n
4
k vol(L)k/n because vol(L) =

∏n/k
i=1 vol(Si). If the first vector b1 is the shortest vector of S1 (which is im-

plied by (3)), then ‖b1‖ ≤ √
γkvol(S1)

1
k by definition of Hermite’s constant, and

therefore:

‖b1‖ /vol(L)1/n � √
γkβ

n
4k

k

3.4 The Approximation Factor of Schnorr’s Reduction

If only condition (4) holds, even if b1 is the shortest vector of S1, its norm can be
arbitrarily far from the first minimum of L. Indeed, consider for instance the 6-
dimensional lattice generated by Diag(1, 1, 1, 1, ε, 1

ε ), and a blocksize k = 3. Then
the first block S1 is the identity and is therefore HKZ-reduced. The volume of
the two blocks S1 and S2 is 1, thus condition (4) holds. But the norm of the first
vector (‖b1‖ = 1) is arbitrarily far from the shortest vector ‖b5‖ = ε.
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Compared to Hermite’s factor, we require additionally that every block Sk is
reduced (which follows from condition (2)) to bound the approximation factor.

Using (1), there exists an index p such that
∥
∥b∗

p

∥
∥ ≤ λ1(L). Let a = �(p − 1)/k
,

(so that the position p is inside the blockSa+1). Since B is LLL-reduced, vol(Sa) �
4
3

(3k−1)k
4 λ1(L)k, so the approximation factor is bounded by:

‖b1‖ /λ1(L) � √
γk

4
3

(3k−1)
4

β
n/k−2

2
k

Note however that Schnorr proved in [24] that Condition (3) allows to decrease
the term (4/3)(3k−1)/4 to O

(
k2+lnk

)
.

4 Rankin’s Constant and Schnorr’s Algorithm

4.1 Rankin’s Constant

If L is a n-dimensional lattice and 1 ≤ m ≤ n, the Rankin invariant γn,m(L) is
defined as (cf. [23]):

γn,m(L) = min
x1, ...,xm ∈ L

vol(x1, ...,xm) �= 0

(
vol(x1, ...,xm)

vol(L)m/n

)2

which can be rewritten as:

γn,m(L) = min
S sublattice of L

dimS = m

(
vol(S)

vol(L)m/n

)2

Rankin’s constant is the maximum γn,m = max γn,m(L) over all n-dimensional
lattices. Clearly, γn,n(L) = 1 and γn,1(L) = γn(L), so γn,n = 1 and γn,1 = γn.
Rankin’s constants satisfy the following three relations, which are proved in
[16,23]:

∀n ∈ N, γn,1 = γn (5)
∀n, m with m < n γn,m = γn,n−m (6)

∀r ∈ [m + 1, n − 1], γn,m ≤ γr,m(γn,r)m/r (7)

The only known values of Rankin’s constants are γ4,2 = 3
2 , which is reached for

the D4 lattice, and those corresponding to the nine Hermite constants known.
In the definition of γn,m(L), the minimum is taken over sets of m linearly in-
dependent vectors of L, but we may restrict the definition to primitive sets of
L or pure sublattices of L, since for any sublattice S of L, there exists a pure
sublattice S1 of L with span(S) = span(S1) and vol(S)/vol(S1) = [S : S1]. If
vol(S) is minimal, then [S : S1] = 1 so S = S1 is pure.
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4.2 Relation Between Rankin’s Constant and Schnorr’s Constant

Theorem 1. For all k ≥ 1, (γ2k,k)2/k ≤ βk.

Proof. Let B = [b1, . . . ,b2k] be a HKZ-reduced basis of a lattice L, and let
h(B) =

(
‖b∗

1‖
2 × · · · × ‖b∗

k‖2
)

/
(∥
∥b∗

k+1

∥
∥2 × · · · × ‖b∗

2k‖2
)
. By definition of βk,

h(B) ≤ βk
k . On the other hand, h(B) is also equal to

(
vol(b1, . . . ,bk)/vol(L)1/2

)4

and therefore: γ2
2k,k(L) ≤ h(B). Thus (γ2k,k(L))2/k ≤ βk, which completes the

proof. ��

4.3 Improving the Upper Bound on Schnorr’s Constant

The key result of this section is:

Theorem 2. For all k≥2, Schnorr’s constant βk satisfies: βk ≤
(
1 + k

2

)2 ln 2+ 1
k .

Asymptotically it satisfies βk ≤ 1
10k2 ln 2.

Without any change to Schnorr’s algorithm, we deduce a much better quality
for the output basis than with the former bound βk ≤ 4k2, because both the
exponent 2 ln 2 ≈ 1.386 is much lower than 2, and the coefficient 1/22 ln 2 is about
10 times lower than 4. The bounds on the approximation factor and Hermite’s
factor of Schnorr’s algorithm can be raised to the power ln 2 ≈ 0.69. The proof
uses an easy bound mentioned by Schnorr in [24]:

βk ≤
k−1∏

j=0

γ
2/(k+j)
k+j+1 (8)

Numerically, it can be verified that the product (8) is ≤ k1.1 for all k ≤ 100
(see Figure 2). The bound γj ≤ 1 + j

4 combined with an upper bound of the
total exponents prove Theorem 2 for all k (see Section A in the appendix).

Surprisingly, we do not know a better upper bound on (γ2k,k)2/k than that
of Theorem 2. The inequality (7) leads exactly to the same bound for Rankin’s
constant.

4.4 A Lower Bound on Rankin’s Constant

In [1], Ajtai showed that βk ≥ kε for small size of blocks and for some ε >
0, and presented worst cases for Schnorr’s algorithm, which implies that the
reduction power of semi block 2k-reduction is limited. The following result proves
an explicit lower bound on Rankin’s constant, which suggests (but does not
prove) that the approximation factor of any block-reduction algorithm (including
Schnorr’s semi block 2k-reduction) based on the LLL strategy is limited.

Theorem 3. Rankin’s constant satisfies (γ2k,k)
2
k ≥ k

12 for all k ≥ 1.

This lower bound also applies to Schnorr’s constant βk because of Theorem 1.
Theorem 3 is mainly based on the following lower bound for Rankin’s constant
proved in [28,3] as a generalization of Minkowski-Hlawka’s theorem:
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γn,m ≥
(

n

∏n
j=n−m+1 Z(j)
∏m

j=2 Z(j)

) 2
n

where Z(j) = ζ(j)Γ ( j
2 )/π

j
2 , Γ (x) =

∫ ∞
0 tx−1e−t · dt and ζ is Riemann’s zeta

function: ζ(j) =
∑∞

p=1 p−j . As an application, for k < 100, it can be verified
numerically that (γ2k,k)

2
k ≥ k

9 . More generally, we first bound lnZ(j), and we
compare it to an integral to get the expected lower bound. The full proof of
Theorem 3 is given in Section B of the Appendix.

5 Improving Schnorr’s Algorithm

The main subroutine in Schnorr’s algorithm tries to solve the following problem:
given a 2k-dimensional lattice L, find a basis [b1, . . . ,b2k] of L such that the two
k-dimensional blocks S1 = L(b1, . . . ,bk) and S2 = πk+1(L) minimize vol(S1),
because vol(S1)/vol(S2) = vol(S1)2/vol(L) where vol(L) does not change. In
Schnorr’s algorithm, the quality of the output basis (which was expressed as a
function of βk in Sections 3.3 and 3.4) essentially depends on the upper bound
that can be achieved on the ratio vol(S1)/vol(S2).

5.1 The Smallest Volume Problem

Rankin’s constant and Schnorr’s algorithm suggest the smallest volume prob-
lem: given a n-dimensional lattice L and an integer m such that 1 ≤ m ≤ n,
find an m-dimensional sublattice S of L such that vol(S) is minimal, that is,
vol(S)/vol(L)m/n =

√
γn,m(L).

If m = 1, the problem is simply the shortest vector problem (SVP). If m =
n−1, the problem is equivalent to the shortest vector problem in the dual lattice.
When (n, m) = (2k, k), we call this problem the half-volume problem. For any
m ≤ n, the minimality of the volume implies that any solution to this problem
is a pure sublattice of L, so one way to solve this problem is to find a basis
[b1, . . . ,bn] such that vol (L(b1, . . . ,bm)) is minimal.

We say that a basis of a n-dimensional lattice L is m-Rankin reduced if its
first m vectors solve the smallest volume problem. Note that this is not exactly a
basis reduction problem, as any notion of reduction of the basis of S is irrelevant.
The only thing that matters is to minimize the volume of S. If we apply the LLL
algorithm on a Rankin-reduced basis, the volume of the first m vectors can
never increase: this means that LLL swaps never involve the pair (m, m + 1),
and therefore the output basis is both LLL-reduced and Rankin-reduced. We
thus have proved the following lemma:

Lemma 1. Let L be a n-dimensional sublattice and 1 ≤ m ≤ n. There exists an
LLL-reduced basis of L which is m-Rankin-reduced.

Since the number of LLL reduced bases can be bounded independently of the
lattice (see [6] because LLL-reduction implies Siegel reduction), the smallest
volume problem can be solved by a gigantic exhaustive search (which is constant
in fixed dimension though).
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5.2 Block-Rankin Reduction

A basis is 2k-Block-Rankin reduced with factor δ ∈ [12 ; 1[ if it is LLL-reduced
with factor (1

2 , δ) and all the blocks Si and Li defined as in Section 3 satisfy:
vol(Si)/vol(Si+1) ≤ 1

δ γ2k,k(Li). Compared to Schnorr’s semi block-2k reduction,
this reduction notion enables to replace βk in the bounds of the approximation
factor and Hermite’s factor by γ

2/k
2k,k.

Assume that an algorithm to k-Rankin-reduce a 2k-dimensional basis is avail-
able. Then it is easy to see that Algorithm1, inspired from LLL and Schnorr’s
semi block-2k reduction, achieves block-Rankin reduction using a polynomial
number of calls to the Rankin subroutine.

Algorithm 1. 2k-block-Rankin reduction
Input: A basis B = [b1, . . . ,bn] of a lattice and δ ∈ [ 12 ; 1[
Output: A semi block 2k-reduced basis.
1: i ← 1;
2: while i ≤ n/k do
3: LLL-reduce Si with factor δ, do the transformations on the basis vectors, not

just on their projections
4: return B if i = n/k.
5: Btmp ← B; k-Rankin reduce Li in Btmp
6: if vol(Si) in Btmp ≤ δvol(Si) in B then
7: B ← Btmp; i ← i − 1
8: else
9: i ← i + 1

10: end if
11: end while

5.3 The 4-Dimensional Case

Here, we study Rankin-reduction for (n, m) = (4, 2). We first notice that HKZ
reduction does not necessarily solve the half-volume problem. Consider indeed
the following HKZ-reduced row basis:

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 + ε 0
0 0 1+ε

2

√
3

2 (1 + ε)

⎤

⎥
⎥
⎦

The volume ratio ‖b∗
1‖‖b∗

2‖
‖b∗

3‖‖b∗
4‖ is equal to

√
4
3 . If we swap the two 2-blocks, the

new basis is no longer HKZ-reduced, but the ratio decreases to almost
√

3
4 . This

example can easily be generalized to any even dimension, which gives an infinite
family of HKZ bases which do not reach the minimal half-volume.

However, the following lemma shows that Algorithm 2 can efficiently solve the
half-volume problem in dimension 4, given as input an HKZ basis:
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Lemma 2. Let (b1, ...,b4) be an HKZ-reduced basis of a lattice L. To simplify
notations, let λ1 and λ2 denote respectively λ1(L) and λ2(L). For all c1 and c2
in L such that vol(c1, c2) ≤ vol(b1,b2) and (c1, c2) is reduced: ‖c1‖ ≤ ‖c2‖ and
‖c∗1‖

2 ≤ 4
3 ‖c∗2‖

2.

1. Then c1 satisfies: λ2
1 ≤ ‖c1‖2 ≤ 4

3λ2
1.

2. If λ2 >
√

4
3λ1, then vol(c1, c2) = vol(b1,b2) given by HKZ reduction.

3. Otherwise c2 satisfies‖c2‖2 ≤ (4
3λ1)2.

Proof. Because c1 belongs to L, ‖c1‖ ≥ λ1. Since (b1, ...,b4) is an HKZ basis,
the first vector is a shortest vector: ‖b1‖ = λ1 and the second vector satisfies
‖b∗

2‖ ≤ λ2, so vol(b1,b2) ≤ λ1λ2. We also know that vol(c1, c2) = ‖c1‖ · ‖c2‖ ·
sin(c1, c2) ≥

√
3

2 ‖c1‖ · ‖c2‖ because [c1, c2] is reduced. Since we have chosen
‖c1‖ ≤ ‖c2‖, then ‖c2‖ ≥ λ2. Thus λ1λ2 ≥

√
3

2 ‖c1‖ · λ2, and ‖c1‖2 ≤ 4
3λ2

1. If

furthermore λ2 >
√

4
3λ1, then necessarily c1 = ±b1, then the HKZ reduction

implies the minimality of vol(b1,b2). If λ2 ≤
√

4
3λ1, then vol(c1, c2)2 = ‖c1‖2 ·

‖c∗2‖
2 ≤ (λ1λ2)2, so ‖c∗2‖

2 ≤ λ2
2 ≤ 4

3λ2
1. And we also have ‖c∗2‖

2 ≥ 3
4 ‖c∗1‖

2. ��

Algorithm 2. 4-dimensional Rankin-reduction
Input: An HKZ reduced basis [b1, . . . ,b4] of a 4-dim lattice
Output: A Rankin-reduced basis [c1, c2, c3, c4] minimizing vol(c1, c2)

1: if ‖b∗
2‖ >

√
4
3 ‖b1‖ then

2: return (b1,b2,b3,b4)
3: end if
4: (u,v) ← (b1,b2)

5: for each lattice vector c1 shorter than
√

4
3 ‖b1‖ do

6: find the shortest vector c2 in the lattice projected over c⊥
1 (We can limit the

enumeration to ‖c2‖ lower than vol(b1,b2)
‖c1‖ ).

7: if vol(c1, c2) < vol(u,v) then (u,v) ← (c1, c2)
8: end for
9: compute c3 and c4 a reduced basis of the lattice projected over (u,v)⊥

10: return (u,v, c3, c4)

Because the input basis is HKZ-reduced, it is easy to see that the number of
vectors c1 enumerated in Algorithm2 is bounded by a constant. It follows that
the cost of Algorithm2 is at most a constant times more expensive than a HKZ
reduction of a 4-dimensional lattice.

If we plug Algorithm2 into Algorithm1, we obtain a polynomial-time reduc-
tion algorithm whose provable quality is a bit better than Schnorr’s semi block-4
reduction: namely, the constant β2 ≤ γ

2/3
4 γ3 = 22/3 ≈ 1.587 in the approxima-

tion factor and the Hermite factor is replaced by the potentially smaller constant
γ4,2 = 3/2. On the other hand, both algorithms only apply exhaustive search in
dimension 4.
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5.4 Higher Blocksizes

The 4-dimensional case suggests two potential improvements over Schnorr’s semi
block 2k-algorithm:

– If the half-volume problem can be solved in roughly the same time (or less)
than a full 2k-HKZ reduction, then Algorithm1 would give potentially better
approximation factors at the same cost.

– If one can approximate the half-volume problem in much less time than a
full 2k-HKZ reduction, we may still obtain good approximation factors in
much less time than semi block 2k-reduction, by plugging the approximation
algorithm in place of Rankin reduction in Algorithm1.

However, we do not know how to solve the half-volume problem exactly in di-
mension higher than 4, without using a gigantic exhaustive search. Perhaps a
good approximation can be found in reasonable blocksize, by sampling short
(but not necessarily shortest) lattice vectors, and testing random combinations
of such vectors.

We now present an approximation algorithm for the half volume problem,
which we call transference reduction. Transference reduction achieves a volume
ratio lower than 1

95k2 in a 2k-dimensional lattice by making only O(k) calls to a
k-dimensional exhaustive search, which is thus cheaper than a full 2k-HKZ re-
duction. Note that 2k-HKZ reduction achieves a smaller volume ratio using a 2k-
dimensional exhaustive search. Let (b1, . . . ,b2k) be a basis of a 2k-dimensional
lattice. The idea of the algorithm is to perform exhaustive searches in the two
halves of the basis in order to find a pair of vectors which can be highly reduced.
The reduction of this pair of vectors happens in the middle of the basis so that
the first half-volume decreases.

As in the previous sections, we call S1 = L(b1, . . .bk) and S2 = L(πk+1(bk+1),
. . . , πk+1(b2k)). Using an exhaustive search, a shortest vector of S2 is brought on
the k + 1-th position in order to make

∥
∥b∗

k+1

∥
∥2 ≤ γkvol(S2)2/k. The algorithm

used to perform this exhaustive search in dimension k in a projected lattice is
classical. Then a second exhaustive search brings a vector of S1 maximizing ‖b∗

k‖
on the k-th position.

Lemma 3. Finding a basis (b1, . . . ,bk) of a k-dimensional lattice S maximizing
‖b∗

k‖ reduces to finding a shortest vector of the dual lattice S×.

Proof. The vector u = b∗
k/ ‖b∗

k‖2 is the last vector of the dual basis. Indeed,
〈u,bi〉 = 0 for i = 1..k−1 and 〈u,bk〉 = 1. If ‖b∗

k‖ is maximal, then u is minimal.
So a simple reduction is to find a shortest vector uk of the dual S×, extend it
into a basis U = (u1, . . . ,uk) of S× and return the dual U−t = (b1, . . . ,bk). ��

After maximizing ‖b∗
k‖, Hermite’s inequality in the reversed dual of S1 implies

that 1/ ‖b∗
k‖2 ≤ γk/vol(S1)2/k. At this point, the ratio (vol(S1)/vol(S2))

2/k

is lower than γ2
k ‖b∗

k‖2
/ ‖bk+1‖2. If the middle-vectors pair (πk(bk), πk(bk+1))

does not satisfy Lovász condition, then it is fully reduced and the algorithm
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S1

S2

(largest)
(shortest)

Primal reduction

Dual reduction

middle reduction

Fig. 1. Transference reduction

starts over from the beginning. The only step which can change the ratio vol(S1)/
vol(S2) is the middle-vectors reduction, in which case it drops by a geometric
factor. Hence the number of swaps in the middle is at most linear in the dimen-
sion and the size of the basis. In the end, the ratio (vol(S1)/vol(S2))

2/k is lower
than 4

3γ2
k (or 1

12k2).
The constant 4/3 in this ratio can be reduced to almost 1 by adding further re-

duction conditions. Let Ŝ1 = L(b1, . . . ,bk+1) and Ŝ2 = L(πk(bk), . . . , πk(b2k))
the widened blocks of S1, S2 and δ : 1

2 ≤ δ < 1 a relaxing parameter. After
minimizing

∥
∥b∗

k+1

∥
∥ in S2 and maximizing ‖b∗

k‖ in S1 the following steps are
performed: Using the third exhaustive search, a shortest vector of Ŝ2 is found.
Only if the squared size of this shortest vector is smaller than δ ‖b∗

k‖2 this vec-
tor is brought on the k-th position and the algorithm starts over with minimiz-
ing

∥
∥b∗

k+1

∥
∥ in S2 and maximizing ‖b∗

k‖ in S1. Otherwise the fourth exhaustive
search in the dual of Ŝ1 checks if

∥
∥b∗

k+1

∥
∥2 approximates the maximized solu-

tion by the factor δ. If this condition does not hold, bk+1 is replaced by the
maximized solution and the algorithm starts over from the beginning. Each of
these two reduction steps decrease vol(S1)2 by the factor δ, therefore the num-
ber of steps is still bounded by O(k). In case both conditions hold the algorithm
stops. For these new conditions we can again apply Hermite’s inequality result-
ing in δ · ‖b∗

k‖2 ≤ γk+1vol(Ŝ2)2/(k+1) and δ · 1/
∥
∥b∗

k+1

∥
∥2 ≤ γk+1/vol(Ŝ1)2/(k+1).

It follows:
(
vol(Ŝ1)/vol(Ŝ2)

)2/(k+1)
≤ γ2

k+1/δ2 ·
∥
∥b∗

k+1

∥
∥2

/ ‖b∗
k‖2

.

Because of vol(Ŝ1) = vol(S1)·
∥
∥b∗

k+1

∥
∥, vol(Ŝ2) = ‖b∗

k‖·vol(S2) this inequality can
be transformed to (vol(S1)/vol(S2))

2/k ≤ (γk+1
δ )2

k+1
k ·

∥
∥b∗

k+1

∥
∥2

/ ‖b∗
k‖2. Combin-

ing this with inequality (vol(S1)/vol(S2))
2/k ≤ γ2

k ‖b∗
k‖2

/
∥
∥b∗

k+1

∥
∥2 obtained af-

ter the first two exhaustive searches, the ratio (vol(S1)/vol(S2))
2/k is lower than

γk(γk+1/δ)(k+1)/k (or γ2
k(1 + ε) with small ε if δ is near by 1). Asymptotically,

Hermite’s constants satisfy γk ≤ 1.744k
2πe (1 + ◦(1)), so this extended transference

reduction provides a ratio (vol(S1)/vol(S2))
2/k lower than 1

95k2.
If we use transference reduction instead of Rankin reduction in Algorithm1,

we obtain a reduction algorithm making only (k + 1)-dimensional exhaustive
searches of a shortest vector, and providing an Hermite factor ‖b1‖ /vol(L)1/n �
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Table 3. Comparison between and Schnorr’s semi block-2k reduction and Transference
reduction. (Here, SVP(k + 1) denotes the cost of finding the shortest lattice vector in
dimension k + 1).

Algorithm Semi-2k reduction Transference reduction

Upper bound on‖b1‖ /vol(L)
1
n ≈ β

n
4k
k � kn ln 2/2k ≈ γ

n
2k
k � kn/2k

Upper bound on ‖b1‖ /λ1(L) ≈ β
n
2k
k � kn ln 2/k ≈ γ

n
k
k � kn/k

Cost Poly(size of basis)
*HKZ(2k)

Poly(size of basis)
*k*SVP(k + 1)

Reduction of large blocks HKZ-reduction Transference reduction

√
γkγ

n/2k
k and an approximation factor ‖b1‖ /λ1(L) � γ

− 3
2

k
4
3

(3k−1)
4 γ

n
k

k . These
factors are asymptotically not as good as in the semi block-2k reduction, but the
exhaustive searches of transference reduction are much cheaper and thus allow to
use a larger k. Interestingly the Hermite factor is essentially γ

n/2k
k , which means

that the resulting algorithm may roughly be viewed as an algorithmic version

of Mordell’s inequality [16]: γn ≤ γ
n−1
k−1
k . Similarly, LLL could be viewed as the

algorithmic version of Hermite’s inequality γn ≤ γn−1
2 , which is the particular

case k = 2 of Mordell’s inequality.
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A Proof of Theorem 2

The right-hand product (8) of Hermite’s constants can be bounded using the
absolute upper bound γj ≤ (1 + j)/4 by: βk

k ≤
∏k−1

j=0 (1 + k+j+1
4 )

2k
k+j .

βk
k ≤

(

1 +
k

2

)∑k−1
j=0

2
1+j/k

·
k−1∏

j=0

(
1 + k+j+1

4

1 + k
2

) k
k+j

.

The first sum can be compared with an integral:

1
k

k−1∑

j=0

2
1 + j/k

≤ 1
k

+ 2
∫ 1

0

1
1 + x

dx,

and the last product is always smaller than 1: more precisely, its asymptotical
equivalent is exp

(
−k(ln 2/2)2

)
≈ 0.887k. Hence we obtain the absolute upper

bound: βk
k ≤ (1 + k

2 )1+2k·ln 2 or βk ≤ (1 + k
2 )1/k+2 ln 2.

If we use the best asymptotical bound known for Hermite’s constant γj ≤
1.744n
2πe (1 + ◦(1)), we obtain using the same argument, the asymptotical upper

bound:

βk ≤ exp(−k(ln 2/2)2)
(

1.744k

πe

)1/k+2 ln 2

≤ 1
10

k2 ln 2.

 1
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This curve shows the numerical upper bound uk of ln
∏k−1

j=0 γ
2/(k+j)
k+j+1 / ln k, obtained by

using the exact values of Hermite’s constant γi for 1 ≤ i ≤ 8 and i = 24, and the bound
γi ≤ 1 + i

4 elsewhere. Thus uk ≤ 1.1 for 1 ≤ k ≤ 100.

Fig. 2. ”Exponents” of the upper-bound on βk

B Proof of Theorem 3

The Stirling equivalent of Γ satisfies 0 ≤ ln(Γ (x + 1)) − ln
(
(x

e )x
√

2πx
)

≤ K
x

where K < 0.0835 is a constant. Since the function k → k−j is decreasing for
j ≥ 2, we may compare its integral with ζ, and we deduce the following bound:

ζ(j) ≤ 1 +
1
2j

+
1

(j + 1)2j+1
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Combining these two relations, we obtain the following upper bound for Z(j):

ln(Z(j)) ≤ j

2
ln

j

2
− j

2
(ln π + 1) + ρ(j)

where ρ(j) =
(
1 − ln

(
j
2 − 1

)
+ 1

2 ln
(
2π

(
j
2 − 1

))
+ K

( j
2−1)

)
+

(
1
2j + 1

(j+1)2j+1

)
.

For j > 13, we have ρ(j) < 0 , therefore it can be removed from the upper
bound.

∀j ≥ 13, ln(Z(j)) ≤ j

2
ln

j

2
− j

2
(ln π + 1)

The lower bound is a consequence of Stirling’s formula and the relation 1 ≤ ζ(j).

∀j ≥ 13,

(
j

2
− 1

)

ln
(

j

2
− 1

)

− j

2
(ln(π) + 1) ≤ ln(Z(j)) ≤ j

2
ln

j

2
− j

2
(ln π + 1)

We now use the upper bound andan integral to bound the denominator
∏k

j=2 Z(j):

k∑

j=2

ln(Z(j)) ≤
13∑

j=2

ln(Z(j)) +
∫ k+1

14

(
t

2
ln

t

2
− t

2
(ln π + 1)

)

dt

≤ (k + 1)2

4

(

ln(k + 1) − ln π − 1
2

− ln 2
)

+ c

where c =
∑13

j=2 ln(Z(j)) − 225
4 (3 ln 2 − ln π − 1

2 − ln 2). And we apply the lower
bound on the numerator

∏n
j=n−m+1 Z(j):

2k∑

j=k+1

ln(Z(j)) ≥
∫ 2k

k

((
t

2
− 1

)

ln
(

t

2
− 1

)

− t

2
(ln(π) + 1)

)

dt

≥ k2
(

ln(k − 1) − 1
4

ln(k − 2) +
ln 2
4

− 9
8

− 3
4

ln π

)

+ r(k)

where r(k) = k ln(k − 2) − 2 ln(k − 1) − ln 2 + 1
2k + ln 2 − ln(k − 2) + ln(k − 1) is

equivalent to r(k) ∼ −k · ln k. Finally, we obtain a lower bound for γ2k,k:

ln γk
2k,k ≥ k2

2
ln(k) +

(
ln 2
2

− 1 − ln π

2

)

k2 + s(k)

where s(k) = r(k) − k2 (
ln( k−1

k
) + 1

4 ln( k−2
k

)
)
− ( 2k+1

4 )
(
ln(k + 1) − lnπ − 1

2 − ln 2
)
−

1
4k2 ln( k−1

k
) + (−49 ln 7 + 195

4 ln π − ln 2/4 + 585
8 −

∑13
j=2 ln(Z(j))). We can show that

this function is equivalent to − 3
2k ln k, and that for k > 100,

∣
∣s(k)/k2

∣
∣ ≤ 0.06. As

a final step, we multiply the result by 2/k2 and apply exponentiation to obtain
the bound (γ2k,k)

2
k ≥ k

12 for all k > 100. Note that we already had the bound
k
9 for k ≤ 100 using numerical computation of Z(j). Asymptotically, we have
obtained the following lower bound: (γ2k,k)

2
k ≥ 2k

πe2 .
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