
Scalable Secure Multiparty Computation

Ivan Damg̊ard1,� and Yuval Ishai2,��

1Aarhus University
ivan@daimi.au.dk

2Technion
yuvali@cs.technion.ac.il

Abstract. We present the first general protocol for secure multiparty
computation which is scalable, in the sense that the amortized work per
player does not grow, and in some natural settings even vanishes, with
the number of players. Our protocol is secure against an active adversary
which may adaptively corrupt up to some constant fraction of the players.
The protocol can be implemented in a constant number rounds assuming
the existence of a “computationally simple” pseudorandom generator, or
in a small non-constant number of rounds assuming an arbitrary pseudo-
random generator.

1 Introduction

We consider the complexity of general secure multiparty computation (MPC) [37,
23, 9, 12] involving a large number of players. This problem is motivated by real-
life applications that require a large-scale cooperation between many mutually
distrustful entities. Alternatively, one may wish to distribute a critical role of
a single “dealer” (distributing keys or other forms of correlated randomness)
among many untrusted players.

As another motivating example, consider the case where a small number of
players wish to securely perform some complex distributed computation on their
inputs. In this case, the players could directly interact with each other using
known methods from the MPC literature. However, all these methods have some
inherent weaknesses. The first type of methods (for MPC with honest majority)
will completely fail if a majority of the players become corrupted. Even if players
trust each others’ “honorable intentions”, they may still be subject to hacking
and other external attacks. Since attacking successfully a small number of players
is sufficient to corrupt a majority, one may need to invest heavily in physical
and other security measures to make this solution work. The second type of
methods (for MPC with no honest majority) cannot provide important security
features such as fairness or guaranteed output delivery [13]. Moreover, protocols
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of the latter type make use of expensive zero-knowledge proofs and public-key
primitives.

One could hope to avoid the weaknesses discussed above by distributing the
computation among a large number of players with diverse platforms and security
measures. The event that a substantial fraction, say 25%, of this large number of
players become corrupted may be considered much less likely than the adversary
breaking into a majority of the original small set of players.

For all of the application scenarios described above, one could in principle
employ any of a large variety of general MPC protocols from the literature.
However, a major drawback of all these protocols is that their efficiency does
not scale well with the number of players. There has been a long line of work
attempting to improve this state of affairs by reducing the communication com-
plexity of general MPC protocols [20, 21, 25, 24, 29, 15, 17, 26, 8]. Still, even
in the most efficient protocols to date [24, 26, 8], the amount of communication
involving each player grows linearly with the number of other players.

1.1 Our Results

In this work, we show that this is not an inherent state of affairs by presenting
the first scalable MPC protocol. In this protocol, the amortized work per player
does not grow, and in some cases even vanishes, with the number of players,
while still tolerating a constant fraction of maliciously corrupted players.

It is convenient to formulate our results in the clients-servers model of [14, 16].
This model refines the standard MPC model by separating between clients,
who provide inputs and receive outputs, and servers who perform the actual
computation. (Note that the same party can play both roles, as is the case in the
standard model of secure computation.) The main advantage of this refinement is
that it allows to decouple the number of “consumers” (clients) from the expected
“level of security” (which depends on the number of servers and the security
threshold). In all cases, we require security against a computationally-bounded
adversary that may (actively, adaptively) corrupt at most some constant fraction
of the servers and any strict subset of the clients.

Our main result comes in two flavors:

– In the standard MPC setting, where every player can hold an input and re-
ceive an output, the amount of work involving each player is Õ(|C|), where
|C| is the size of the circuit(s) being evaluated. Here the Õ(·) notation ignores
factors that depend polynomially on the security parameter k and polyloga-
rithmically on the number of players,1 as well as additive terms that depend
on the number of players and the size of the inputs, but not on |C| (see more
below). The security of this protocol can be based either on the existence of a

1 Since the security parameter needs to be (at least) polylogarithmic in the number
of players, the polylog(n) term can be viewed as being absorbed in the poly(k)
term. Also, the polylog(n) term only applies to the computation and not to the
communication.
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“computationally simple” pseudorandom generator (PRG)2 (with a constant
number of rounds) or on an arbitrary PRG (with poly(k) rounds).

– In the case where the number of clients is constant, as in the above motivating
example, the total amount of work of all clients and servers is Õ(|C|). Security
in this case is based on the existence of a computationally simple PRG.

The Õ(|C|) communication complexity of the latter protocol is essentially the
best one could hope for given the current state of the art in the area of secure
computation. Indeed, it is not known how to break this bound even in the case
of security against a single, semi-honest player, with the only exceptions being
protocols that apply to special classes of circuits (e.g., constant-depth circuits [4])
or protocols that involve an exponential amount of computation [6, 34]. Thus,
even in a much more liberal setting than the one addressed here, significantly
improving the Õ(|C|) bound would be considered a major breakthrough.

The main disadvantage of our protocol compared to most previous works along
this line is its non-optimal security threshold.3 However, in our scenario we view
the improved efficiency as being qualitatively more significant than the difference
between different “constant” levels of resilience. The latter is very important in
the case of computations involving few players. For instance, improving the re-
silience threshold from t < n/3 to t < n/2 enables three players to perform tasks
that otherwise could not be performed at all. This difference is less significant in
our scenario, where the number of players is large: in practice, it seems unlikely
that increasing the number of players would automatically allow an adversary
to corrupt more players. Therefore, the clients can compensate for the degraded
level of security by employing a larger number of servers. Using our protocol,
this can be done at a low extra cost.

A major advantage of our protocol over some previous related works (e.g., [15,
26]) is its provable adaptive security. Insisting on adaptive security is very signif-
icant when the number of players is large, since otherwise it would be possible
to fool the (non-adaptive) adversary by assigning the computation to a small,
randomly chosen, subset of the players. We note, however, that in contrast to
the above simple approach, it is not clear if the protocols of [15, 26] are actually
insecure in any “harmful” sense in the presence of an adaptive adversary.

On the Amortized Measure of Complexity. We stress again that our as-
ymptotic complexity measurements ignore additive terms that depend (polyno-
mially) on the number of players and the security parameter, but do not depend
on the size of the circuitry to be evaluated. Thus, the scalability of our proto-
col only holds in an amortized sense, i.e., when amortizing over (one or several)

2 Specifically, we assume the existence of a PRG in NC1 or similar complexity classes.
This is a mild assumption, which in particular is implied by virtually all standard
concrete intractability assumptions used in cryptography (see [1] for discussion).

3 We did not attempt to optimize the exact resilience of our protocol. In particular,
in some cases we give away resilience in order to simplify subprotocols and their
analysis. We note, however, that giving up on some resilience is inherent to our
technique.
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“large” circuits whose total size is much larger than the number of servers. The
latter scenario is very realistic even for one-time computations (as in the con-
texts of distributed data-mining on large databases, or distributed generation
of cryptographic keys), let alone when the computation is used to generate re-
sources for a life-time of future interactions. Similar conventions were used in
previous works along this line [25, 15, 24, 17, 26]. Similarly to previous works,
we also ignore the cost of broadcasting the inputs held by the input clients to the
n servers. This cost is inevitable in the general case (consider the functionality
which outputs to all players the concatenation of all inputs) and can be entirely
avoided in the case of a small number of clients. Moreover, in many applications
the inputs to the computation are either short or nonexistent (as in the case
of emulating a trusted dealer of correlated randomness). Thus, the amortized
complexity of our protocol is typically quite insensitive to whether a broadcast
channel is given,4 and in many natural scenarios reflects their actual cost.

1.2 Techniques

Our protocol employs a variety of previous tools and techniques, as well as new
ones. One source for improvement over previous works in the area is the use
of the “share-packing” technique of Franklin and Yung [21]. To employ this
technique in our context we need to combine it with an efficient procedure for
generating many packed random secrets that are guaranteed to satisfy some given
(possibly complex) replication pattern. The latter procedure extends previous
techniques of Hirt et al. [25, 24]. Another source for improvement is the use of
the “easy PRG” technique of Applebaum et al. [2], which in turn relies on Yao’s
garbled circuit technique [37] together with information-theoretic randomization
techniques [28]. These previous tools are described in Section 3.

At a very high level, our protocol proceeds roughly as follows. Each client
concatenates to its inputs a vector of replicated random bits, i.e., certain pairs
of these bits must be equal. The replication structure (that is, which pairs have to
be equal) is derived from the circuit C being evaluated. This random input vector
is of roughly the same size as C. The client then divides this string into blocks
of size Θ(n), applies to each block an efficient (constant-rate) Reed-Solomon
encoding, and sends to each server a single entry of the encoding of each block.
Now the servers engage in an efficient interactive testing procedure, verifying
that the encoded blocks distributed by each client are not far from being valid
encodings of vectors that are consistent with the structure of C. This procedure
may result in eliminating some of the blocks. Next, each server locally applies a
low-degree computation to its local information and sends the result back to the
clients. (This step does not depend on the structure of C.) Finally, the output
of the protocol is obtained by each client by first applying error correction of
Reed-Solomon codes and then applying a decoding procedure that essentially
mimics the computation of C. The intuition on how the previous tools are used
in the protocol will be explained towards the end of Section 3.
4 The constant rounds feature of our protocol can also be maintained (settling for

expected constant rounds) without the availability of broadcast [19, 31, 30].
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Related Work. In a concurrent and independent work, Hirt and Nielsen [27]
present a different MPC protocol whose (amortized) communication complexity
per player is linear in the circuit size and independent of the number of other
players. This work significantly differs from ours both in the features of the
protocol and in the underlying techniques. The main advantage of the protocol
from [27] is that it achieves an optimal security threshold (t < n/2). However,
unlike our protocol, it cannot be proved to be adaptively secure. Moreover, it
does not match the complexity of our protocol in the case of a constant number
of clients (as in a distributed implementation of two-party computation). Recall
that in the latter case, the total complexity of our protocol can be made linear
in the circuit size. The two works differ also in the underlying cryptographic
assumptions and primitives. The protocol of [27] employs a threshold homomor-
phic public-key encryption, whereas our protocol involves primitives from the
“private-key” world. Thus, the current work and [27] are quite complementary.

Organization. Following some preliminaries (Section 2), in Section 3 we de-
scribe previous tools and techniques on which our protocol relies. In Section 4
we describe a scalable MPC protocol under some setup assumptions, which are
eliminated in Section 5. For lack of space, some of the material was omitted from
this extended abstract and can be found in the full version.

2 Preliminaries

We consider a system consisting of several players, who interact in synchro-
nous rounds via authenticated secure point-to-point channels and a broadcast
medium. (The availability of broadcast is not a necessary assumption, and the
number of broadcasts employed by our protocols will be independent of the size
of the circuit being evaluated.)

Players can be designated three different roles: input clients who hold inputs,
output clients who receive outputs, and servers who may be involved in the
actual computation. This is just a generalization of the standard model, where
each player can play all three roles. We denote the number of servers by n. We will
sometimes refer to a server or a client as a “player” and denote server i by Pi. The
functionalities we wish to compute only receive inputs from input clients and only
provide outputs to output clients. For simplicity we will only explicitly consider
deterministic functionalities providing all output clients with the same output,
though an extension of our results to the general case is straightforward. (In
contrast, we will employ subprotocols that compute randomized functionalities
and provide servers and input clients with outputs as well.)

We assume by default an active, adaptive, rushing adversary corrupting at
most t servers, where t is bounded by some constant fraction of n that will
be either explicitly specified or understood from the context. The adversary
may also corrupt an arbitrary strict subset of the clients. We refer the reader
to, e.g., [10] for the standard definition of security in this model. Our protocol
heavily builds on previous work in the area of information-theoretic multiparty
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computation. We assume some familiarity of the reader with basic techniques in
this area, such as Shamir’s secret-sharing [36] and the “BGW protocol” [9].

We will use secret-sharing over a finite field K of characteristic 2, where
|K| = O(n). We let ω1, . . . , ωn denote n distinct elements of K, where ωi will be
an interpolation point assigned to server Pi.

The Linear Preprocessing Model. It will be convenient to first describe and
analyze our protocols in the linear preprocessing model, where we allow some
restricted trusted setup as described below. We later show how the protocols
can be converted to the plain model, where no setup assumptions are made.

In the linear preprocessing model, we assume a dealer who initially gives to
each player a set of values in K or in its subfield GF(2). The values distributed
by the dealer are restricted to be “linearly correlated”. Specifically, the dealer
picks a random codeword in a linear code defined over K or over GF(2), and then
hands to each player a subset of the coordinates in the codeword. It is public
which subsets are used, but the values themselves are private. This procedure
can be repeated multiple times, possibly using different linear codes.

Of course, we do not expect that a dealer as above would exist in practice.
This is only a convenient abstraction, that can be formalized as an ideal func-
tionality. Much of the effort in the paper is devoted to finding efficient methods
for amortizing the cost of multiple invocations of this functionality, for the types
of distributed linear codes employed by our high level protocol.

A linear correlation pattern as above can be generally specified via a distrib-
uted linear code L = (V, π1, . . . , πn), where V is a linear code (vector space) over
K or over GF(2), and πi is the set of coordinates assigned to Pi. For v ∈ V we
use the notation v(i) to denote vπi , the restriction of v to coordinates belonging
to player i, which naturally extends to v(H) for a set H ⊆ [n] of players.

3 Basic Tools

In this section we present two tools from previous work on which our protocol
relies: the share packing technique of Franklin and Yung [21] (Section 3.1) and
the “easy PRG” technique of Applebaum et al. [2] (Section 3.2).

3.1 Share Packing

Most MPC protocols from the literature distribute the inputs and the random
inputs via the use of Shamir’s secret-sharing scheme [36]. This scheme is ideal,
and in particular its share size is the best possible using any information-theoretic
threshold scheme. However, viewed as an encoding of the shared secret, the rate
achieved by Shamir’s scheme is still very low: the size of the encoding is n times
larger than the size of the secret. This suggests that better efficiency could be
obtained via the use of better encodings.

A first and major step in this direction was taken by Franklin and Yung [21].5

They observe that for the purpose of MPC, one does not necessarily have to rely
5 The approach of Franklin and Yung was recently generalized, in the case of a passive

adversary, to non-threshold adversary structures [38].
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on a strict threshold scheme in which every t players learn nothing about the
secret and every t+1 players can fully reconstruct it. Instead, the latter require-
ment can be relaxed: it is only required that the encoding be “sufficiently robust”.
(Such relaxed secret-sharing schemes are known as ramp schemes.) Specifically,
the following natural multi-secret generalization of Shamir’s scheme is used. Let
t be a security threshold and � ≥ 1 be a parameter specifying a number of secrets
to be jointly shared between the players. Assume that the field K has more than
� + n elements, and associate with each secret index 1 ≤ i ≤ � a distinct field
element μi ∈ K, different from all elements ωj assigned to players. A block of �
secrets (s1, . . . , s�) ∈ K� is distributed as follows.

Procedure ShareBlock(K, �, t, (s1, . . . , s�)):

– Pick a random polynomial p of degree (at most) T = t+�−1 over K, subject
to the constraints p(μi) = si, 1 ≤ i ≤ �.

– Send to each player Pj the share p(ωj).

It is easy to verify that every t players learn nothing about the secret block
s = (s1, . . . , s�) from the shares they receive in ShareBlock. Moreover, this type
of secret-sharing supports the homomorphic properties required by MPC proto-
cols. Indeed, suppose that two blocks of secrets s, s′ have been distributed using
polynomials p, p′, respectively. Then, by locally adding their shares the players
hold points on the degree-T polynomial p + p′ whose value at point μi is si + s′i.
Thus, two shared blocks can be locally added. Similarly, by locally multiplying
their shares the players hold points on the degree-2T polynomial p · p′ whose
value at point μi is si ·s′i. Given these properties, it was suggested in [21] to gen-
eralize the standard MPC protocols by applying them to packed shares instead
of standard shares. This allows to simultaneously perform distributed addition
and multiplication on blocks of � packed secrets, thereby evaluating a function f
on a batch of � (independent) inputs. The new protocol requires O(�) more play-
ers than the original one, to compensate for the higher degree of the polynomials
used for sharing the secrets.

From here on, we will take � to be some constant fraction of n, and apply
the share packing technique to protocols that tolerate a constant fraction of
corrupted players. In this setting of the parameters, the resulting protocol uses
Ω(n) times less communication than � repetitions of the original protocol, and
still tolerates a (smaller) constant fraction of corrupted players.

The problem encountered by [21] when trying to go beyond multiple evalu-
ations of the same function is that “splitting” a vector of packed secrets is an
expensive operation. Thus, the above savings could not be directly translated to
the case of evaluating a complex function on a single input. We explain below
how one can get around this problem using the garbled circuit technique, once
we have explained a second source of savings.

3.2 The “Easy PRG” Technique

All variants of our protocol make use of a pseudorandom generator (PRG). The
main variant of the protocol further requires an “easy PRG”, namely a PRG



508 I. Damg̊ard and Y. Ishai

computable in NC1 or similar complexity classes. (Here by PRG we refer to
any nontrivial PRG that extends its seed by just a single bit.) Such a PRG is
implied by most standard cryptographic intractability assumptions such as those
related to factoring, discrete logarithms, and lattice problems (see [1]). Efficient
constructions of PRGs with a low algebraic degree that expand their seed by a
constant factor can make our protocol quite efficient in practice. Candidates for
such PRGs can be found in [32, 3].

Our protocol will use the PRG in order to reduce the functionality f we
wish to evaluate to a low-degree randomized functionality f̂ . (Here and in the
following, the degree of a randomized functionality is its degree over GF(2),
counting both inputs and random inputs towards the degree.) More precisely,
we would like to obtain a low-degree randomized functionality f̂(x, r) with the
following properties: (1) given the output of f̂(x, r) it is possible to efficiently
decode f(x); and (2) given the output f(x) alone it is possible to efficiently
simulate the output distribution of f̂(x, r) induced by a uniform choice of r, up
to computational indistinguishability. The above properties of f̂ allow to obtain
a non-interactive secure reduction from f to f̂ : to evaluate f the players first
invoke f̂ , and then apply the efficient decoder (from property (1) above) to
recover the output of f .

The question of securely reducing general functionalities to low-degree func-
tionalities was initially studied in [28] in an information-theoretic setting and was
recently studied in a computational setting in [2]. The idea of [2] is to combine
the “computational” circuit garbling technique of Yao [37] with “information-
theoretic” randomization techniques of [28, 1]. The former reduces the evaluation
of a circuit C to an evaluation of a degree-3 randomized functionality C̃ having
an oracle access to a PRG; the latter then uses the easiness of the PRG for
reducing C̃ to a degree-3 randomized functionality Ĉ which does not make use
of a PRG oracle. We now describe the high-level details of these reductions that
are useful for our purposes.

Computational Reduction. Yao’s technique (e.g., using its variants described
in [35] or [2]) reduces the functionality C(x) defined by a circuit C to a random-
ized functionality C̃(x, r̃) having the following structure. The random input r̃
includes O(|C|) wire keys sw,b ∈ {0, 1}k (where w ranges over the wires and
b ∈ {0, 1}), as well as wire masks λw ∈ {0, 1}. The functions computing the
output bits of C̃ can be divided into three classes:

I. For each input bit of C, we have a function taking the input bit xi and
corresponding wire keys si,0, si,1 and outputting the key si,xi . Overall, we
have |x| functions of type I, each with O(k) input bits and O(k) output bits,
where the outputs can be viewed as degree-2 polynomials in the inputs.

II. For each NAND gate of C, with input wires α, β and output wire γ, we
have a function mapping the 6 wire keys sα,b, sβ,b, sγ,b and the 3 wire masks
λα, λβ , λγ to O(k) outputs. Each of these outputs is a degree-3 polynomial
acting on the O(k) input bits mentioned above as well as the outputs of the
PRG applied to the wire keys. (The PRG is applied here to expand the wire
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keys and use the result to encrypt other keys and wire masks.6) Overall, we
have |C| functions of type II, each with O(k) input bits and O(k) output
bits, where the outputs can be viewed as degree-3 polynomials in the inputs
given an oracle to a PRG.

III. For each output wire w of C, we have a function taking a wire mask λw and
outputting the same value.

The crucial feature of the functionality C̃ is that it consists of |C| parallel copies
of few types of degree-3 functionalities, each having a short input and output.
The inputs to these functionalities have to be replicated in a way that reflects
the structure of the circuit C. Note, however, that C̃ makes use of a PRG oracle,
which we would like to eliminate. This is done via the following information-
theoretic reduction.

Information-Theoretic Reduction. Using information-theoretic randomiza-
tion techniques of [28, 1], it is possible to reduce the randomized functionality
C̃(x, r̃) defined above to a similar randomized functionality Ĉ(x, r̂) whose out-
puts are degree-3 polynomials in x, r̂. This reduction relies on the underlying
PRG being computationally easy. The functionality Ĉ has a similar high level
structure to that of C̃ described above, except that the random input r̂ of Ĉ is
longer and includes poly(k) additional bits for every gate. Moreover, functions
of type II now have poly(k) many inputs and outputs instead of k. Again, the in-
puts to all of the O(|C|) functions are a suitable replication of the functionality’s
inputs x, r̂, where the replication pattern depends on the structure of C.

We summarize the above with the following lemma:

Lemma 1. [2] Suppose an “easy PRG” (e.g., a PRG in NC1) exists. Then,
the secure computation of an arbitrary circuit C(x) can be reduced to the secure
computation of a degree-3 randomized functionality Ĉ(x, r̂), where Ĉ outputs a
concatenation of |C| functions of types I, II, and III as above. This reduction is
secure against an active, adaptive adversary corrupting any set of players. It is
a non-interactive reduction, in the sense that computing C involves only a single
invocation to Ĉ and local computation, without further communication.

We are now ready to explain at a high level how the tools described above can
be combined. Intuitively, Yao’s garbled circuit technique transforms each gate
in the circuit C to a table of encrypted values, such that with appropriately
encrypted inputs, one can evaluate C on these inputs while learning only the
intended result. The lemma above essentially says that the encrypted circuit can
be created by evaluating (securely and in parallel) |C| degree-3 functions, namely
the functions of type II above. Moreover, these functions are all of the same form
because we may assume that all gates are NAND-gates, and the original garbling
procedure treats every gate in the same way.

Now recall that evaluating many instances of the same function is exactly what
Franklin and Yung’s share packing technique allows us to do efficiently. There is
6 Here we assume that the PRG has a sufficiently high stretch. This assumption can

be eliminated with an O(k) multiplicative overhead to the total complexity; see [2].
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one technical difficulty that needs to be overcome, however: the random inputs
for the instances of the function have to be correlated (in fact, replicated) in a
way that reflects the structure of C. Thus, in the plain malicious model (without
preprocessing) we will need to devise a protocol for efficiently enforcing such
complex correlations. This problem will be addressed in Section 5.

4 Scalable MPC in the Linear Preprocessing Model

In this section we show how the previous tools can be combined to obtain scalable
MPC protocols in the linear preprocessing model. In fact, in this model we can
get the overall complexity to be Õ(|C|), assuming a constant number of output
clients7 and regardless of the number of input clients. For simplicity, from here
on we will mostly address the communication complexity. A treatment of the
computational complexity (along with relevant optimizations) appears in the full
version. We also assume for simplicity that the functionality outputs the same
value C(x) to all output clients. Our main result in this setting is captured by
the following theorem.

Theorem 1 (Scalable MPC in the linear preprocessing model). Suppose
an easy PRG exists. Then, in the linear preprocessing model, there is a general
two-round MPC protocol tolerating t = Ω(n) malicious servers, in which the
communication complexity for computing a circuit C involves O(|C| · poly(k))
bits sent to each output client, each input client must broadcast its (masked)
inputs to the n servers, and there is no communication between the servers.

Proof sketch: Let � = Θ(n) be the share packing parameter, as described in
Section 3.1. The high level idea is to evaluate Ĉ(x, r) on a packed representation
of its inputs and random inputs produced using ShareBlock. That is, we would
like to evaluate � copies of each type of output (I, II, or III) in parallel using the
approach of [21]. To set up such an evaluation, we partition the (at most |C|)
functions of each type into blocks of size �. (For simplicity, assume wlog that the
number of functions of each type is an exact multiple of �, and so is the number
of input bits held by each input client.) To evaluate � instances of each function
in parallel we replace each of the poly(k) input bits on which it depends by a
block of � bits, one from each instance. (That is, block i contains the i-th input
bit from each instance.) We assume that the input bits xi are all packed into the
first |x|/� blocks, referred to as input blocks, and that the o wire masks λw of
the output wires are packed into the last o/� blocks, referred to as output blocks.
(We stress that in order to secret-share the bits belonging to a single block B,
we form a block B′ of � elements in K where the i-th element equals the i-th bit
in B, and secret-share B′ using the procedure ShareBlock from Section 3.1; this
should not be confused with packing several bits into one element of K.)
7 This assumption can also be dispensed with by letting a single output client receive

the (encrypted and authenticated) outputs of all clients, and then send to every other
output client its share of the output. However, the resulting protocol only satisfies
a relaxed notion of security, allowing the adversary to abort the computation.
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In addition to the input and output blocks, we have O(|C| · poly(k)/�) blocks
containing bits of the random input r̂, suitably replicated for allowing the parallel
evaluation of the above 3 types of functions. A bit more precisely, this replicated
assignment of random bits into blocks is formed as follows. First, the output
bits of Ĉ are partitioned into groups of size �, where the outputs in each group
are computed by applying the same function g on some set of k′ = poly(k) bits
of r̂. (The function g is the same for each of the � outputs in a group, but the
sets of k′ input bits may be different; note that since Ĉ employs only poly(k)
distinct functions g, we can fit all outputs of Ĉ into O(|C| · poly(k)/�) groups.)
The relevant bits of r̂ are then placed into k′ blocks so that the i-th output
from the group is obtained by applying g to the i-th input bit from each block.
Overall, each bit of r̂ is placed into as many slots as the number of (type I, II,
or III) functions in which it is involved. Note that the replication pattern of the
bits of r̂ depends on the circuit topology via the functions of type II.

Let m = O(|C| · poly(k)/�) denote the total number of blocks. To represent
the replication requirements induced by the circuit structure it is convenient to
view the m� elements of the blocks as being colored according to their partition
classes. That is, we have a coloring function φC : [m] × [�] → [�m] such that
φC(i, j) = φC(i′, j′) iff entry j of block i should be identical to entry j′ of block
i′ (otherwise they are assumed to be independent). The entries of the input
blocks will all be colored by unique colors (since each input is used only by a
single function of type I), but all other entries (including those of the output
wires) will be replicated.

We are now ready to describe the scalable protocol in the linear preprocessing
model. We assume that the field K is of characteristic 2, and is of minimal size
subject to |K| > n (the requirement |K| > n is imposed by ShareBlock). Let
� = Θ(n) and T = t + � − 1. To enable non-interactive computation of degree-3
polynomials on blocks of � packed secrets, it suffices to use n > 2T players in
the semi-honest case and n > 5T players in the malicious case (as required for
evaluating degree-3 polynomials with minimal interaction, cf. [16], Section 2.2).
The protocol proceeds as follows.

Protocol 1. Scalable MPC protocol in linear preprocessing model:

1. Setup. Using linear preprocessing, the players obtain packed shares of repli-
cated random binary secrets, where the replication pattern is specified by φC .
Moreover, each input client obtains the (random) secrets belonging to the
blocks of inputs it owns. Finally, the players obtain packed shares of O(m)
independent 0-blocks, namely blocks whose � secrets (s0, . . . , s�−1) are all set
to 0. These 0-blocks are secret-shared using polynomials of degree 3T and
will be used in Round 3 to support secure multiplication.

Note that each of the above distribution patterns can be expressed as a ran-
dom codeword in a distributed linear code over GF(2), and thus can be im-
plemented within the linear preprocessing framework. (The distributed codes
used above are only linear over GF(2) and not over the extension field K,
since the random secrets are restricted to take 0/1 values.)
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2. Round 1. Each input client broadcasts to the servers a correction vector of
length � for each input block it owns, namely the exclusive-or of this block
with a corresponding block of random secrets obtained during setup.

3. Round 2. First, each server locally corrects its share of each input block
according to the corrections broadcasted in Round 1. For instance, if the
correction for the first block is c ∈ {0, 1}�, server Pj finds the (unique)
polynomial p of degree T such that p(μi) = ci for 1 ≤ i ≤ � and p(ωj′) = 0
for 1 ≤ j′ ≤ t, and adds p(ωj) to its share of the first block as received during
setup. Following this stage, all inputs to Ĉ (including actual inputs x and
random inputs r̂) are shared between the servers.

Now the servers locally compute random shares of the outputs of Ĉ and
send them to the output clients. This local computation is done by sim-
ply evaluating the corresponding degree-3 polynomials on the local (packed)
shares and adding the (packed) shares of the 0-blocks. (Note that the careful
structuring of the blocks, defined by the replication pattern φC , ensures that
the computation applied to each set of k′ = poly(k) blocks is the same for
each position i, 1 ≤ i ≤ �, within the blocks.)

4. Output. Each output client reconstructs the outputs of Ĉ from the shares it
received, using error-correction of Reed-Solomon codes to recover from pos-
sible errors caused by malicious servers. It then applies the efficient decoding
procedure of Ĉ to recover the output of C.

The security of Protocol 1 follows by combining (1) the security of the reduc-
tion from C to Ĉ (Lemma 1) and (2) the security of the above procedure for
computing Ĉ (namely, the one defined by Protocol 1 without the final decoding
step). The latter procedure is analogous to a similar protocol in [16], Section
2.2, except for the use of packed shares instead of standard shares. Thus, a for-
mal proof of (2) can be easily obtained by generalizing the corresponding proof
in [16]. Finally, the security of Protocol 1 is implied by (1) and (2) using a
suitable composition theorem (e.g., from [10, 11]).

The communication complexity includes broadcasting the (masked) inputs by
the clients, and n field elements communicated to each output client (one from
each server) for each �-tuple of output bits of Ĉ. Overall, each output client
receives O(|Ĉ| · n/�) = O(|Ĉ|) = O(|C| · poly(k)) field elements, as required. ��
We note that a variant of Protocol 1 (and also of our main protocol) can be based
on an arbitrary PRG, using techniques of [5, 24] to directly evaluate the PRG-
based functionality C̃ defined in Section 3.2 instead of the degree-3 functionality
Ĉ. This variant requires poly(k) rounds of interaction, and cannot go below the
Õ(n|C|) communication bound.

5 Scalable MPC in the Plain Model

In this section we implement Protocol 1 in the plain model. This amounts to
securely emulating Step 1, namely the generation of replicated random secrets,
without the trusted setup of linear preprocessing. In the semi-honest model,
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this can be done in a straightforward way by letting each player share random
(packed) secrets replicated according to φC , and adding up the contributions
of t + 1 different players. Thus, for the semi-honest model we immediately get
a scalable protocol with a total of O(n|C| · poly(k)) communication. In fact,
it suffices to let only the clients participate in the generation of the random
packed shares. (Indeed, even one uncorrupted client would suffice to keep the
shared secrets hidden from the adversary.) So when the number of clients is
constant, the communication is only O(|C| · poly(k)).

We turn to the question of securely generating the required linear correlations
in the malicious model. We will begin by describing an efficient procedure for
generating many independent instances of the same linear correlation. Later, in
Section 5.1, we will extend this basic procedure to deal with the more challenging
case of correlations induced by an arbitrary replication pattern φC , as required
by the setup phase of Protocol 1.

The basic procedure we present below is similar to a subprotocol of Hirt and
Maurer [24], and in particular uses their ideas of player elimination (also used,
in different ways, in [25, 22, 26, 8]) and the idea of verifying a large batch of
linearly-shared secrets by using randomized linear combinations. We will improve
its efficiency by using distributed coin-flipping and a pseudorandom generator
to succinctly generate the coefficients of a long (pseudo-)random linear combina-
tion. In the full version we describe an optimization of the asymptotic compu-
tational complexity of the protocol. (The corresponding subprotocol from [24]
does not rely on distributed coin flipping nor a PRG; instead, it requires each
player to separately communicate a long linear combination vector. Moreover,
this subprotocol was implicitly analyzed in the non-adaptive case; an extension
of its analysis to the adaptive case would involve an additional overhead.)

Generating Independent Instances of a Linear Correlation. Consider the
randomized functionality RandDLC(L), which distributes to the players shares of
a random codeword from a distributed linear code L = (V, π1, . . . , πn). We want
to securely compute m independent instances of RandDLC(L) at a low cost.

To get the desired efficiency with a minimal amount of interaction, we will
not insist on securely computing the desired functionality in the strict sense,
but rather settle for the following relaxation. At the end of the protocol, we can
tolerate a small set B of (say, at most 2t) “eliminated” players, such that only the
outputs of honest players outside B should be consistent with the functionality.
Moreover, this set B is publicly known. (Jumping ahead, we will require that
the same global set B apply jointly to all of the subprotocols we use.) This
notion of security can be formally captured by relaxing the standard simulation
requirement to consider, in addition to the view of corrupted players, the joint
outputs of all honest players outside the set B (instead of all honest players
in the standard simulation-based definitions). For instance, consider the case
of applying RandDLC to secret-share a block of random secrets. In this case,
such a definition would imply that the outputs of all honest players outside B
are consistent with a valid sharing of the same block, and moreover that the
adversary learns nothing about the secrets in the block.
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This relaxed notion of security is implicit in previous protocols (e.g., [24, 22]).
It does not compromise the security of our high level protocols, since: (1) all
relevant functionalities are robust, in the sense that a “correct” output can be
efficiently decoded from a partial output; and (2) such a decoding procedure
will be employed by the output clients in the high level protocol. Thus, from
the point of view of the higher level application, the missing shares of B do not
make any difference.

We turn to describe our amortized protocol for RandDLC(L). In fact, we start
with an even simpler deterministic functionality we denote by DLCP (L).

Definition 1 (Functionality DLCP (L)). Let L = (V, π1, . . . , πn) be a distrib-
uted linear code, where V is spanned by the columns of a matrix M . Let P be
a player (an input client or a server) referred to as a dealer. The functionality
DLCP (L) is defined as follows:

– Inputs: P holds an input y, defining a vector v = My ∈ V . Other players
have no input.

– Outputs: Each server Pj outputs v(j).

The secure computation of DLCP (L) is trivial in the semi-honest model, since P
can simply send to each server j its share v(j). It is nontrivial in the malicious
model, since we need to ensure that the outputs of honest servers are consistent
with L, and that they are furthermore consistent with v when P is uncorrupted.
Our motivation for securely computing DLCP (L) is that this will later be used
as a building block for computing RandDLC(L). Specifically, RandDLC(L) can be
reduced to multiple instances of DLCP (L) by adding together random vectors
contributed by different dealers P . Thus, from here on we can focus on the goal
of amortizing the cost of securely computing m instances of DLCP (L), on input
vectors v1, . . . , vm. This is done as follows.

Protocol 2. Efficient amortized implementation of DLCP (L):

– Inputs: P holds m inputs y1, . . . , ym, defining m vectors vi = Myi ∈ V .
Other players have no inputs.

– Outputs: Each server Pj outputs v1(j), . . . , vm(j).

1. Share distribution. P sends to each server Pj, 1 ≤ j ≤ n, its share vi(j),
1 ≤ i ≤ m, of each vector vi. In addition, it similarly distributes σ random
vectors r1, . . . , rσ ∈R L (which will be used as “blinding” vectors to protect
the privacy of v1, . . . , vm). To resist an adaptive adversary, we will need to
let σ = n + k, where k is the security parameter.

2. Coin-flipping. The servers use a constant-round multiparty coin-flipping pro-
tocol (e.g., a 3-round protocol based on the 2-round VSS protocol from [22])
to pick a σ-tuple of random k-bit seeds (s1, . . . , sσ). Each seed sh is locally
expanded by each server, via a PRG, to a vector Rh in {0, 1}m, specifying a
(pseudo-)random linear combination of the vi’s.

3. Proving. P computes and broadcasts the σ linear combinations specified by
the vectors Rh, masking each with a different blinding vector rh. That is, it
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computes and broadcasts the σ codewords uh = rh +
∑m

i=1 Rh
i vi. (The vectors

uh serve as a succinct distributed witness for the validity of the vectors vi.)
Each Pj verifies that all uh are valid codewords; otherwise P is disqualified
and all honest servers output 0.

4. Complaining. Each Pj verifies that every uh is consistent with the linear
combination Rh and the m + σ shares it received. If some inconsistency is
found, Pj broadcasts a complaint.

5. Output. Let B be the set of servers who broadcasted a complaint. If |B| > t,
the dealer P is disqualified and all honest servers output 0. Otherwise, each
Pj outputs its shares of v1, . . . , vm and discards its shares of r1, . . . , rσ (which
were used for blinding).

Lemma 2. Protocol 2 satisfies the following:

1. If P is honest then it is never disqualified, the outputs of the honest servers
are consistent with the vi’s, and the set B includes only corrupted servers.

2. Suppose P is corrupted. If P is not disqualified, then (except with negligible
probability) all outputs of honest servers outside B are consistent with L. In
other words, the event that P is not disqualified and the outputs of honest
servers outside B are inconsistent occurs with negligible probability in k.

3. If P is honest, the adversary learns nothing about the vectors vi except the
shares of corrupted servers. (Moreover, its view can be efficiently simulated
given these shares.)

Proof sketch: Fact (1) follows by inspection of the protocol, and (3) follows from
the use of the blinding vectors rh. It remains to show that (2) holds. For this, we
bound the probability that there is some set H of honest servers whose shares
are inconsistent yet pass all tests. Suppose first that the linear combinations Rh

were entirely random, and fix a possible set H ⊆ [n] of honest servers. If some
share vector received by H , wlog v1(H), is inconsistent with L, then a random
linear combination Rh of all vectors is inconsistent with L with probability at
least 1/2. (Indeed, conditioned on the linear combination v′ of the remaining
vectors, there are two cases: (a) if v′(H) is consistent with L then [1 ·v1 + v′](H)
is inconsistent with L; (b) if v′(H) is inconsistent with L then [0 · v1 + v′](H) is
inconsistent with L.) It follows that H will pass all σ consistency tests with at
most 2−σ probability. Since σ = n + k, it follows by a union bound that there is
no set H of honest servers who receive inconsistent shares and do not complain,
except with negligible probability. Specifically, this failure probability is bounded
by 2n · 2σ = 2−k. Finally, by the security of the PRG the above analysis remains
the essentially the same when each R is pseudorandom (e.g., replace 1/2 in the
above analysis by 0.4). ��
Note that when m is large, the communication complexity of the protocol is
dominated by the length of the inputs and is thus essentially optimal. Also note
that one could instantiate the PRG with an (unconditionally secure) ε-biased
generator [33].

The Multiple-Dealer Case. To implement RandDLC(L) we need to use mul-
tiple (parallel) invocations of the above DLCPi(L) protocol with different dealers
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Pi. A major concern in this case is that each invocation may result in a different
set Bi of eliminated players. Indeed, the adversary can arrange that for each
corrupted Pi, the set Bi will include a disjoint set of t honest players. Our goal
is to obtain a publicly known set B of at most 2t players, whose elimination
would result in all honest players holding consistent shares from all remaining
invocations of DLC. Moreover, to achieve this goal we can afford to disqualify up
to t honest dealers, overriding their inputs with 0. This further relaxation will
not affect the security of our applications, in which DLC will be invoked with
random and independent codewords rather than ones that depend on the in-
puts. Specifically, when using n invocations of DLC for implementing RandDLC,
each player will distribute a random codeword and output the sum of the re-
ceived shares. In this case, eliminating a few honest players will have no effect
on security. (In fact, it would suffice that 2t + 1 players act as dealers.)

The above is easy to achieve using the following player elimination approach.
Let Bi denote the union of all sets B induced by DLC invocations in which Pi

acts as the dealer. It follows from Lemma 2 that either Pi is corrupted or all
players in Bi are corrupted. Thus, we can eliminate both Pi and some Pj ∈ Bi

and include them in B. As a result, the size of B grows by 2 and the number
of remaining corrupted players is reduced by at least 1. After no more than
t such elimination steps all public inconsistencies are resolved and B contains
at most 2t players. At the end of this procedure, all dealers belonging to the
(publicly known) B are eliminated. We are guaranteed that the outputs of all
non-eliminated honest players are consistent in all DLC invocations in which one
of them serves as a dealer.

In the setting where the number of clients is constant, we can avoid the above
procedure by letting only the clients act as dealers. (This suffices because there
is no need to protect against an adversary that corrupts all clients.) In this case
we can afford to let the final B be the union of all Bi associated with clients
that were not disqualified, while still tolerating a constant fraction of corrupted
servers (t = Ω(n)). Since this approach does not involve an elimination of honest
clients, it can also be used to verify shares of the inputs, thus avoiding the need
to broadcast all inputs.

5.1 Generating Packed Replicated Secrets

The above RandDLC protocol suffices for generating the packed shares of 0-blocks
required by the setup phase of Protocol 1. Indeed, to generate these blocks, let
L be the space of degree-T polynomials over K which evaluate to 0 on all points
μi, 1 ≤ i ≤ �, where each Pj is assigned the value of the polynomial at point
ωj . The challenge is to efficiently generate m blocks of random binary secrets
subject to the replication pattern defined by φC . Our main observation is that
testing if a shared m-tuple of blocks is consistent with the “complex” replication
pattern φC can be reduced, via local computation (and no communication), to
testing O(�2) instances of a “repetitive” replication pattern. The latter can be
efficiently handled using the testing procedure in Protocol 2. The extra cost of
O(�2) elementary tests will be amortized over a large number of blocks m 	 �2,
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and thus will not effect the amortized communication. We stress that the above
holds for an arbitrary replication pattern φC , and thus does not depend on the
circuit topology.

The idea for this reduction is the following. Consider the case where a single
dealer P distributes m blocks of � secrets. We want to verify that these are
indeed binary secrets that are consistent with φC . The replication condition φC

can be expressed as the conjunction of at most m� atomic conditions of the
form “φC(i, j) = φC(i′, j′)”. We refer to such a condition as being of type (j, j′),
indicating that the j-th secret in one block is compared with the j′-th secret in
another, not necessarily distinct, block. There are at most �2 different types of
atomic conditions, where each block is involved in at most O(�) types (assuming
C has constant fan-out).

The key idea is that each condition of type (j, j′) can be tested by letting the
servers locally concatenate their two shares from the two relevant blocks (i, i′),
and then (jointly) test that the combined shares belong to some linear space
Lj,j′ . More specifically, let v, v′ represent share vectors corresponding to blocks
i, i′ respectively, and let (v, v′) be the distributed vector obtained by letting
each server locally concatenate its shares of v, v′ in that order. Then, the set of
vectors (v, v′) satisfying the above atomic replication constraint can be expressed
as a test of membership in a distributed linear code Lj,j′ over GF(2). Indeed,
if both (u, u′) and (v, v′) satisfy the atomic replication constraint, then so does
(u + v, u′ + v′). Finally, we can batch together all atomic conditions of the same
type and test them together using the testing procedure defined by Steps 2-5
of Protocol 2. This gives a procedure for verifying the validity of the m blocks
distributed by a dealer Pi via �2 (parallel) invocations of the previous testing
procedure. This procedure will either disqualify the dealer, or output a set Bi of
at most t servers such that all shares of honest servers outside Bi are consistent
packed shares of replicated binary secrets satisfying φC .

More concretely, for each player P , acting as a dealer, we run in parallel the
following procedure.

Protocol 3. Generating packed random secrets consistent with replication pat-
tern φC :

1. P generates m blocks of random binary secrets subject to the replication
constraints φC , picks a random degree-T polynomial encoding each block,
and sends to each Pj the value of each of the m polynomials at point ωj. In
addition, a random “blinding” vector rh ∈R Lj,j′ should be distributed for
each type (j, j′).

2. Run Steps 2-4 of Protocol 2, testing that all shared blocks encode �-tuples of
binary secrets.

3. The servers write φC as a conjunction of (at most m�) atomic equality condi-
tions, represented by a set A ⊆ ([m]× [�])2. For each type of atomic condition
(j, j′) ∈ [�]2, do the following (in parallel):
For every pair (i, i′) such that ((i, j), (i′, j′)) ∈ A, let each server concatenate
its share of block i and its share of block i′. Run Steps 2-4 of Protocol 2 to
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test that all concatenated vectors (each of length 2n) are in the linear space
Lj,j′ corresponding to atomic conditions of type (j, j′).

4. Run Step 5 of Protocol 2 to produce the outputs.

Protocol 3 may result in eliminating the dealer P , or producing a set B of
at most t servers. The final protocol will use parallel invocations of the above
protocol with each player acting as a dealer, in an analogous way to the amortized
RandDLC protocol described above. As in RandDLC, these invocations produce
a global set B of eliminated players. The final m-tuple of blocks is obtained by
summing up the contributions of all non-eliminated dealers. Again, in the case
of a constant number of clients, we let the clients serve as dealers and refrain
from eliminating clients that were not disqualified as (certain) cheaters.

The combined cost of all the testing procedures is bounded by a fixed poly-
nomial in n, independently of m. As a result, the amortized complexity of the
share generation protocol is the same as in the semi-honest case. Thus, we have:

Theorem 2 (Scalable protocol in plain model). Suppose an easy PRG
exists. Then, in the plain model, there is a general constant-round MPC protocol
tolerating t = Ω(n) malicious servers, in which the communication complexity
for computing a circuit C involves O(|C| · n · poly(k)) bits of communication,
and each input client must broadcast its (masked) inputs to the n servers. If the
number of clients is constant, the complexity is reduced to O(|C| · poly(k)).

Proof sketch: The main protocol is obtained by combining Protocol 1 with the
above share generation protocols, namely:

1. Use parallel invocations of Protocol 3 and server elimination (as described
above) to generate shared blocks of random secrets, replicated according to
φC , substituting the linear preprocessing of Step 1 in Protocol 1. The outputs
of the servers are consistent with the required pattern except, perhaps, for
a set B of O(t) eliminated servers.

2. Run Steps 2-4 of Protocol 1 using the outputs from the previous step to
substitute linear preprocessing.

A proof of security can proceed as follows. If Step 1 were a fully secure protocol
for the corresponding randomized functionality (i.e., with B = ∅), then the
security of the protocol would follow directly from that of Protocol 1 and a
composition theorem of [10]. The O(t) outputs of servers in B (resulting from
Step 1) have no effect on the outputs of output clients in the end of Step 2
because of the robustness property of this step. Moreover, the effect B has on
the adversary’s view can be easily incorporated into the simulation. ��
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