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Abstract. We describe a formal verification of a recent concurrent list-based set
algorithm due to Heller et al. The algorithm is optimistic: the add and remove
operations traverse the list without locking, and lock only the nodes affected by
the operation; the contains operation uses no locks and is wait-free. These prop-
erties make the algorithm challenging to prove correct, much more so than simple
coarse-grained locking algorithms. We have proved that the algorithm is linearis-
able using simulation between input/output automata modelling the behaviour of
an abstract set and the implementation. The automata and simulation proof obli-
gations are specified and verified using PVS.

1 Introduction

Concurrent algorithms are notoriously difficult to design correctly, and high perfor-
mance algorithms that make little or no use of locks even more so. Formal verification
of such algorithms is challenging because their correctness often relies on subtle inter-
actions between processes that heavier use of locks would preclude. These proofs are
too long and complicated to do (and check) reliably “by hand”, so it is important to
develop techniques for mechanically performing, or at least checking, such proofs.

In this paper we describe a formal verification of LazyList, a recent concurrent
list-based set algorithm due to Heller e al. [[L]. Our proof shows that the algorithm
is linearisable to an abstract set object supporting add, remove, and contains meth-
ods. Linearisability [2] is the standard correctness condition for concurrent shared data
structures. Roughly, it requires that each operation can be assigned a unique linearisa-
tion point during its execution at which the operation appears to take effect atomically.

The LazyList algorithm is optimistic: add and remove operations attempt to locate
the relevant part of the list without using locks, and only use locks to validate the infor-
mation read and perform the appropriate insertion or deletion. The contains operation
uses no locks, and is simple, fast, and wait-free. Heller ef al. present performance stud-
ies showing that this algorithm outperforms well known algorithms in the literature,
especially on common workloads in which the contains method is invoked significantly
more often than add and remove [[1]].

The simplicity and efficiency of the contains method is achieved by avoiding all
checks for interactions with concurrent add and remove operations. As a result, a con-
tains operation can decide that the value it is seeking is not in the set at a moment when
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in fact the value is in the set. The main challenge in proving that the algorithm is lin-
earisable is to show that this happens only if the sought-after value was absent from the
set at some point during the execution of the contains operation.

We have proved that the algorithm is linearisable using simulation between input/out-
put automata modelling the abstract behaviour of the set and the implementation. Our
proof uses a combination of forward and backward simulations, and has the interesting
property that a single step of the implementation automaton can correspond to steps by
an arbitrary number of different processes in the specification automaton. We modelled
the automata and encoded the proof obligations for simulations in the PVS specification
language [3]], and used the PVS system to check our proofs.

Apart from presenting the first complete and formal verification of an important new
algorithm, a contribution of this paper is to describe our ongoing work towards making
proof efforts like these easier and more efficient. The proof presented in this paper builds
on earlier work in which we proved (and in some cases disproved and/or improved)
a number of nonblocking implementations of concurrent stacks, queues and deques
[415l6l7]. While we still have work to do in this direction, we have made a lot of progress
in understanding how to model algorithms and specifications, and how to approach
proofs. In this paper, we briefly describe some of the lessons learned. We have made
our proof scripts available at http://www.mcs.vuw.ac.nz/research/Sunvuw/,
so that others may examine our work in detail and benefit from our experience.

The rest of the paper is organised as follows. We describe the LazyList algorithm in
Section 2] and our verification of it in Section 3l We discuss our experience with using
PVS for this project in Section ] and conclude in Section[3}

2 The LazyList Algorithm

The LazyList algorithm implements a concurrent set supporting three operations:

— add(k) adds k to the set and “succeeds” if & is not already in the set.
— remove(k) removes k from the set and “succeeds” if & is in the set.
— contains(k) “succeeds” if k is in the set.

Each operation returns true if it succeeds; otherwise it “fails”” and returns false.

The algorithm uses a linked-list representation. In addition to key and next fields,
each list node has a lock field, used to synchronise add and remove operations, and a
marked field, used to logically delete the node’s key value (see Figure [I)). The list is
maintained in ascending key order, and there are two sentinel nodes, Head and Tail,
with keys —oo and +oo respectively. We assume that the list methods are invoked only
with integer keys & (so that —oo < k < 400).

As explained in more detail below, a successful add(k) operation inserts a new node
containing k into the list, and a successful remove(k) operation logically removes k
from the set by marking the node containing % (i.e., setting its marked field to true),
before cleaning up by removing the node from the list. Thus, at any point in time, the
abstract set is exactly the set of values stored in the key fields of the unmarked nodes in
the list.
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add(b) pred curr
Head

private class Entry {

int key;
Entry next; remove(b)
boolean marked; Head
lock lock; ‘ ‘ ‘
}
Fig. 1. Declaration of list node type Fig. 2. Inserting and removing list nodes

The add(k) and remove(k) methods (see Figure [3) use a helper method locate(k),
which sets curr to point to the first node with a key greater than or equal to k£ and pred
to point to that node’s predecessor in the list—the values in Head and Tail ensure that
these both exist. The locate method optimistically searches the list without using locks,
and then locks the nodes pointed to by curr and pred. If both nodes are unmarked (i.e.,
their marked fields are false) and pred.next is equal to curr, the add or remove operation
can proceed; otherwise, the locks are released and the search is restarted.

An add(k) operation calls locate, then compares curr.key to k. If curr.key is not
equal to k, then k is not in the list, so add creates a new node, setting its key field to
k and its next field to point to curr (see Figure ). It then sets the next field of pred to
point to this new node, releases the locks on curr and pred, and succeeds. If curr.key is
equal to k, then k is already in the list, so the add operation fails.

A remove(k) operation also calls locate, then compares curr.key to k. In this case,
if curr.key equals k, then remove removes the node at curr from the list and succeeds;
otherwise, k is not in the list, so remove fails. A successful removal is done in two
stages: first the key is logically removed from the set by setting the marked field of
curr; then it is physically removed by setting the next field of its predecessor (pred) to
its successor (curr.next) (see Figure ). Separating the logical removal of the key from
the set and the physical removal of the node from the list is crucial to the simplicity
and efficiency of the algorithm: because nodes are not removed before they are marked,
observing an unmarked node is sufficient to infer that its key is in the set.

A contains(k) operation makes a single pass through the list, starting from Head,
searching for a node with a key not less than k. If this node contains £ and is not
marked, the contains operation succeeds; otherwise it fails. This operation requires no
locks and is wait-free (i.e., it is guaranteed to complete within a finite number of its own
steps, even if processes executing other operations are delayed or stop completely).

Linearisation Points. A common way to prove that an algorithm is linearisable is to
identify a particular step of each operation as the linearisation point of that operation.
With some simple invariants showing there are no duplicate keys in the list, it is straight-
forward to assign linearisation points in this way for add and remove operations, and
for successful contains operations. We can linearise a successful add operation when it
inserts its node into the list (line 6), a successful remove operation at the point at which
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contains (k) : add (k)
1 curr := Head; 1 pred, curr := locate(k);
2 while curr.key < k do 2 1if curr.key != k then
3 curr := curr.next; 3 entry := new Entry();
4 if curr.key = k and 4 entry.key := k;
5 “curr.marked then 5 entry.next := curr;
return true 6 pred.next := entry;
else 7 res := true
return false else
locate (k) 8 res := false;
while true do 9 pred.unlock();
1 pred := Head; 10 curr.unlock();
2 curr := pred.next; return res
3 while curr.key < k do remove (k)
4 pred := curr; 1 pred, curr := locate(k);
5 curr := curr.next; 2 1if curr.key = k then
6 pred.lock() ; 3 curr.marked := true;
7 curr.lock(); 4 entry := curr.next;
8 if "pred.marked and 5 pred.next := entry;
9 “curr.marked and 6 res := true
10 pred.next = curr then else
11 return pred, curr 7 res := false;
else 8 pred.unlock() ;
12 pred.unlock() ; 9 curr.unlock();
13 curr.unlock() return res

Fig. 3. Pseudocode for LazyList algorithm

it marks the node (line 3), and a successful contains operation at the point at which it
reads the marked field of a node containing its key (line 5). An unsuccessful add or
remove can be linearised anywhere between acquiring the lock on curr and releasing
the lock on pred.

Things are not so simple for failed a contains operation, however. If the node found
by the loop at lines 2 and 3 contains a key greater than k&, or it is marked, contains(k)
returns false. But there is no step of the contains operation at which k is guaranteed not
to be in the set. In particular, when its key or marked field is checked, the node may
have already been removed from the list, and another process may have added a new
node with key k, so that k is in the abstract set at that time. Thus the simple approach
of proving linearisability by defining a linearisation point for each operation at one of
its steps does not work for this algorithm.

The key to proving that LazyList is linearisable is to show that, for any failed
contains(k) operation, k is absent from the set at some point during its execution. Our
proof shows that if a contains(k) operation fails, then either & is absent from the set
when the operation begins or some successful remove(k) operation marks a node con-
taining k during the execution of the contains(k) operation. Because there may be many
contains(k) operations executing concurrently, it is sometimes necessary to linearise
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multiple failed contains operations after the same remove(k) operation. We found this
interesting, because our previous proofs have not required this.

3 Verification

To prove that LazyList is a linearisable implementation of a set supporting add, remove,
and contains operations, we define two input/output automata (IOA) [819]: a concrete
automaton ConcAut, which models the behaviour of the LazyList algorithm, and a sim-
ple abstract automaton AbsAut, which specifies all correct behaviours of a linearisable
set. We use simulation proof techniques [[10]] to prove that ConcAut implements AbsAut.

3.1 I/O Automata and Simulation Proofs

We now informally describe the IOA model and simulation proofs. In our verification,
we use a simplified version of IOAs, which is sufficient for this verification. See [819/10]
for a more detailed and formal discussion.

An TOA consists of a set of states and a set of actions. Each action has a precondition,
which determines the set of states from which it can be executed, and an effect, which
determines the next state after the action has been executed. The actions are partitioned
into external actions, which define the interface of the automaton, and internal actions,
which represent internal details. An automaton C' implements an automaton A if for
every execution of C, there exists an execution of A with the same external actions,
implying that C' and A are indistinguishable to an external observer.

One way to prove that C implements A is by forward simulation. Given an arbitrary
execution of C, we inductively construct an equivalent execution for A by working
forwards from the beginning of C’s execution, choosing a (possibly empty) sequence of
actions of A for each step in C’s execution. That is, we start from some initial state of A,
choose a sequence of actions of A for the first step of C, execute those actions, resulting
in a new state of A, and then choose and execute a sequence of actions corresponding
to the next step of C, and so on. In a forward simulation proof, we must choose the
action(s) of A for a given step of C based on the step and the state of A thus far in the
simulation; we cannot use steps of C' later in the execution to make this choice.

The goal is for the constructed execution of A to have the same external behaviour
as the execution of C'. To guarantee that it does, we insist that the sequence of actions
chosen for an internal action of C' contains no external actions, and the sequence of
actions chosen for an external action of C' contains that external action and no other
external action. We must also ensure that the sequence of actions we choose for A can
be executed from the state of A resulting from the sequence of actions corresponding
to the previous step of C'.

To ensure that we can successfully carry out this process over the entire execution of
C, we must choose actions for A in a way that keeps A “in step” with C. We capture our
intuition about what “in step” means by defining a relation, called a forward simulation,
between states of C' and states of A, and we choose actions for A so as to “preserve” the
simulation relation. Often the biggest challenge lies in precisely capturing our intuition
about why C' implements A so that we can define a simulation relation that makes this
possible.
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For some algorithms and their specifications, however, there is no way to define such
a forward simulation because for some action of C, the actions of A that we should
choose depend on future actions (i.e., actions that appear later in the execution). As we
explain later, LazyList is one such algorithm. In such circumstances, we use a back-
ward simulation. Instead of starting from the initial state and working forwards along
an execution of C, in a backward simulation we start at the last state of an arbitrary ex-
ecution, and work backwards towards the initial state. (Because we are only concerned
with safety properties in this work, it suffices to consider only finite executions.)

Apart from the direction of the induction, there are some additional differences be-
tween forward and backward simulations. First, in a forward simulation, the sequence
of actions we choose for A (together with the current state of A) uniquely determines
the poststate for A (at least for automata with deterministic actions like the ones we
use). But in a backward simulation, for a given action of C, we are given a poststate of
A, and we must choose not only a sequence of actions for A, but also a prestate such
that executing the chosen action(s) from this prestate brings us to the given poststate
and the prestate of C”s action is related by the simulation relation to the chosen prestate
for A.

Second, we must ensure that when we reach the beginning of C’s execution, A is
in an initial state too. Therefore, a backward simulation relation must ensure that every
state of A that is related to an initial state of C'is an initial state of A. Forward simulation
has no such proof obligation.

When a backward simulation is necessary, it is often convenient to develop the proof
in two stages by defining an “intermediate” automaton, and proving (i) that the concrete
automaton implements the intermediate automaton using a forward simulation and (ii)
that the intermediate automaton implements the abstract one using a backward simu-
lation. We took this approach for this verification, as we had used it successfully in
previous verifications, e.g. [3].

3.2 The Abstract and Concrete Automata

We now describe informally the abstract and concrete IOAs that we use in this verifi-
cation; more detailed descriptions of the way we use IOAs to model specifications and
implementations can be found in [4I5l6/7].

The abstract automaton AbsAut models a set of processes operating on an abstract
set, in which each process is either “idle”, in which case it can invoke any operation on
the set, or is in the midst of executing an operation.

Each operation is modelled in AbsAut using four actions: two external actions
modelling the operation’s invocation and response, and two internal actions modelling
successful and unsuccessful application of the operation. For example, for the add oper-
ation (see Figure ), the addInv(k, p) action models the invocation of the add(k) opera-
tion by process p, and the addResp(r, p) action models the operation returning boolean
value 7 to process p. The precondition of the doAddT action requires that % is not in
the abstract set, and its effect adds k to the set; the precondition of the doAddF action
requires that k is in the set, and its effect does not modify the set.

Per-process program counter variables constrain the order in which actions are per-
formed, ensuring that each operation consists of an invocation action, a do action, and a
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Action Precondition Effect

addInv(k, p) pc(p) = idle pc(p) := pcDoAdd (k)

doAddT (k, p) pc(p) = pcDoAdd(k) AND pc(p) := pcAddResp (true)
NOT member (k, keys) keys := add(k, keys)

doAddF (k, p) pc(p) = pcDhoAdd(k) AND pc(p) := pcAddResp(false)
member (k, keys)
addResp(r, p) pc(p) = pcAddResp(r) pc(p) := idle

Fig. 4. AbsAut actions for the add operation

response action. These variables also connect the return value of the response action to
the do action. For example, the doAddT(p) action sets process p’s program counter to
pcAddResp(true). Thus each operation is guaranteed to return a value consistent with
applying the operation atomically at the point at which the do action is executed. Be-
cause each operation “takes effect” atomically at the execution of its internal do action,
all executions of AbsAut are behaviours of a linearisable set. Thus, proving that ConcAut
implements AbsAut proves that LazyList is a linearisable set implementation.

The concrete automaton ConcAut models a set of processes operating on a set im-
plemented by the LazyList algorithm. It has the same external actions as AbsAut (i.e
invocations and responses for each operation), and has an internal action for each step
of the algorithm corresponding to a labelled step in the pseudocode shown in Figure 3
which are assumed to be atomic. In fact, conditional steps in the algorithm have two
associated actions, one for each outcome of the step. For example, the precondition of
the cont2T(p) action (which models an execution by process p of line 2 of the con-
tains method when the test succeeds) requires that p’s program counter is pcCont2 and
curr.key,, < kp, and its effect sets p’s program counter to pcCont3. The compound tests
in contains (lines 4 and 5) and locate (lines 8 to 10) are each treated as a sequence of
(two and three, respectively) atomic tests. We also assume that allocation of a new node
(add line 3) is atomic.

3.3 An Intermediate Automaton

As mentioned earlier, we cannot prove that ConcAut implements AbsAut using a for-
ward simulation proof. The reason is that, to do so, we must identify a point at which
each operation “takes effect” and choose the corresponding do action in AbsAut at that
point. However, as explained in Section2] a failed contains operation may not take ef-
fect at the point that it determines it has failed: the point at which the sought-after key
is absent from the set may be earlier. A correct forward simulation proof would have to
choose the doContF action at a point that the key is absent from the set. However, at
that point, it is still possible that the contains operation will return true, so choosing do-
ContF would make it impossible to complete the proof because when ConcAut executes
the external contResp(true) action, the precondition for this action would not hold in
the AbsAut state (recall that we are required to choose the same action for AbsAut when
the ConcAut action is external).

Thus, we introduce an intermediate automaton I/nfAut that eliminates the need to
“know the future” when choosing appropriate actions to prove that ConcAut implements
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IntAut using a forward simulation, and we show that IntAut implements AbsAut using a
backward simulation. Because backward simulations are generally more difficult than
forward ones, we prefer to keep the intermediate automaton as close as possible to
the abstract one. We achieved this by modifying AbsAut slightly so that the contains
operation can decide to return false if the key it is seeking was absent from the set at
some time since its invocation (though it may still return true if it finds its key in the
set). We now explain how we achieved this.

The state of IntAut is the same as that of AbsAut, except that we augment each pro-
cess p with a boolean flag seen out,. When process p is executing a contains(k) oper-
ation, seen out, indicates whether k has been absent from the set at any time since the
invocation of the operation.

The transitions of IntAut are the same as those of AbsAut, except that:

— The contInv(p, k) action sets seen out, to false if k is in the abstract set, and to true
otherwise.

— The doRemT(q, k) action, in addition to removing k from the set, also sets
seen out, for every process p that is executing contains(k).

— The precondition of the doContF(k, p) action requires seen out, to be true instead
of k being absent from the set.

Thus the doContF(p) action is enabled if k& was not in the set when contains(k) was
invoked, or if it was removed later by some other process ¢ performing doRemT(q, k).
Therefore, in this automaton, a contains(k) operation can decide to return false even
when £ is in the set, provided k& was absent from the set sometime during the operation.
This is what we need in order to prove a forward simulation from ConcAut to IntAut.

3.4 The Backward Simulation

Because IntAut is so close to AbsAut, the backward simulation is relatively straightfor-
ward: it requires that the sets of keys in IntAut and AbsAut are identical, and that each
process p in AbsAut stays “in step” with process p in IntAut, with one exception. In
AbsAut, p may have already executed doContF, indicating that it will subsequently re-
turn false, whereas in IntAut, p has not yet decided to return false. This is allowed only
if seen out, is true, indicating that either k& was absent from the abstract set at the in-
vocation contInv(k, p), or was present at the invocation but was subsequently removed
before doContF is performed. The PVS definition of our backward simulation between
IntAut state © and AbsAut state a is shown below.

bsr (i, a): bool = i‘keys = a‘keys AND

FORALL p: (i'‘pc(p) = a'‘pc(p) OR
(i‘pc(p) = pcDhoCont AND
a‘pc(p) = pcContResp(false) AND

i‘seen_out (p)))

Below we briefly describe how we choose an action sequence for AbsAut for a given
step of IntAut in our backward simulation proof. Readers interested in details of how we
choose a prestate for AbsAut, and how we discharge the various proof obligations for a
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backward simulation (including proving that our choices result in a valid execution of
AbsAut) can examine our files and step through the proofs.

In the backward simulation, for most actions in IntAut, we choose the same action
for AbsAut. However, as discussed above, we cannot simply choose doContF in AbsAut
when a doContF action occurs in IntAut because the sought-after key may be in the set
at that point. Instead, we choose doContF actions as follows:

— For a contInv(k, p) action in IntAut, if p is enabled to return false in the poststate
of AbsAut, we choose contInv(k, p) followed by doContF(k, p).

— For a doRemT(k, p) action in IntAut (which removes k from the abstract set), we
choose a sequence of actions for AbsAut consisting of doRemT(k, p) followed by
a doContF(k, p) action for each process p that is executing a contains(k) operation
and is enabled to return false in the poststate of AbsAut.

3.5 The Forward Simulation

When defining the relationship between the states of InfAut and ConcAut, one option is
to represent the relationship directly in the forward simulation. However, because in this
case the relationship is quite complex, we instead reflect the state of IntAut within Conc-
Aut by introducing two auxiliary variables, aux keys and aux seen out. Then, rather
than constructing the forward simulation to directly relate the ConcAut state and the
IntAut state, we capture this relation as invariants of ConcAut, and simply require, for
the forward simulation, that the auxiliary variables equal their counterparts in IntAut.
This makes it easier to test properties using a model checker before we attempt to prove
them.

ConcAut is augmented with the auxiliary variables in a straightforward manner:
aux keys is updated when a node is inserted into the list at line 6 of the add method,
or is marked for deletion at line 3 of the remove method; and aux seen out, is updated
when the contains method is invoked by process p, and when another process executes
line 3 of the remove method to remove the same value p is seeking.

With the addition of the auxiliary variables, the simulation relation is quite simple.
Like the backward simulation relation, it has two components, one relating data and
one relating program counters of processes. The first component simply requires that
the auxiliary variables of ConcAut equal their counterparts in IntAut. The second com-
ponent is more complicated than in the backward simulation relation, because we must
relate each program counter of ConcAut to a program counter value in IntAut.

The proof for the forward simulation is also quite straightforward: almost all of the
cases of the proof were dispatched automatically using PVS strategies. The only proofs
that required user interaction were those to show that whenever we choose a do action
for IntAut for a given ConcAut action, that action’s precondition holds in IntAut. These
proofs required the introduction of high-level invariants of the concrete automaton—
one for each action corresponding to a do action in the intermediate automaton—that
show that at the point that we choose these actions in the simulation, their preconditions
hold in IntAut.

For one interesting example, we must show that when we choose doContF(k, p) as
the action for IntAut, seen out, is true. More specifically, we show that aux seen out,
is true in the ConcAut state, and then use the simulation relation’s requirement that
aux seen out and seen out are equal to infer that the InfAut action is enabled.
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3.6 Invariants

To prove the invariants required to show that an IntAut action’s precondition holds when
we choose it in the simulation, we needed over a hundred supporting invariants and
lemmas. Proving these properties was the bulk of the proof effort. We do not have room
to discuss all these properties, but we invite the interested reader to consult our PVS
theory files and proof scripts.

Many of these properties are “obvious”: In an informal proof, we might say that some
follow “by inspection” (e.g., a local variable of a process is changed only by an action
of that process; the key field of a node is changed only by line 4 of the add method).
Others follow immediately given that nodes are not modified unless they are locked or
newly allocated (e.g., the pred node of a process at lines 2-9 of the add method is not
marked). One “obvious” invariant that was more difficult to prove than we expected is
that a node pointed to by curr is public, which means that it was placed into the list at
some time in the past (i.e., it was allocated by some process that is not still at lines 4-6
of the add method with that node pointed to by entry). Proving this required jointly
proving that pred is public, that the successor of any public node is public, that entry
is public for a process at line 5 of the remove method, and that entry.next = curr for
a process at line 6 of the add method. These five properties mutually depend on each
other, and are expressed in the public nodes invariant.

The locate works invariant captures properties that are guaranteed by the locate
method because it locks the nodes and then validates the desired properties before re-
turning to add or remove. Specifically, locate works says that after returning from a
call to locate, the process has locks on adjacent live nodes (i.e., public and unmarked
nodes) such that the key of the first node is less than the sought-after key, and the key of
the second is greater or equal. The Locate works invariant ensures, for example, that,
before the next field of the pred node is set at line 5 of the remove method, that field
still points to the curr node. The entry unchanged in rem invariant ensures that the
value written to that field is the value in the next field of the curr node, so that exactly
one node (the curr node) is removed.

The aux keys accurate invariant states that aux keys is exactly the set of keys
for which there is a live node. The proof of this property is mostly straightforward
because a key is inserted into aux keys each time a new node containing that key is
inserted into the list (thus becoming live), and removed from aux keys each time a
node containing the key is marked (thus ceasing to be live). The difficult case in this
proof is showing that marking a node with a certain key ensures that no live node with
that key exists. This case uses several additional invariants: 1ive nodes in list says
that all live nodes are reachable from Head; one from other says that if two different
nodes are both reachable from Head then one of them is reachable from the other; and
later nodes greater and public says that if one node is reachable from another,
then it has a higher key. Together these three properties imply that there is at most one
live node with a given key at any time, and therefore marking one falsifies the existence
of any such node, as required.

Given the aux keys accurate invariant, and the simulation relation’s requirement
that ConcAut’s aux keys equals IntAut’s keys, it is easy to see that we can choose the
doContT action when a contains(k) operation finds an unmarked node with key k,
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and therefore decides to return true. A contains(k) operation that returns false is more
interesting. First, note that if seen out, is set to true during a contains(k) operation of
process p, then it remains true for the duration of the operation, so we are justified in
choosing the doContF action for IntAut if ConcAut decides to return false.

Otherwise, assume seen out,, is set to false by contlnv(k,p) and remains false
throughout the operation until it decides to return false. This implies that there is a
live node containing k¥ when contInv(k, p) is executed. Because nodes are marked be-
fore being removed from the list, the node remains live throughout the operation unless
it is marked. If it is marked, the action sequence chosen for InfAut corresponding to the
marking action in ConcAut sets seen out, to true, contradicting the assumption. There-
fore, the node remains live throughout the operation, implying that, immediately after
the contl action reads Head into curr,, the live node is reachable from the node indi-
cated by curr,. As explained below, this remains true as p walks down the list towards
the live node unless the node is marked (again, this contradicts the assumption). Thus,
the contains(k) operation finds this live node, and does not return false as assumed.

The above reasoning is captured in part by the cont val still in invariant, which
states that as p executes the loop at lines 2 and 3 of the contains(k) method, either
aux seen out,, is true, or there is a path from curr, to a live node m containing k. The
path property is expressed as leadsfrom(curr,, m), which states that there is a non-
zero-length path from curr, to m. leadsfrom is defined using leadsfromsteps as
follows to allow us to prove to PVS that inductive proofs over it are finite.

leadsfromsteps(c, n, m, w): INDUCTIVE bool =
n /= Tail AND ((w=1 AND c‘'‘nmextf(n) = m) OR
(w>1 AND c‘'‘nextf(n) /= m AND
leadsfromsteps(c,c'nextf(n) , m,w-1)))
leadsfrom(c, n, m): bool = EXISTS w: leadsfromsteps(c, n, m, w)

A challenging part of the proof is proving that leadsfrom(curr,, m) is falsified
only from a state in which node m is marked, and therefore cont val still inis not
falsified by 1eadsfrom(curr,, m) becoming false (because the invariant implies that m
is unmarked). The intuition for this property is clear: changes outside the path between
curr, and m have no effect, and inserting or removing a node from the list between
curr, and m preserves the 1leadsfrom(curry,, m) property. Thus, only removing a link
to m can falsify leadsfrom(curr,, m), and it is easy to prove that this occurs only
after m has been marked. While the intuition for this property is straightforward, the
proof is somewhat involved because it requires various inductions over the 1eadsfrom
property to capture the effects of inserting and removing nodes in the middle of the list.
Our decision to represent the path property using the recursive leadsfrom predicates
was driven by our desire to minimise the size of the state space to accommodate model
checking work by our colleagues (see below). Explicitly encoding the paths in auxiliary
variables would simplify the proof considerably.

4 Experience with PVS

We used PVS [3] to verify all the proofs discussed in this paper. As we are not experts
in the use of PVS, and we had no special support, our experience may be relevant both
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to others considering using PVS to verify similar proofs, and as a comparison to others’
experience with different formal tools. In addition to our work with PVS, we collabo-
rated with David Friggens and Ray Nickson, who developed models for this algorithm
for use in the model checkers Spin and SAL [11112]. As well as model checking the en-
tire algorithm for small numbers of threads and small bounds on the queue size, which
gave us some confidence that our proof attempt would eventually be successful, they
used these models to test some of the putative invariants we used in our proofs before
we actually proved them.

In approaching this verification, we worked mostly “top-down”, starting with the
simulation proofs and then proceeding with the invariants. We did not develop the basic
proof using PVS; rather, we figured out the top-level invariants informally, and prepared
a fairly detailed proof sketch of these invariants, and some of their supporting lemmas
and invariants, before formalizing them in PVS. We did not, however, work out all the
low-level lemmas and invariants that we knew would be helpful for the proofs, leaving
many of them to be stated and proved as necessary.

As mentioned earlier, introducing auxiliary variables in the concrete automaton
pushed the bulk of the work for this proof into the verification of invariants. The com-
plete verification contains 165 PVS proofs: 32 typecheck constraints, 30 lemmas for the
simulation proofs, and 103 invariants and supporting lemmas. Pushing most of the work
into the invariants reduced the state that had to be managed within a PVS proof, because
invariants are about a single automaton, while simulations are relations between two au-
tomata. Also, unlike simulation relations, invariants are straightforward to check using
model checkers, so this reduced the gap between our work and that of our colleagues
working with Spin and SAL.

PVS includes support for proof management, tracking which proofs have been done,
and marking lemmas as proven but “incomplete” if they depend on earlier lemmas that
have not yet been proved completely. This support helped us to work independently on
different lemmas, which was especially helpful as the authors were spread over three
countries. However, PVS manages changes at the file level—any change in a file in-
validates all proofs for lemmas in that file—so we often had to rerun proofs that were
unchanged. Finer-grained dependency tracking would have saved us considerable time.

PVS supports the creation of user-defined rules, called strategies, by combining
built-in rules. These strategies can be saved and used in other proofs (or used again
in a single proof). We used strategies extensively, for example, to set up the beginning
of invariant proofs, which almost always begin assuming the invariant holds on an arbi-
trary reachable state and setting up as a goal that it holds after executing any action; to
extract parts of the precondition or effect of an action; and to handle the many “trivial”
cases in the forward simulation proof for concrete actions that did not correspond to
any action in the intermediate automaton.

As useful as strategies are, we found that in many cases it was better to define a
lemma that captured a desired property than to design a strategy to prove it. There are
two advantages: First, PVS doesn’t have to do the proof each time—it just uses the
lemma. Second, often the way you state a property makes a significant difference in
how you are able to use it. With a lemma, you can easily control how a property is
stated.
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One challenge in this verification was making proofs that PVS could check quickly.
In particular, in an invariant proof, we typically show that the property is preserved by
every action. Usually, only a few actions affect any of the variables mentioned by the
property, and only those actions need to be considered; the rest obviously preserve the
property. However, PVS must check all of those actions, and even a couple of seconds
for each action turns into minutes for 52 actions. Thus, we stated and proved several
“does not modify” lemmas, one for each variable, stating which actions actually modi-
fied that variable, and we used those lemmas extensively to avoid having PVS consider
each of the other actions separately.

We also found it helpful to define functions to describe things that we wanted to
refer to frequently, and especially that we might want to use in a strategy. For exam-
ple, in the forward simulation proof, we defined the action corr function to return, for
any transition of the concrete automaton, the corresponding sequence of actions of the
intermediate automaton. We also defined pcin and pcout to return, for each action, the
program counters corresponding to the prestate and poststate respectively.

5 Concluding Remarks

We have developed the first complete and formal correctness proof for the LazyList
algorithm of Heller et al. [1]. We model the algorithm and specification as I/O Au-
tomata in the PVS specification language, and proved that the algorithm implements
the specification using simulation proofs developed in and checked by the PVS system.

As in previous algorithms we have verified [445l6/7], we found that the outcome
of an operation cannot always be determined before it takes effect. Our proof uses a
combination of backward and forward simulations to deal with this problem. An inter-
esting aspect of the proof, which we have not encountered in our previous proofs, is the
need for an arbitrary number of operations to be linearised after an action of a different
operation.

In a related manual verification effort, Vafeiadis et al. [13]] also present a verifica-
tion of the LazyList algorithm. They add the abstract set as an auxiliary variable and
add actions that perform the abstract operation and record the abstract result at the
linearisation point of each operation. They then use the Rely-Guarantee proof method
[14/15]] to show that the implementation and the abstract set behave the same way in
every execution of this augmented algorithm. Because it is impossible to correctly lin-
earise a failed contains operation without knowledge of the future, this approach can-
not be used to prove the linearisability of failed contains operations, and [13] only
considers this case informally. It is noteworthy that this case accounted for a large pro-
portion of the complexity and the effort involved in our completely machine-checked
proof.

We have made our proof scripts available so that others may benefit from our experi-
ence (see http://www.mcs.vuw.ac.nz/research/Sunvuw/). We also plan to test
our hypothesis that substantial parts of our proof can be reused to verify several opti-
mised versions of LazyList. In the longer term, we plan to continue refining our proof
methodology to make it easier and more efficient to develop fully machine-checked
proofs for concurrent algorithms.
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