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Abstract. We introduce calling context graphs and various static and theorem
proving based analyses that together provide a powerful method for proving ter-
mination of programs written in feature-rich, first order, functional programming
languages. In contrast to previous work, our method is highly automated and
handles any source of looping behavior in such languages, including recursive
definitions, mutual recursion, the use of recursive data structures, etc. We have
implemented our method for the ACL2 programming language and evaluated the
result using the ACL2 regression suite, which consists of numerous libraries with
a total of over 10,000 function definitions. Our method was able to automatically
detect termination of over 98% of these functions.

1 Introduction

Proofs of termination are a critical component of program correctness arguments. In
the case of transformational systems, termination proofs allow us to extend partial cor-
rectness results to total correctness. In the case of reactive systems, they are used to
prove liveness properties, i.e., to show that some desirable behavior is not postponed
forever. Unfortunately, besides being the quintessential undecidable problem [21], ter-
mination analysis is further exacerbated by modern programming language features
such as recursion, mutual recursion, non-linear loop conditions, and loops that depend
on recursive data structures.

Because of this, previous work has tended to focus on finding decidable fragments
of the problem, or has been designed for simple languages that lack the complexity of
actual programming languages. Within such restricted settings, much progress has been
made, e.g., there is work on analyzing the termination of semi-algebraic programs, toy
functional languages, and term rewriting systems (see Section 6).

We present a new termination analysis based on calling context graphs (CCGs) for
a fully featured class of modern functional programming languages. If a purely func-
tional program is nonterminating, there exists a sequence of values v1, v2, . . . , vn such
that for some function f1, f1(v1, v2, . . . , vn) leads to an infinite sequence of function
calls, f2(. . .), f3(. . .), . . ., where the call to fi results in the call to fi+1, for all i. CCGs
are a data structure which can conservatively approximate all such possible sequences.
In addition, we show that CCGs are amenable to various analyses, involving both static
analysis and theorem proving, that enable us to construct surprisingly precise approx-
imations of the actual function call sequences. The termination proof then involves
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assigning sets of calling context measures (CCMs) over well-founded domains to the
calls and showing that for every possible infinite sequence there is a corresponding se-
quence of CCMs that is infinitely decreasing. We present an algorithm based on CCGs
and CCMs that can automatically reason about any source of looping behavior in first
order purely functional programming languages and which can automatically handle a
much larger class of programs than previous approaches.

We have implemented our algorithm in the ACL2 theorem proving system, which
consists of a feature-rich first-order functional programming language, a logic for that
language, and an automatic theorem prover [11,10,9]. It has a large, worldwide user
base, and has been used in a wide variety of industrial verification projects ranging
from reasoning about modern processor designs to modeling programs written in im-
perative languages such as Java. ACL2 is part of the Boyer-Moore family of provers, for
which its authors received the 2005 ACM Software System Award. Termination plays a
key role in ACL2, as it is used to justify induction schemes and also every defined func-
tion must be shown to terminate. Therefore, users spend a significant amount of time
reasoning about termination, and stand to greatly benefit from the work presented here.

In order to evaluate our work, we ran our implementation on the ACL2 regression
suite, a collection of numerous libraries by a variety of authors covering topics such as
commercial floating point verification (at AMD and IBM), JVM bytecode verification,
term rewriting algorithm verification, the verification of a model checker, the verifica-
tion of graph algorithms, etc. Our algorithm was able to automatically prove termina-
tion for over 98% of the more than 10,000 functions in the regression suite. This was
accomplished with no user interaction.

The rest of the paper is organized as follows. In Section 2 we introduce the core of
first-order functional languages. In Section 3, we introduce and develop the theory of
calling context graphs. Our termination algorithm appears in Section 4, and experimen-
tal results are given in Section 5. Some readers may want to read Section 5 first. We end
with related work and conclusions.

2 Semantics

While our method works for feature-rich, first-order functional programming languages
including ACL2, such languages are quite complicated and we cannot fully describe
them here. Instead, in Figure 1, we present the semantics of FL, a language that only
contains the core features of first-order functional languages. The semantics are similar
to what can be found in standard programming language texts. Some readers may want
to skim this section initially, returning as needed later.

We are concerned with proving the termination of well-formed function definitions
(members of the set Defs), which are of the form define f(x1, . . . , xn) = e, where
f ∈ FName is a function name, x1, . . . , xn ∈ Var are variables, and e ∈ Expr is an
expression whose free variables are a subset of {x1, . . . , xn}.

The universe of values over which FL is defined is Val and it includes symbols,
strings, integers, rationals, and lists, but is otherwise unspecified. However, since this is
a first order language, functions are not first class data objects, and are not included in
Val . We use ⊥ (which is not in Val) to denote nontermination, and Val⊥ = Val ∪{⊥}.
An environment maps variables to values.
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d ∈ Defs

f ∈ FName

x ∈ Var

e ∈ Expr

v ∈ Val

u ∈ Val⊥ = Val ∪ {⊥}
ε ∈ Env = Var → Val

φ ∈ Funct = Val∗ → Val⊥
ψ ∈ TFunct = Val∗ → Val ⊆ Funct

h ∈ IHist = FName → Val∗ → Val⊥
H ∈ Hist = FName → Val∗ → Val ⊆ IHist

�e�h ε : Expr × IHist × Env → Val⊥
O : Op → TFunct

str : Funct → Val∗⊥ → Val⊥
D �d� H : Defs × Hist → Funct+

fix : (Funct∗ → Funct∗) → Funct∗

str (φ) 〈ui〉
n
i=1 =

j
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Fig. 1. Language Semantics of FL

Function definitions in FL denote mathematical functions, which can either be mem-
bers of the set Funct or TFunct . Funct consists of a set of partial functions, which
means that for some inputs, functions in Funct may return ⊥, denoting nontermina-
tion. TFunct is the subset of Funct consisting of all the total (i.e., terminating) func-
tions. A history maps function names to total functions (of the appropriate arity) and an
intermediate history maps function names to partial functions (of the appropriate arity).

The termination problem we consider is: given a history, H , and a set of mutually
recursive definitions, d, show that the functions corresponding to the definitions in d
are terminating. To do this, we need to refer not only to H , but also to the (possibly
partial) functions corresponding to the definitions in d. This is accomplished by using
an intermediate history, h, which is just H extended so that it includes the function
names appearing in d and their corresponding functions, as given by the semantics of
FL (which are given in Figure 1 and described in more detail in the next paragraph). We
then attempt to prove that the functions defined in d terminate, which implies that the
intermediate history, h, is actually a history. If so, we have a new history. Otherwise, we
reject d, revert to H , and report the problem to the user. This allows the user to incre-
mentally define programs, as is common in programming environments for functional
languages, such as Lisp.

We use five functions to define the semantics of FL. The function �e�
h

ε defines
how to evaluate an expression, e, given an intermediate history, h, and an environ-
ment, ε. The function O maps FL’s unspecified set of built-in operators (Op) to their
corresponding functions. The set of built-in operators includes the usual Boolean and
arithmetic operators, such as and, or, not, iff, implies, +, -, /, *, etc. The
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function str corresponds to strict application. As input, it takes a function and a vector
of values (possibly including ⊥, which indicates nontermination). It returns ⊥ if any
of the input values is ⊥; otherwise, it returns the result of applying the function to the
values (which could also be ⊥). The definitions of the semantics functions for variables,
values, built-in operators, function application, lets, and ifs are now straightforward.

Function definitions are handled with D �d� H , which defines what mathematical
functions (elements of Functs) correspond to a set of function definitions, d, given his-
tory H . Its definition depends on the fix function, which is used to define the semantics
of recursive function definitions using the standard fixpoint approach. The fix function
takes as input ξ, a function from a vector of functions to a vector of functions, and
returns the vector of functions obtained by taking the limit as j approaches infinity of
applying ξ to the vector of functions returning ⊥. The definition of D �d�H uses fix to
“unroll” the bodies of the definitions an unbounded number of times, which results in a
vector of partial functions that corresponds to the semantics of the definitions.

Throughout the rest of this paper, unless otherwise specified, we assume a fixed
history, H and a set of syntactically correct, mutually-recursive function definitions, d,
such that none of the function names in d are the same as those in the domain of H . The
intermediate history h is obtained by extending H with the semantics of the function
definitions in d. To simplify the notation, we assume the uniqueness of subexpressions.
That is, if expression e has two identical subexpressions, then we have some way of
determining which is which. This can be accomplished by pairing each subexpression
with its unique position within the base expression. We use “e1 � e2” to denote that e1
is a sub-expression of e2.

We now give several definitions related to the semantics of FL that we will use
throughout the paper. We begin by defining the set of governors under which a subex-
pression e′ of e is reached, ignoring nontermination (for now). Our definition is syn-
onymous with that in [12]. If e is an FL let statement and e′ � e, then we use σe

e′

to denote the substitution (a mapping from variables to expressions) corresponding to
the let bindings of e that are visible in e′. For example, if e = let x = e1 in e2,
then σe

e2
= {〈 x, e1〉} and σe

e1
= {}. We use eσ to denote the expression obtained by

applying substitution σ to e.

Definition 1. Given expressions e′, e such that e′ � e, the set of governors of e′ in e
is the set {e1σ

e
e1

| if e1 then e2 else e3 � e ∧ e′ � e2} ∪ {not(e1σ
e
e1
) |

if e1 then e2 else e3 � e ∧ e′ � e3}.

The idea of the governors of e′ in e is that the execution of e reaches e′ exactly when
the governors are true. We therefore define the more general notion of when expressions
“hold”:

Definition 2. We say a set of expressions, E, holds for environment ε, denoted Hh �E� ε,
if

∧
e∈E(�e�h

ε /∈ {nil, ⊥}).

3 Calling Context Graphs

In this section, we introduce calling context graphs (CCGs) and related notions. We also
show how CCGs can be used reason about program termination.
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define f(x) =
if not(intp(x)) or x = 0

then 0
else if x < 0 then f(x+1)

else f(x-1)

1. 〈f, {intp(x), x �= 0, x < 0}, f(x+1)〉
2. 〈f, {intp(x), x �= 0, x ≥ 0}, f(x-1)〉

�������	1
��

�������	2
��define dec(n) =

if not(intp(x)) or x ≤ 0
then 255
else n - 1

define foo(i, j) =
if i = 1 then

if j = 1 then 0
else foo(dec(j), dec(j))

else foo(dec(i), j)

1. 〈foo, {i = 1, j �= 1}, foo(dec(j),dec(j))〉
2. 〈foo, {i �= 1}, foo(dec(i),j)〉

�������	1
��
�������	2�� ��

Fig. 2. Definitions, contexts, and minimal CCGs for f and foo

Definition 3. A calling context is a triple, 〈f , G, e〉, where f is the name of a function
defined in d, G is a set of expressions whose free variables are all parameters of f ,
and e is a call of a function in d whose free variables are all parameters of f . This is
a precise calling context if e is a subexpression in the body of f and G is the set of
governors of e in the body of f .

We sometimes refer to a calling context simply as a context. The definitions and con-
texts for two examples are given in Figure 2. We now introduce the notion of a well-
formed sequence of contexts, a notion that is strongly related to termination in FL.

Definition 4. Let c =
(
〈fi, Gi, fi+1(ei,1, . . . , ei,ni+1)〉

)
i

be a sequence of calling
contexts, where ni is the arity of fi and (xi,k)ni

k=1 are the formals of fi. For a given vec-
tor of values v, we define a sequence of environments where εv

1 maps x1,k to vk and εv
i+1

maps xi+1,k to �ei,k�h εv
i . We say c is well-formed if there exists a witness for c: a vec-

tor of values, v, such that for every i > 0, Hh �Gi� εv
i and 〈∀j ≤ ni :: �ei,j�

h
εv
i 
= ⊥〉.

We use the notation εv
i introduced in the above definition throughout the paper. Termi-

nation in FL can be expressed in terms of well-formed sequences, as we see in the next
theorem. (Due to space considerations all proofs have been elided.)

Theorem 1. The functions of d terminate on all inputs iff every well-formed sequence
of precise contexts is finite.

We now define the notion of a calling context graph and show that it is a conservative
approximation of the well-formed sequence of contexts.

Definition 5. A calling context graph (CCG), is a directed graph, G = (C, E), where
C is a set of calling contexts, and for any pair of contexts c1, c2 ∈ C, if the sequence
〈c1, c2〉 is well-formed, then 〈c1, c2〉 ∈ E. If C is the set of precise contexts of d, then G
is called a precise CCG of d.

The minimal precise CCG for function f in Figure 2 is shown in the same figure. Note
that there is no edge between the two contexts. This is because if x is a positive integer,
then decrementing x by 1 will not lead to a negative integer. Likewise, adding 1 to x
if it is a negative integer cannot produce a positive integer. Notice that this mirrors the
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define size(x) = if pairp(x) then size(first(x)) + size(rest(x)) + 1
else if intp(x) then abs(x) else 0

Fig. 3. Definition of size

looping behaviors of the function. Figure 2 also contains the minimal precise CCG for
function foo. Notice that if the first context of foo is reached, foo calls itself, passing
in (dec j) for both arguments. Since (dec j) cannot simultaneously be both equal
to 1 and not equal to 1, it is impossible to immediately reach context 1 again. However
both contexts can reach context 2, and context 2 can reach context 1.

Lemma 1. Given a CCG, G = (C, E), every well-formed sequence of calling contexts
of C is a path in G.

Note that the converse of the above lemma does not hold. This is because the definition
of a CCG only requires local reachability whereas a well-formed sequence of contexts
requires that the entire sequence correspond to a single computation. As a result, a CCG
is an abstraction of the actual system. We use CCGs to perform a local analysis which if
successful can determine that the definitions terminate. To do this, we start by assigning
calling context measures to contexts in the CCG.

Definition 6. Given a calling context, c = 〈f, G, e〉, and a set S ⊆ Val , a calling
context measure (CCM) for c over S, s, is an expression whose free variables are pa-
rameters of f and for any environment, ε, Hh �G� ε ⇒ �s�

h
ε ∈ S.

CCMs simply map the parameters of a function into some set. For our purposes, this
set will have a well-founded ordering on it. Now we create a mechanism for comparing
the CCM of two adjacent contexts in a CCG.

Definition 7. Let G = (C, E) be a CCG with e = 〈c1, c2〉 ∈ E. Let 〈S, ≺〉 be a
well-founded structure where Sc1 and Sc2 are sets of CCMs over S for c1 and c2,
respectively. Then, the CCM function for e over ≺, Sc1 , and Sc2 is the function φ :
Sc1 × Sc2 → {>, ≥, ×} such that: (1) φ(s1, s2) = > only if for all witnesses v for
〈c1, c2〉, we have �s1�

h
εv
1 � �s2�

h
εv
2 ; (2) φ(s1, s2) = ≥ only if for all witnesses v for

〈c1, c2〉, we have �s1�
h

εv
1 � �s2�

h
εv
2 ; (3) φ(s1, s2) = ×, otherwise.

We represent CCM functions for 〈c1, c2〉 graphically with a box containing the CCMs
for c1, c2 on the left and right, respectively. An edge is drawn from s1, a left CCM, to
s2, a right CCM, with the label φ(s1, s2) iff it is > or ≥. If φ(s1, s2) is ×, no edge is
drawn.

We now consider some examples. For the function f in Figure 2, we use the size
function in Figure 3 applied to f’s parameter, x, as the only CCM for both contexts.
The range of size is the set of natural numbers, and the function is designed to mirror
common induction schemes, e.g., induction on the size of a list. Notice that for each
context in our example, the CCM decreases for all values of x that satisfy the governors
of the context. The resulting CCM functions are shown in Figure 4a. For the function
foo in Figure 2, we use different CCMs. Namely, we apply dec to the arguments; note
that dec always returns a natural number, which is a well-founded domain under the
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φ1 : 1 → 1, φ2 : 2 → 2

size(x)
> ��size(x)

(a)

φ1 : 1 → 2

dec(i) dec(i)

dec(j)

> ��������� > ��dec(j)

φ2 : 2 → 1, φ3 : 2 → 2

dec(i)
> ��dec(i)

dec(j)
≥ ��dec(j)

(b)

Fig. 4. (a) CCM function for f. (b) CCM functions for foo.

define ack (x, y) =
if (not(intp(x)) or x ≤ 0) then 1
else if (not(intp(y)) or y ≤ 0)

then if x=1 then 2 else x+2
else ack(ack(x-1, y), y-1)

�������	1
�� ��

�������	2�� ��

φ1 : 1 → 1,
φ2 : 1 → 2

x
> �� x

y
≥ ��y

φ3 : 2 → 1,
φ4 : 2 → 2

x x

y
> ��y

1. 〈ack, {intp(x), 0 < x, intp(y), 0 < y}, ack(x-1, y)〉
2. 〈ack, {intp(x), 0 < x, intp(y), 0 < y}, ack(ack(x-1, y), y-1)〉

Fig. 5. Ackermann’s function

< relation. The result is shown in Figure 4b. The question of how to choose CCMs is
addressed in Section 4.

We use CCM functions to show that certain infinite paths are not feasible and also to
show that CCGs correspond to terminating functions.

Definition 8. We say that a CCG, G = (C, E) is well-founded if there exists a well-
founded structure, 〈S, ≺〉 and a mapping, m, from C into sets of CCMs over S such
that MC,≺,m(c) for all infinite paths, c = c1, c2, . . ., through G. MC,≺,m is a CCM
predicate and holds for an infinite sequence of contexts, c, iff there exists i0 ≥ 1 and a
sequence si0 , si0+1, . . . such that for all i ≥ i0, si ∈ m(ci) and φi(si, si+1) ∈ {>, ≥},
and for infinitely many such i, φi(si, si+1) = >, where φi denotes the CCM function
for 〈ci, ci+1〉 with CCMs m(ci) and m(ci+1).

It is important to note here that we do not need to fix a CCM for each context in order
to satisfy the CCM predicate. Rather, we can select from any of the CCMs for a given
context each time it appears in a sequence. For example, consider Ackermann’s func-
tion, given in Figure 5. Here, if a sequence contains context 2 infinitely often, then y
decreases infinitely, and if it does not, then there is an infinite suffix of the sequence
that is just context 1, which means that x decreases infinitely often. It is possible to cre-
ate one measure that decreases in both cases, but this measure requires a well-founded
structure more powerful and complex than the natural numbers.

It turns out that we only need to consider maximal SCCs (strongly connected com-
ponents) to establish termination.

Theorem 2. Let G = (C, E) be a CCG, s.t. C is the set of precise contexts of d. If every
maximal SCC of G is well-founded, then all functions of d terminate on all inputs.

Notice that the converse of Theorem 2 does not hold because the paths of a CCG are
a superset of the well-formed sequences of contexts. For example, notice that when
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define g(x) = f(x+1)
define h(x) = f(x-1)
define f(x) =

if not(intp(x)) or x=0
then 0

else if x < 0
then g(x)

else h(x)

1. 〈g, {}, f(x+1)〉
2. 〈h, {}, f(x-1)〉
3. 〈f, {intp(x), x �= 0, x < 0}, g(x)〉
4. 〈f, {intp(x), x �= 0, 0 ≤ x}, h(x)〉

�������	1
��

		

�������	3��

�������	4
��
�������	2��





Fig. 6. Altered version of function defined in Figure 2

define f(x) =
if not(intp(x))

or x ≤ 1
then 0

else if x mod 2 = 1
then f(x+1)

else 1 + f(x/2)

1. 〈f, {intp(x), 1 < x, x mod 2 = 1}, f(x+1)〉
2. 〈f, {intp(x), 1 < x, x mod 2 �= 1}, f(x/2)〉

�������	1
��
�������	2�� ��

φ1 : 1 → 2

size(x) size(x)

φ2 : 2 → 1, φ3 : 2 → 2

size(x)
> ��size(x)

Fig. 7. Example of the abstraction inherent in the infinite CCM relation

we split function f from Figure 2 into several functions, as in Figure 6, all the con-
texts now appear in the same SCC. Why? Consider the function, g. Note that g(2)
results in the call f(3), which leads to context 4. A similar situation arises for h. Thus
1, 4, 2, 3, 1, 4, 2, 3, . . . is a valid path through any CCG, even though it is not a well-
formed sequence of contexts. Each time through the loop 1, 4, 2, 3, the value of x stays
the same, hence, the termination analysis presented so far fails.

Another source of imprecision is due to the local analysis used in determining if a
CCG is well-founded. If a value decreases over several steps, but increases for one of
those steps, the termination analysis presented so far will fail. Consider the example in
Figure 7. When x is odd, 1 is added to x and when it is even, x is divided by 2. This
continues until x is 1 (or not a positive integer). This results in an overall decrease of
the value of x despite the initial increase.

In order to gain more accuracy and overcome many of the problems caused by the
local nature of our analysis, we introduce the idea of context merging. This essentially
enables us to consider multiple steps instead of single steps.

Definition 9. The call substitution of e =f(e1, e2, . . . , en), denoted σe, maps xi to ei

for all 1 ≤ i ≤ n, where x1, x2, . . . , xn are the parameters of f .

Definition 10. Let 〈c1, c2〉 be a well-formed sequence of calling contexts, where c1 =
〈f1, G1, e1〉 and c2 = 〈f2, G2, e2〉. The merging of c1 and c2, denoted c1; c2, is the
calling context 〈f1, G1 ∪ {pσe1 | p ∈ G2}, e2σe1〉.

As an example, note that if in Figure 6 we merge context 3 with context 1 and context
4 with context 2, we get contexts 1 and 2 of Figure 2, respectively. This makes sense as
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1; 2 : 〈f, {intp(x), 0 ≤ x, x �=1, x mod 2 = 1, intp(x+1), 0 ≤ x+1, (x+1) mod 2 �= 1}, f((x+1)/2)〉
2; 1 : 〈f, {intp(x), 0 ≤ x, x �=1, x mod 2 �= 1, intp(x/2), 0 ≤ x/2, (x/2) mod 2 = 1}, f(x/2+1)〉
2; 2 : 〈f, {intp(x), 0 ≤ x, x �=1, x mod 2 �= 1, intp(x+1), 0 ≤ x+1, (x+1) mod 2 �= 1}, f((x/2)/2)〉

Fig. 8. Merging and compaction results for Figure 7

the example in Figure 6 was obtained by splitting f into several functions and merging
essentially recombines the contexts. For a more interesting example, in Figure 7 con-
sider merging context 1 with context 2, context 2 with context 1, and context 2 with
itself; the result appears in Figure 8.

We now use merging to define the notion of absorption and show that given a CCG,
we can define an infinite sequence of CCGs such that if we can prove that at least one
CCG in the sequence terminates, then so does the original CCG. This can greatly extend
the applicability of our analysis.

Definition 11. Given a CCG, G = (C, E), the result of absorbing c ∈ C is a CCG
G′ = (C′, E′) where C′ = C\{c} ∪ {c; c′ | 〈c, c′〉 ∈ E}.

Theorem 3. Let G0, G1, . . . be a sequence of CCGs such that G0 is a precise CCG of
d, and Gi+1 is obtained from Gi by absorbing a context. If for some i, every maximal
SCC of Gi is well-founded, then every function in d terminates on all inputs.

4 Algorithm

The definitions given in Section 3 suggest the following algorithm for the termination
analysis of a set of function definitions, d, using static analysis and theorem proving.

1. Using static analysis, construct the precise calling contexts of d.
2. Using theorem proving, build a precise CCG.
3. Absorb contexts that have only one successor.
4. Divide the CCG into SCCs
5. Choose a well-founded structure for each SCC, and a set of CCMs for each context.
6. Use theorem proving to construct safe approximations of the CCM functions.
7. Perform analysis to decide the CCM predicate for all paths through each SCC.

Step 1 is straightforward, and one can construct the algorithm from Definition 1. Step
2 involves building a CCG. We wish to construct as minimal a CCG as we can, in order
to avoid spurious paths through the CCG, which complicate the rest of the algorithm and
can lead to less accurate analysis. Therefore, for every pair of contexts, c1 = 〈f, G1, e1〉
and c2 = 〈g, G2, e2〉, such that e1 is a call to g, we query the theorem prover to prove
that 〈c1, c2〉 is not well-formed, and therefore no edge needs to be added from c1 to c2.
The corresponding theorem prover query is 〈∀v ∈ Val∗ :: (

∧
p∈G1

�p�
h

εv
1 
= nil) ⇒

¬(
∧

q∈G2
�qσe1�

h εv
1 
= nil)〉. If the proof is successful, we omit the edge 〈c1, c2〉.

For this algorithm, we choose a simple absorption strategy. While absorbing a con-
text in a CCG may result in a CCG that is more amenable to analysis, it may also
increase the size of the CCG (by up to a factor of 2). However, if a context has only
one successor in the CCG, absorbing it creates a CCG at most the size of the origi-
nal. We therefore perform several passes through the graph, absorbing all such contexts
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with each pass. This simple absorption strategy is quite effective, e.g., it allows us to
automatically prove the termination of the functions in Figure 6. We plan to explore
other strategies, such as looping from step 3 through step 7 and using the result of the
previous failed termination analysis to guide absorption.

Once absorption is completed, we choose well-founded structures and CCMs. Cur-
rently, we always default to natural numbers for our well-founded structure. We use
heuristics to automatically choose CCMs. Currently, these include the following.

– We use a version of the size function from Figure 3, called acl2-count, that is
extended to deal with more types, adding the size of each parameter of a function
to the CCMs of each context from that function.

– When e1 < e2 or e1 ≤ e2 is a governor of a context, we add e1-e2 as a CCM.
– When intp(e) and 0 < e are governors of the context, we add e as a CCM.

Finally, we propagate measures other than the size of the parameters through the rest
of the contexts. That is, if we add a CCM s, to a context, then to each of its predecessors
in the CCG we add the CCM sσe, where e is the call of the predecessor. We repeat this
until the CCM is propagated to each of the contexts in the CCG.

In step 6, we approximate the CCM functions using the theorem prover. Given two
adjacent contexts, c1 = 〈f, G1, e1〉 and c2 = 〈g, G2, e2〉, in an SCC, then for every
CCM, s1, for c1 and every CCM, s2, for c2, we perform the following analysis. We
first attempt to prove that for all ε, [(

∧
p∈G1

�p�h ε 
= nil) ∧ (
∧

q∈G2
�qσe1�

h ε 
=
nil)] ⇒ �s1�

h
ε ≺ �s2σe1�

h
ε. If this succeeds, we set φ(s1, s2) to be >. Otherwise,

we attempt to prove that for all ε, [(
∧

p∈G1
�p�

h
ε 
= nil) ∧ (

∧
q∈G2

�qσe1�
h

ε 
=
nil)] ⇒ �s1�

h
ε � �s2σe1�

h
ε. If this succeeds, we set φ(s1, s2) to be ≥. If neither

proof succeeds, we set φ(s1, s2) to be ×.
The final step of the algorithm is to determine the value of the CCM predicate. In

other words, we wish to determine that for every path through the graph, we can choose
one of the CCMs from each context in the path such that they never increase in value,
and infinitely decrease in value. A basic algorithm for doing this appears in [13].

5 Experimental Results

In this section, we experimentally evaluate the theory of calling context graphs we have
introduced in this paper. As we saw in the previous section, our analysis is param-
eterized by the CCMs used and by the merging and absorption strategies employed.
Our goal is to evaluate a simple, baseline version of the algorithms we have presented.
Therefore, we use a simple absorption strategy and a small, simple collection of CCMs.

We have implemented our termination algorithm and used it on the ACL2 system,
an industrial-strength theorem proving system that consists of a feature-rich functional
programming language, a first-order logic for reasoning about this language, and a the-
orem prover for the automation of this reasoning. The ACL2 language can roughly be
thought of as an applicative (pure, functional) subset of Common Lisp. The reality is
more complicated because ACL2 has many advanced features such as single-threaded
objects, which have been shown to enable execution at close to C speeds. ACL2 is
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actively used by a worldwide user-base to perform tasks as diverse as microproces-
sor modeling and simulation, the analysis of graph algorithms, algebraic reasoning, the
analysis of imperative programs written in languages such as Java, etc. For more infor-
mation on ACL2 see [11,10,9].

ACL2 is a good choice for us because termination arguments play a key role in its
logic. First, every program admitted by the definitional principle must be shown to ter-
minate before it is accepted by ACL2. This guarantees that definitions do not render
ACL2 inconsistent. Second, inductive reasoning, ACL2’s forte, is justified using termi-
nation arguments (to show that the induction is well-founded). Currently, termination
in ACL2 is proven by providing an ordinal-valued measure and showing that it de-
creases on every recursive call. The ordinals are a transfinite extension of the natural
numbers that form the basis of set theory; in fact, any well-founded argument can be
phrased in terms of the ordinals. In recent work, we improved ACL2’s handling of the
ordinals, defined algorithms for ordinal arithmetic, and created a library of theorems
for reasoning about the ordinals and ordinal arithmetic. The result was a significant
improvement in ACL2’s ability to reason about termination, once an ordinal measure
is provided [14,15,16,17]. ACL2 tries to automate termination analysis by guessing a
measure of the form acl2-count(x), where x is some parameter of the function.
Unfortunately, it is often the case that this simple heuristic fails and the user must dis-
cover and provide an appropriate ordinal measure.

Another advantage of using ACL2 is that it has a regression suite consisting of 137
MB of definitions and theorems. There are over 10,400 function definitions arising in
the work of various researchers around the world and ranging from bit-vector libraries
used by AMD (to prove the correctness of their floating point units) to set theory li-
braries to graph algorithms to model checkers, etc. The termination of all of these func-
tions has already been proven with ACL2. In the cases where ACL2 does not auto-
matically prove termination, human guidance is required. We distinguish two types of
guidance.

Implicit guidance is given when users prove auxiliary lemmas which help ACL2 to
complete the termination proof. While it is difficult to identify the theorems used solely
to prove termination, it is clear that many termination proofs require auxiliary lemmas
and substantial human effort. For example, in a recent posting to the ACL2 mailing
list, an experienced ACL2 user asked whether a particular proof could be simplified.
After some discussion, he simplified his proof and posted a proof challenge to see if
anyone could simplify it further. The point was to establish the termination of function
fringep. The simplified proof included a library for reasoning about arithmetic, seven
lemmas, one theory command, and five function definitions. Two of the functions were
needed to define fringep, but the other three functions were needed for the proof.
The proof script also contained several hints, the use of the proof checker, and several
theorems that were classified as :linear rules (which are handled in a special way by
ACL2). The proof was simplified by another experienced ACL2 user, but it still required
the library, five function definitions, and five theorems. Using our system, we proved
termination directly in seconds, without using the library, without the extra definitions,
without any lemmas, and most importantly, without thinking.

Explicit guidance is given when users provide the measure explicitly or when they
provide hints on how to prove termination. Such guidance is easy to detect and of the
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Table 1. Results of experiments on the regression suite

Which Functions Total # Correct % Correct
All 10,442 10,308 98.7%
With Explicit Guidance 421 287 68.2%

10,442 functions in the regression suite, 404 required the user to provide explicit mea-
sures and 17 more requited hints. For example, here is a part of a function from the
regression suite that specifies an explicit measure: an ordinal constructed using ordi-
nal multiplication (o*), ordinal addition (o+), the first infinite ordinal ((omega)), and
several auxiliary functions (e.g., tuple-set-max-first).

(defun tuple-set->ordinal-partial-sum (k S i)
(declare (xargs

:measure (o+ (o* (omega) (nfix k))
(nfix (- (tuple-set-max-first S) i)))))

...)

The actual function definition is too long to list here, but discovering infinite measures
requires some skill. Our system automatically proves that the above function terminates.

To quantitatively evaluate our work, we removed all sources of explicit hints and
ran our termination method on the full regression suite. Since identifying the implicit
guidance is difficult, we did not attempt to remove such lemmas, but we note that since
our termination analysis is very different from ACL2’s, such lemmas are not very likely
to provide much help for us. The results of our experiments are presented in Table 1. Out
of all 10,442 functions analyzed by our system, 10,308 (over 98%) were automatically
proven to terminate. Included in these are 287 of the 421 functions which required
the user to provide explicit measures or hints for ACL2 to prove termination. In other
words, of the most difficult 4% of functions to analyze, our tool successfully and fully
automatically analyzed almost 70% of them.

6 Related Work

Termination is one of the oldest problems in computing science and it has received a
significant amount of attention. Here we will briefly review recent work on automating
termination analysis.

One of the most often cited techniques for the proving termination of programs
is called the size change principle [13]. This method involves using a well-order on
function parameters, analyzing recursive calls to label any clearly decreasing or non-
increasing parameters. Then, all infinite paths are analyzed to ensure that some param-
eter never increases and infinitely decreases over each path. We use this path analysis in
step 7 of our algorithm. The size change principle has several limitations, e.g., it does
not show how to take governors into account and it does not provide any method for
determining the sizes of the outputs of user-defined functions. Both of these considera-
tions are almost always important for establishing termination in realistic programming
languages.

Much work has gone into developing termination analyses for term rewriting sys-
tems and logic programs, e.g., [2,8,4]. However, these methods do not scale to the
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complexity of functional programming languages. For example, the AProVE tool [8],
cannot prove the termination of a function that takes two integer arguments, x and y,
and increments x until it is greater than y, which is the behavior of a simple for loop.

There has been a significant amount of work on proving the termination of programs
written in high-level imperative languages such as C. This work tends to focus on semi-
algebraic functions, whose termination behavior is governed by integer arithmetic. Most
of it has been even more narrowly defined than that, dealing only with systems whose
behavior is linear [19,20]. Recently, this work has been extended to programs with
polynomial behavior [3,6]. While successful in dealing with semi-algebraic programs,
these methods are not applicable outside of this domain, e.g., they cannot reason about
data structures, which often play a crucial role in termination proofs, or non-polynomial
arithmetic. A recent paper presents an abstraction-refinement algorithm for termination
analysis. The algorithm deals with loops, but cannot currently handle recursion and was
not implemented [5].

7 Conclusion

We introduced the notion of calling context graphs and various related static and the-
orem proving based analyses that together led to a powerful new method for proving
termination of programs written in feature-rich, first-order, purely functional languages.
We implemented our algorithm and were able to automatically detect the termination
of over 98% of the more than 10,000 function definitions in the ACL2 regression suite.
For future work, we are developing an abstraction-refinement framework that uses more
advanced absorption and merging strategies to refine CCGs. We are also looking at ex-
tending our analysis to deal with imperative languages such as C by taking advantage
of various static analyses (such as alias analysis, data-flow, and control-flow) and tak-
ing advantage of the fact that Static Single Assignment (SSA), a popular intermediate
language used for the analysis and optimization of imperative programs, is essentially a
pure functional language [1]. More generally, we are interested in exploring algorithms
that combine static analysis methods with theorem proving [18].
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