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Abstract. Results in time series analysis literature state that through
the Cholesky decomposition, covariance estimates can be stated as a
sequence of regressions. Furthermore, these results imply that the in-
verse of the covariance matrix can be estimated directly. This leads to
a novel approach for approximating covariance matrices in high dimen-
sional classification problems based on the Cholesky decomposition. By
assuming that some of the targets in these regressions can be set to zero,
simpler estimates for class-wise covariance matrices can be found. By
reducing the number of parameters to estimate in the classifier, good
generalization performance is obtained. Experiments on three different
feature sets from a dataset of images of handwritten numerals show that
simplified covariance estimates from the proposed method is compet-
itive with results from conventional classifiers such as support vector
machines.

1 Introduction

Many modern pattern recognition problems face the researchers with the prob-
lem of feature spaces of high dimensionality coupled with a sparsity of available
labeled samples to be used for training. Further compounding the problem in
many cases is that features are highly correlated, this adding a redundancy to
the data that in some cases may obscure the information important for clas-
sification. When using parametric methods, such as the Gaussian Maximum
Likelihood (GML) classifier, the parameter estimates, most importantly the co-
variance matrix estimate, will become increasingly unstable when the number
of labeled samples is low compared to the dimensionality of the feature space.
A wealth of approaches for dealing with the curse of dimensionality have been
proposed in the literature, ranging from dimensionality reduction of the feature
space to regularization of parameter estimates by biasing them toward simpler
and more stable estimates. Still, many of these methods have slight weaknesses
which would be gainful to try to resolve. Among these is the need for inversion
of covariance matrices when evaluating the classifier, and estimation of redun-
dant parameters in the full dimensional feature space. Especially when matrices
are near-singular, which they tend to be if the ratio between labeled samples
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and dimensionality is ill posed, inversion is plagued with numerical instabili-
ties. Therefore, a direct estimation of the inverse covariance matrix would be
useful.

Direct estimation of the inverse covariance matrix was suggested mainly for
computational convenience in [I]. In that paper it was furthermore noted that
for many statistical problems the inverse covariance matrix has many zero or
near-zero values, and a direct feature selection approach was applied to choose
which elements could be set to zero. Obviously this approach is computationally
infeasible for high dimensional data with covariance matrices with thousands or
tens of thousands of elements. We propose an approach that relies on the fact
that a modified Cholesky decomposition of an inverse covariance matrix defines
coefficients in a regression. By choosing targets in this regression to be zero,
we can find simpler models for the covariance matrix with fewer parameters to
estimate. A heuristic is suggested for searching for these parameters, guided by
measuring classification performance on a ten-fold cross-validation, with the goal
of finding sparse inverse covariance matrices where only the elements useful for
classification are estimated. By reducing the number of parameters to estimate,
variability in these covariance estimates is reduced. The results suggest that clas-
sifiers based on these sparse covariance matrices have improved generalization
performance.

The main contribution of this paper is a novel approach for expressing and
estimating sparse covariance approximations for high dimensional classification
problems. We propose a heuristic for only estimating the necessary parts of the
class-wise covariance matrices based on a simple search algorithm. The reduction
in the number of parameters to estimate reduces the variability in the remain-
ing parameters, while we still are using the full dimensional feature space for
classification, gaining increased class separability.

2 Sparse Class Conditional Covariance Matrices

Consider a classification problem with k classes, assuming class conditional dis-
tributions to be Gaussian with mean pj and class-wise covariance matrices Y.
It is well known that this reduces to comparing the k& quadratic discriminant
functions gx(z) = —Llog| x| — 2 (z — k)’ X} ' (x — pi) + logmy, where 7, is the
a priori probability for class k. Noting that —log|X%| = log\Ek_1|, it is clear that
there is no need for matrix inversion when classifying data, if we have a method
for estimating the inverse covariance matrices directly.

2.1 Parametrization of the Inverse Covariance by the Modified
Cholesky Decomposition

We decompose the inverse covariance matrix as a modified Cholesky decompo-
sition [2]
Yy~ '=1LDLT,

where L; is a lower triangular matrix with ones on the diagonal
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and D a diagonal matrix. If we were to consider the features of each sample as
a time-series, the elements in L can be seen row-wise as parameters in autore-
gressive processes of the same order as the row r. Several authors in the time
series literature have noted this [3], [4], [5]. We will use this fact to transform
the task of approximating covariance matrices into a sequence of regressions.
For each row, r, one could then ”predict” the next feature based on the r — 1
preceding features. Keeping with the earlier notation, and assuming zero mean
for readability, this can be expressed as:

r—1

T =) gty ter (1)

j=1

where the rth diagonal entry of D, , = var(e,) This parametrization has the
effect is that the resulting covariance matrix will still be positive definite, as
long as the diagonal elements of D are positive.

2.2 Search for a Sparse Representation of the Class-Wise
Covariance Matrices

As pointed out earlier, [I] proposed to choose the sparsity of the inverse co-
variance matrices using a sequential forward feature selection. Clearly this is
infeasible for high dimensional data where the number of unique elements in the
covariance matrix is in the thousands or tens of thousands, thus we have to resort
to a heuristic. The general idea of the proposed method is to find a sufficiently
complex covariance matrix to solve our classification problem, by evaluating a
search space that is small enough to handle.

Search Algorithm. From the regression formulation in equation [ we can
argue that a zero «,; indicates that when predicting x,, x; does not carry
much interesting information. For all rows, if we were to zero the coefficient of a
preceding feature, we could, using time-series terminology, argue that we ignore
a specific lag when predicting the next feature. If we ignore a specific lag for all
rows in our sequence of regressions, all elements in an off-diagonal in L can be
set to zero. Consider the illustration of a sparse L in figure [[l where the sparse
L matrix has only two off-diagonals where we estimate parameters.

We can also observe that zeros in the inverse covariance matrix means condi-
tional independence. It is well known that when there is a zero in position (4, 5)
of the inverse covariance matrix, z; and x; are independent, conditioned on the
rest of the features [0]. Informally this means that given all other features, x;
does not carry information regarding x; and vice versa. For data that has some
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specific order, for example discretized curves, the intuition that the correlation
between neighboring features does not carry information useful for discrimina-
tion between classes, and in some cases is even detrimental to classifier results,
was established in [7]. Our proposed heuristic for reducing the search space for
a sparse representation of the inverse covariance matrix is based on the same in-
tuition, that some of the correlations between features do not help in separating
the classes, and thus can be dropped.

The general idea is to start by approximating the covariance matrices with
the simplest possible models, i.e. diagonal matrices, and add parameters to the
approximation until the classification performance of the model does no longer
improve. With regard to our proposed heuristic, we search for which off-diagonals
in the covariance matrices that needs to be estimated in order to improve classi-
fication performance on the training data. The search, guided by ten-fold cross-
validation (10-CV) as a performance measure, can be described by the following
steps:

1. Initialization - Estimate diagonal inverse covariances for all classes k, X !
and calculate 10-CV performance. The parameters to estimate is the vari-
ances in Dy.

No parameters in Ly are estimated.

2. Search - Select off-diagonals in Li to be nonzero in a sequential forward
manner
(a) Find the 10-CV performance gain when adding each individual off-

diagonal to the pool of parameters to estimate
(b) Add the one off-diagonal that gives the largest improvement in 10-CV
(¢) Loop from a) until 10-CV performance does not improve further.

3 Maximum Likelihood Inverse Covariance Estimates

In regard to our motivation in the previous sections, we can develop Maximum
Likelihood estimates for the inverse covariance matrix. By the modified Cholesky
decomposition X, ' = Ly Dy LY [2], the log-likelihood function for the class-wise
inverse covariance for class k£ can be expressed

N

U = Yl loa(15kD) — o — )" LaDRL] (a1 — )]
=1

where N}, is the number of samples in class k. Express L = I — By, where By, is a
lower triangular matrix with zeros on the diagonal. It is clear that the parameters
we need to estimate are the diagonal elements of Dy and the lower triangular
elements of Bj,. We adopt the following notation: Let x;, be the r’th feature of
the I’th sample z; = x;,1.p, where p is the dimensionality of the feature space. Let
By, r1:(r—1) be the nonzero elements of row r of By, i.e. lower triangular elements
of the matrix in the given row. See the illustration in figure [l for an illustration
of which matrix elements in By, that are estimated for row r. Likewise, x; 1.(» 1)
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is the r — 1 first features of sample [ in the dataset. To simplify the expression,
we write vy = x; — fix, which gives the further expressions vy k., and vy j 1.(r—1)
using the same notation as before. We can rewrite the likelihood using these
definitions, letting r index diagonal elements 0,%’7“ of Dy, and observing that the
log-determinant of X can be written as the sum of the diagonal elements of
D, since the determinant of a matrix product can be written as a product of
determinants, and further that |Lg| = 1 by definition. The likelihood becomes

1) = £ S 1o8(1Dul) = (1 = B o) De((L = Bo)"urs)
=1

N p D
1
= 2 Z Z IOgO']%’T - Z[(I - Blzﬂ,r,lz(rfl))vl’k]zal%,r
=1 r=1 r=1
1 N p D
T2 DD ook, = Y [vnke = Bl i1 Uikro—n] Ok,
=1 r=1 r=1

To estimate the elements of the diagonal matrix Dy, differentiate by 03’ > and
set to zero
ol = N
rk T N
Zl=k1 [vl’kﬂ“ - B}Zﬂ’r,1;(r,1)vl,k,lz(r—1)}2

Furthermore, we find the estimate of By row-wise by differentiating the log-
likelihood by By ;. 1:(»—1) and set to zero. This gives

N

2 T T _
E [%,k(”l,k,r - Bk,r,n(r—l)”l,k,l:(r—l))”z,k,lz(r—n] =0,
=1

which after some rearranging leads to

N

Ny

— § ' T -1 T

Bk,r,lz(rfl) = [ Ul,k,lz(rfl)vl,k,l:(r—l)] [E vl,k,rvl,k,l:(r—l)}v
=1 =1

which is the result of regression of v, onto all previous elements in vy, , i.e.
ULk, 1:(r=1)+

Sparse Regressions of By, 1.(r—1)- The sequence of regressions can be sim-
plified if we assume that some elements of By, . 1.,—1) are always zero. This way
we can simply remove the corresponding predictors, vy 1.(-—1), and thus only
estimate the nonzero parameters. Consider figure [l where it can be seen that
for row r of By has only two targets in the regression not defined to be nonzero.
The implicit sparsity in the representation of the inverse covariance matrix can
be considered a feature selection in each regression. This reduces the size of the
matrix to be inverted in the regressions, which might give a classifier that is more
resilient to low sample counts, since the number of samples needed to make this
matrix inversion ill-conditioned might be much lower than in the conventional
case.
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B, 1:-1)

“Off-diagonals”

Fig. 1. Illustration of a matrix of correlations, L, for the inverse covariance matrix .
The matrix is lower triangular, with 1 on the diagonal, the elements to estimate is
below-diagonal and is represented with B in the text. The sparsity in the covariance
estimate is obtained by only estimating the matrix elements in some off-diagonals. The
matrix is estimated by a sequence of regressions, one for each row in the matrix B. Thus
for row 7, we estimate the elements By, ;. 1.(,—1). These regressions can be simplified if
we define that all elements not in the chosen off-diagonals are zero.

4 Experiments

In our experiments we used the mfeat dataset [§], which is a set of images of
handwritten numerals. The data consists of 10 classes, each having 200 samples,
and the dataset was split randomly in half to generate training and test data.
Performance when training was measured using ten-fold cross-validation. From
the images, three different feature sets were considered, 47 Zernike moments,
64 Karhunen-Loeve coefficients, and 76 Fourier coefficients. The classifier used
in our proposed method is a Gaussian Maximum Likelihood classifier, assuming
class-wise covariance matrices (GML-quadratic). All covariance matrices are ap-
proximated with the same off-diagonals according to the results from the search
strategy. In table [Il results of some comparable classifiers on these data are
given. The results from the proposed method is included for reference. The clas-
sifiers are Gaussian ML classifiers assuming common covariance (GML-linear)
and class-wise covariances (GML-quadratic), support vector machines with lin-
ear (SVM-linear) and quadratic (SVM-quadratic) kernels, and Parzen density
estimation. Note that Zernike moments and Fourier are rotation invariant fea-
tures, so much of the error in the classification is actually confusion between 6
and 9.

In figures [2(a)} 2(b)| and [2(c)|, the error rate by cross-validation and on test
data is given as a function of the fraction of covariance elements compared to
a full model. A full model estimates the entire covariance matrix for each class,
just as a GML-quadratic classifier, but still avoids inverting the covariance ma-
trix. Interestingly, avoiding matrix inversion in the classifier seems to make the
classifier slightly more stable than the conventional GML classifier. Figure
considers the Zernike moment feature set. The classification performance by
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Fig. 2. Error rates for the proposed method by cross-validation and on test data com-
pared to the fraction of covariance parameters of a full model for (a) 47 dimensional
Zernike moments feature set, (b) 64 dimensional Karhunen-Loeve feature set and (c)
76 dimensional Fourier feature set. For the Zernike and PCA feature sets, around 30%
of the parameters of a full model seems sufficient for good generalization performance.
For the Fourier feature set the number of parameters sufficient for a good classifier
is around 25%. These choices is clearly suggested by the cross-validation classification
€error.

cross-validation has a minimum at 36.8% of the covariance parameters, and the
mean result on the test data for that fraction of parameters is 17.4%. The same
results for the Karhunen-Loeve feature set are given in ﬁgure The minimum
by crosss-validation is here at 29.6% of the parameters, and the mean classifica-
tion result for this experiment is 3.7%. For the Fourier coefficient feature set the
results are shown in figure This feature set had a minimum classification
error by cross-validation at 25.1% of the parameters, and the classification result
on the test set was 18.2%. Note the far right on the figures, since the number
of samples available for training is nearing the dimensionality of the dataset, a
full covariance model will be near singular and even the proposed model col-
lapses. However, the decline is very graceful, and does not start until 80% of the
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Table 1. Error rates (in percent) for classifiers on test data (100 samples per class for
training), and on simplified models found by the proposed method on the three feature
sets, Zernike moments, Fourier coefficients and Karhunen-Loeéve coefficients.

Classifier Zernike Fourier K-L
GML-quadratic 19.8 239 6.8
GML-linear 18.2 18.5 4.5
SVM-linear 18.3 19.6 6.4
SVM-quadratic 15.7 159 2.1
Parzen 18.5 17.0 3.0

Proposed method 17.4 18.2 3.7

parameters of the model is used. These results are summarized in table [ and
compared with results for other classifiers.

All experiments indicated a gradual decline in performance as the number of
features estimated increased, however, at the same time the performance curves
in figures [2(a)) [2(a)| and [2(c)| indicate that for three different feature sets, there
is a fairly wide area where the classification performance on the test set is good.
In all the experiments, the minimum classification error by cross-validation oc-
curred in this area.

Considering the results presented in table I we observe that the proposed
method is certainly competitive with conventional methods.

5 Conclusion and Future Work

Using results from time series analysis, we have proposed a novel approach
for estimating sparse covariance matrices in full dimensional feature spaces for
Gaussian ML classifiers. Experiments on different feature sets of a handwritten
numeral classification problem indicates that it performs equally, or better than
conventional classifiers. The results from these initial experiments are encourag-
ing, and suggests the usefulness of further research in this direction.

We envision that this approach will be useful for reducing the number of para-
meters to estimate in a mixture of Gaussians classifier, where the motivation for
using the sparsest possible model for component distributions is even stronger.

Future work with this method will focus on improving the selection heuristic.
The present heuristic of choosing off-diagonals in L to estimate is intuitive when
there is some clear correlation structure in the data that is present in the entire
feature set. An example of this is the strong correlation between neighboring
features when using discretized curves as input. Another improvement would be
to consider selecting different off-diagonals to estimate for each class.
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