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Abstract. Similarity based classification methods use positive semi-
definite (PSD) similarity matrices. When several data representations
(or metrics) are available, they should be combined to build a single
similarity matrix. Often the resulting combination is an indefinite ma-
trix and can not be used to train the classifier. In this paper we intro-
duce new methods to build a PSD matrix from an indefinite matrix. The
obtained matrices are used as input kernels to train Support Vector Ma-
chines (SVMs) for classification tasks. Experimental results on artificial
and real data sets are reported.

1 Introduction

Classification methods generally rely on the use of a (symmetric) similarity ma-
trix. In many situations it is convenient to consider more than one similarity
measure. For instance, in Web Mining problems we have an asymmetric link
matrix among Web pages, A. Aij is 1 when there is a link between page i and
page j and it is 0 when there is not a link. Two different matrices are defined from
A: the co-citations (AT A) and co-references (AAT ) matrices. Another matrix is
defined from the terms by documents (or web pages) matrix, D. Dij = 1 if term
i appears in web page j and it is 0 when it does not appear. The ‘document
by document’ matrix is defined by DT D. The co-citations, co-references and
‘document by document’ matrices correspond to different similarity representa-
tions focusing on different data aspects. Several methods have been proposed to
combine similarity matrices [11,8,10] in order to create a new single represen-
tation for which a classifier is trained. If the similarity representations are not
equivalent, a better classification performance should be expected if we are able
to combine them. Often, the resulting combination matrix is not positive semi-
definite (PSD), that is, it has one or more positive eigenvalues and one or more
negative eigenvalues. Then, it is not possible to embed the data into a Euclidean
space. The combination matrix is not appropriate to train most used classifiers,
and thus it must be modified.

In this paper we afford a deep review of the existing techniques to obtain a
PSD matrix from an indefinite one, and propose new methods specially useful
for classification tasks. The process of obtaining a PSD matrix from an indefinite
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matrix will be called Euclideanization in the following. We will use the resulting
matrix as kernel to train a Support Vector Machine (SVM) classifier.

The rest of the paper is organized as follows. In Section 2, we review the exist-
ing Euclideanization methods. In Section 3 we propose several Euclideanization
methods, adapting them to the classification context. The experimental setup
and results on artificial and real classification problems are described in Section
4. Section 5 concludes.

2 Classical Methods

Let K be a real n×n symmetric indefinite matrix. By the spectral decomposition
theorem K can be written as K = UnΛnUT

n =
∑n

i=1 λiuiu
T
i , where Λn is a

diagonal matrix of eigenvalues of K (first, p positive eigenvalues with decreasing
values, next q negative ones with decreasing magnitude, and finally, zero values),
and Un is an orthogonal matrix whose columns ui are standarized eigenvectors.

2.1 Multidimensional Scaling

The first Euclideanization method considers the matrix Z = UrΛ
1
2
r , where r ≤ p

[2]. The new matrix is defined as follows:

K∗
MDS = ZZT = UrΛrU

T
r . (1)

This is equivalent to consider only those eigenvalues larger than a positive con-
stant ε, (if ε = 0, then r = p). In the case of indefinite matrices, the magnitudes
of negative eigenvalues suggest the deviation from Euclideaness [13]:

rmm = 100
|λmin|
λmax

, rneg = 100

∑
λi<0 |λi|

∑n
i=1 |λi|

. (2)

Now, consider a classification problem involving a sample x1, . . . , xn and an
indefinite kernel matrix K, where Kij = K(xi, xj). In order to use the kernel
matrix K∗

MDS with an SVM classifier, we should be able to calculate K∗(x, xi)
for a new point x, given that the SVM classifier takes the form f(x) = b +∑

i αiK
∗
MDS(x, xi). Let K(x, ·) ∈ IR1×n be the vector of original kernel values

for the new point, then:

K∗
MDS(x, ·) = K(x, ·)UrΛ

− 1
2

r Λ
1
2
r UT

r = K(x, ·)UrU
T
r . (3)

2.2 Pseudo-euclidean Space

An alternative solution to MDS is to use both positive and negative eigenvalues
of K to represent the data set in a Pseudo-Euclidean space [3], Z = Uk|Λk| 1

2 ,
where k = p + q. The new matrix is defined as follows:

K∗
Pseudo = ZZT = Uk|Λk|UT

k . (4)
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In this case, the kernel expression for new points is given by [12]:

K∗
Pseudo(x, ·) = K(x, ·)Uk|Λk|− 1

2 M |Λk| 1
2 UT

k = K(x, ·)UkMUT
k , (5)

where M =
[
Ip 0
0 −Iq

]

. An alternative method is to consider a positive constant

ε and only those eigenvalues such that |λi| ≥ ε.

2.3 Adding a Quantity to the Diagonal of the Matrix

In this method, a positive constant λ is added to the diagonal of the original
matrix, large enough to make positive all the eigenvalues of the kernel matrix
(λ > |λmin| will do):

K∗
Add = K + λI = U(Λ + λI)UT . (6)

3 Alternative Methods

3.1 Square Transformation

First, we propose a very intuitive, computationally cheap and free parameter
method to build a kernel matrix from a symmetric indefinite matrix K as follows:

K∗
ST = K2 = KK = UΛUT UΛUT = UΛ2UT . (7)

For the new points the kernel values can be calculated by: K∗
ST (x, ·) = K(x, ·)K.

3.2 Bending

Hayes and Hill propose in [4] a method termed ‘bending’ for the modification of
estimates of covariance matrices in the construction of genetic selection indices.
Bending is an iterative process of updating a matrix when a weighting matrix is
given to control the relative importance of the elements of the original matrix
[6]. Let K be a symmetric indefinite matrix and let W be a weighting matrix
for the elements of K. The Bending process is resumed in Algorithm 1.

Let n = 0, K0 = K, ε a positive constant and � denotes the Hadamard product.
while Kn is indefinite do

Calculate the decomposition: Kn = UnΛnUT
n .

Replace Λn with Λ∗
n, where λ∗

i = g(λi, ε).
Calculate a new matrix: Kn+1 = Kn −

�
Kn − UnΛ∗

nUT
n

�
� W .

n = n + 1.
end while

Algorithm 1. Bending
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In the original Bending algorithm, g(λi, ε) = max(λi, ε). Alternatively, we pro-
pose to use g(λi, ε) = max(|λi|, ε) as in Pseudo method, g(λi, ε) = λi + λ as in
the method of adding a constant to the eigenvalues, or g(λi, ε) = λ2

i as in the
Square Transformation (ST) method. If the weighting matrix W is such that
all its elements are equal, then the Bending method is equivalent to the MDS
method. If Wij = 0 then the value in Kij does not change at this step. We
propose to calculate K∗(x, ·) for a new point x in a similar way to the MDS
method. Then, to modify K∗(x, ·), a weighting matrix for the new points should
be known in advance:

Kn+1(x, ·) = Kn(x, ·) − (Kn(x, ·) − K∗
MDS(x, ·)) � W (x, ·)

= Kn(x, ·) −
(
Kn(x, ·) − Kn(x, ·)UUT

)
� W (x, ·)

= Kn(x, ·) − Kn(x, ·)
(
I − UUT

)
� W (x, ·) . (8)

The Bending method can be used when we are dealing with a distance matrix
but the matrix under consideration is an indefinite matrix, to guarantee that the
diagonal elements of the PSD final matrix become 0.

3.3 Alternating Projections

Alternating Projections [14] is a theoretically powerful method for computing
best approximations from a closed convex set K that is the intersection of a
finite number of closed convex sets, K = ∩M

m=1Km. We will use this method to
find the nearest matrix at the intersection of the sets of PSD matrices and the
matrices which diagonal elements are fixed to a given value. This method works
as an iterative algorithm that reduces the problem to find best approximations
from the individual sets.

Consider the following problem:

minA ‖K − A‖W

s.t. A = AT ,
A � 0 ,
diag(A) = c ,

(9)

where ‖X‖W = ‖W 1/2XW 1/2‖F , ‖ · ‖F denotes the Frobenius norm, W is a
symmetric PSD matrix, and c is a vector in IRn. This problem appears in the
finance industry when given a symmetric matrix K (for example correlations
between stocks), the nearest symmetric PSD matrix K∗ with unit diagonal (the
nearest correlation matrix) is required.

The solution to (9) is a matrix in the intersection of the set of symmetric
PSD matrices (S) and the set of symmetric matrices with diagonal equals to
the vector c (U), that is closest to K using a weighted Frobenius norm. Since S
and U are both closed convex sets, it can be shown that the minimun in (9) is
achieved and the solution is unique [7].

Let PS and PU be the projections onto S and U respectively. To find the
nearest matrix in the intersection of the sets S and U we can iteratively project
by repetating the operation:
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A ← PU (PS(A)) . (10)

It can be shown [5] that:

PS(A) = W−1/2
(
(W 1/2AW 1/2)∗MDS

)
W−1/2 . (11)

In practice, we suggest to use a diagonal matrix W . Then, it it easy to show that:

PU (A) = A − (diag(A) − c) . (12)

For a new point x, a matrix of weights W (x, ·) is needed. We propose to calculate
PS(K(x, ·)) as in the MDS method in (11), and to obtain PU (PS(K(x, ·))), only
the values of c for the new point are needed.

Next, we present two new Euclideanization methods. In the first one, a kernel
matrix is modified to be as similar as possible to the indefinite matrix, without
losing the PSD property. In the second method, a linear combination of kernels
as similar as possible to the original indefinite matrix is built.

3.4 Conformal Transformation

Let A be a given PSD matrix similar to an indefinite matrix K. In our context
A could be the average of several kernel matrices (see Section 4 for details). Let
W be a diagonal matrix in IRn×n. Consider the problem:

minW ‖K − WAW‖2
F . (13)

Note that if A is PSD, so is WAW . Given a PSD matrix A and an indefinite
matrix K, we look for a Conformal Transformation (CT) of A such that the
resulting matrix K∗ is the closest to the input matrix K.

We propose an iterative method to solve problem (13). W is initialized as the
identity matrix of order n. The elements of W are modified iteratively (adding
or subtracting a fix constant), while a better approximation between matrices
WAW and K (a lower Frobenius norm value) is being obtained. The w value
for a new point x is:

wx =
∑n

i=1 wiK(i, x)A(i, x)
∑n

i=1(wiA(i, x))2
, (14)

where w = diag(W ) ∈ IRn×1.
Instead of a diagonal matrix, a more complicated expression for W could be

used in (13). Note that WAW = A � w ∗ wT . Instead of using a matrix defined
by a single column w, we extend our method by considering a matrix V ∈ IRn×r

of r columns of weights. The expression for the new matrix is A � V ∗ V T .

3.5 Conformal Linear Combination

Let K an indefinite matrix and let K1, . . . , KM a set of M PSD matrices (ker-
nels). Consider the problem of finding the PSD linear combination of those
matrices, closest to K:
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minλm ‖K −
∑M

m=1 λmKm‖2
F

s.t.
∑M

m=1 λm = 1 ,
λm ≥ 0 ∀m = 1, . . . , M .

(15)

It is easy to show that this problem is equivalent to a simple quadratic pro-
gramming problem. We will label this method as ‘conformal linear combination’
(CLC). In the particular case of M = 2 kernels, the solution is:

λ1 =
〈K1 − K2, K − K2〉

‖K1 − K2‖2
F

, λ2 = 1 − λ1 . (16)

4 Experiments

To test the performance of the proposed methods, SVMs have been trained
on artificial and real data sets using the kernel matrices K∗ previously con-
structed. To evaluate the accuracy of the classifiers, the classification error, the
sensitivity: (True ‘+’ recovered/Total true ‘+’) and the specificity: (True ‘-’ re-
covered)/(Total true ‘-’) measures are used. In all cases, the results have been
averaged over 10 runs.

4.1 Artificial Data Set

This data set consists of 400 two-dimensional points (200 per class). Each group
corresponds to a normal cloud with mean vector μi and diagonal covariance
matrix σ2

i I. Here μ1 = (3, 3), μ2 = (5, 5), σ1 = 0.7 and σ2 = −0.9. We have
defined two kernels from the projections of the data set onto the coordinate axes.
We have used 75% of the data for training and 25% for testing. The interest of
this example lies in the fact that, separately, both kernels achieve a poor result
(a test error higher than 15%).

We have used the pick-out method [11] to combine the two kernels involved.
For a pair of elements in the sample, the pick-out method chooses the maximun
of the kernels involved if the two elements belong to the same class and the
minimun of the kernels under consideration if the two elements belong to different
classes. The output matrix obtained is not necessarily PSD. The eigenvalues
of the output matrix for the artificial data set are represented on Figure 1.
Although the first three eigenvalues are clearly higher than the rest, half of
the eigenvalues are negative. The deviation from Euclideaness can be measured
using (2): rmm = 1.6 ± 0.3 and rneg = 2.8 ± 0.6 (mean ± s.d.), which suggests a
moderate deviation from Euclideaness.

Table 1 shows the classification results. The MDS and Pseudo subscripts rep-
resent the value of the positive constant ε. The MDS, Bending and AP methods
achieve the lowest test error. The support vectors obtained with the MDS method
were used to define the weighting matrices needed in the Bending and AP meth-
ods. The MDS and Pseudo classification results strongly depend on the value of
the parameter ε. The best results were achieved using ε = 5, which implies the
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Fig. 1. Eigenvalues of the pick-out output matrix for the artificial data set

Table 1. Percentage of misclassified data, sensitivity (Sens.), specificity (Spec.) and
percentage of support vectors (S.V.) for the kernels with complementary information

Method Train Test Sens. Spec. S.V.
MDS0 3.0 10.0 0.956 0.845 19.4
MDS1 3.2 7.1 0.952 0.911 19.7
MDS5 4.4 4.3 0.935 0.978 21.5
Pseudo0 5.3 10.8 0.966 0.821 19.4
Pseudo1 3.6 7.5 0.939 0.913 18.8
Adding λI 5.2 5.2 0.899 0.996 60.1
ST 5.2 7.0 0.951 0.911 3.9
Bending 4.4 4.3 0.935 0.978 21.5
AP 4.4 4.3 0.935 0.978 21.5
AKM 6.4 6.5 0.868 1.000 35.4
CTAKM 6.3 6.1 0.876 1.000 35.1
CLCAKM 6.4 6.7 0.864 1.000 35.9

selection of the two highest eigenvalues. The ST method involves significantly
less support vectors than the other methods. On the other hand, adding a quan-
tity to the diagonal of the eigenvalue matrix increases the percentage of support
vectors. The conformal transformation method outperforms the average of the
kernels method (AKM [10]) when the AKM method was used to initialize the
transformation. The starting matrices of the CLC method are the two original
kernels. The classification results were similar to that obtained from the AKM.
Both kernels, individually, achieve poor classification results, and thus, given the
definition of the kernel, it is not possible to define a linear combination of the
kernels able to significantly improve the AKM results.

4.2 A Real Data Set Classification Problem

In this section we have dealt with a database from the UCI Machine Learning
Repository: the Johns Hopkins University Ionosphere database [1]. The data
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Table 2. Percentage of misclassified data, sensitivity (Sens.), specificity (Spec.) and
percentage of support vectors (S.V.) for the ionosphere data set

Method Train Test Sens. Spec. S.V.
MDS0 1.9 6.4 0.973 0.874 43.0
MDS1 3.3 6.5 0.969 0.878 34.4
MDS5 5.4 7.7 0.964 0.851 34.1
Pseudo0 1.9 6.7 0.952 0.901 44.7
Pseudo1 3.3 6.5 0.969 0.878 34.4
Adding λI 1.6 6.4 0.983 0.855 65.9
ST 2.1 5.9 0.965 0.901 21.5
Bending 2.0 6.0 0.966 0.895 44.5
AP 1.7 5.9 0.977 0.881 43.5
CTRBF 4.0 6.0 0.987 0.859 53.0
AKM 2.3 6.7 0.982 0.851 45.0
CLCAKM 2.2 5.9 0.980 0.875 45.5

set consists of 351 observations with 34 continous predictor attributes variables
each. We have used 60% of the data for training and 40% for testing.

For this data set we have combined several RBF kernels Km(x,z)=e−||x−z||2/cm

with cm = 10 + 5 ∗ (m − 1) and m = 1, . . . , 10. We have used a linear ker-
nel K(x, z) = xT z, and a polynomial kernel K(x, z) = (1 + xT z)2 as well. We
have considered the following transformation: K(x, z) = K(x,z)√

K(x,x)
√

K(z,z)
to make

comparable the different kernels values. The KWS method [9] (Kernel Weighting
Scheme) has been used to combine these kernels. In this method we use the ker-
nel value, the neighbourhood of the elements and the label information to assign
different weights to each element into the kernel matrix. The output matrix is
not necessarily PSD. The percentage of negative eigenvalues is 19.0%, and their
relative importance is significant: rmm = 3.2 ± 0.3 and rneg = 4.6 ± 0.4.

The classification results are shown on Table 2. The ST, AP and CLC methods
achieve the best results. Similar results were obtained with the CT method
which improves the a priori kernel matrix used (RBF with parameter c = 55:
7.0% in test error). The CLC method clearly outperforms the AKM method.
The performance of MDS and Pseudo methods is related to the choice of the
parameter ε. The support vectors obtained with the MDS method with ε = 0
were used to define the weighting matrices needed in the Bending method. When
the diagonal elements of the output matrix were fix to be 1, the AP method
outperforms the MDS method.

5 Conclusions

In this paper, we propose new techniques to build a PSD matrix from an in-
definite one. The obtained PSD matrix is used as input kernel to train a SVM
classifier. The classification results strongly depend on the method used to build
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the kernel. The Square Transformation method implies the lowest number of
support vectors. The Alternating Projections and Bending methods have been
shown to be good alternatives to the classical techniques. The Conformal Trans-
formation method clearly improves the results obtained from an a priori kernel.
The Conformal Linear Combination method has been shown to be an alternative
to the average of the kernels method.
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