Mono-font Cursive Arabic Text Recognition
Using Speech Recognition System

M.S. Khorsheed

Computer & Electronics Research Institute,
King AbdulAziz City for Science and Technology (KACST)
PO Box 6086, Riyadh 11442, Saudi Arabia
mkhorshd@kacst.edu.sa

Abstract. This paper presents a system to recognise cursive Arabic
typewritten text. The system is built using the Hidden Markov Model
Toolkit (HTK) which is a portable toolkit for speech recognition system.
The proposed system decomposes the page into its text lines and then ex-
tracts a set of simple statistical features from small overlapped windows
running through each text line. The feature vector sequence is injected
to the global model for training and recognition purposes. A data corpus
which includes Arabic text of more than 100 A4—size sheets typewritten
in Tahoma font is used to assess the performance of the proposed system.

1 Introduction

Among the branches of pattern recognition is the automatic reading of a text,
namely, text recognition. The objective is to imitate the human ability to read
printed text with human accuracy, but at a higher speed.

Most optical character recognition methods assume that individual characters
can be isolated, and such techniques, although successful when presented with
Latin typewritten or typeset text, cannot be applied reliably to cursive script,
such as Arabic. Previous research on Arabic script recognition has confirmed the
difficulties in attempting to segment Arabic words into individual characters [I].

Hidden Markov Models (HMMs) [2] are among other classification systems
that are used to recognise character, word or text. They are statistical models
which have been found extremely efficient for a wide spectrum of applications,
especially speech processing. This success has motivated recent attempts to im-
plement HMMs in character recognition whether on-line [3] or off-line [4]. The
HMM provides an explicit representation for time-varying patterns and proba-
bilistic interpretations that can tolerate variations in these patterns. In off-line
recognition systems, the general idea is to transform the word image into a
sequence of observations. The observations produced by the training samples
are used to tune the model parameters whereas those produced by the testing
samples are used to investigate the system performance.

HMMs have been also used to Arabic word recognition. Following are the ap-
proaches introduced in twofold: the global approach and the analytical approach.
The global approach treats the word as a whole. Features are extracted from the

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 755-763] 2006.
© Springer-Verlag Berlin Heidelberg 2006

756 M.S. Khorsheed

unsegmented word and compared to a model [5]. The analytical approach de-
composes the word into smaller units, which may correspond to a character or
part of a character [6]. Another research [7] proposed a system which depends
on the estimation of character models, a lexicon, and grammar from training
samples. The training phase takes scanned lines of text coupled with the ground
truth, the text equivalent of the text image, as input. Then, each line is di-
vided into narrow overlapping vertical windows from which feature vectors are
extracted. The character modelling component takes the feature vectors and the
corresponding ground truth and estimates the character models. The recognition
phase follows the same step to extract the feature vectors which are used with
different knowledge sources estimated in the training phase to find the character
sequence with the highest likelihood P(O|\).

This paper presents a HMM-based system to recognise cursive Arabic script
offline. Statistical features are extracted from the text line image and fed to the
recogniser. The system is built on the Hidden Markov Models Toolkit (HTK) [g].
This is primarily designed for building HMM-based speech processing tools in
particular recognisers. The proposed system is lexicon free and it depends on
the technique of character models and grammar from training samples.

2 System Overview

Fig [0l shows the block diagram of the proposed system. The global model is a
network of interconnected character models. Each character-model represents a
letter in the alphabet. The system may be divided into stages. The first stage
is performed prior to HTK, and includes: image acquisition, preprocessing and
feature extraction. The objective is to acquire the document image, preprocess
it and then decompose it into text line images. Each line image is transfered into
a sequence of feature vectors. Those features are extracted from overlapping
vertical windows along the line image, then clustered into discrete symbols.
Stage two is performed within HTK. It couples the feature vectors with the
corresponding ground truth to estimate the character model parameters. The

TRAINING

Ground Truth

A
Image
Acquisition

Feature
Extraction Language Mode!
| N

RECOGNITION

Character Sequence

Fig. 1. A block diagram of the HTK-based Arabic recognition system

Mono-font Cursive Arabic Text Recognition 757

final output of this stage is a lexicon—free system to recognize cursive Arabic
script. During recognition, an input pattern of discrete symbols representing the
line image is injected to the global model which outputs a stream of characters
matching the text line.

2.1 Feature Extraction

This research implements HMMSs to recognise the input pattern. This implies
that the feature vector, extracted from the text, is computed as a function of
independent variable. In speech, the cepstral features are extracted from the
speech signal with respect to time. Similarly, in on—line handwritten recognition
a feature vector is computed as a function of time also. In off-line recognition
system the case is different; there is no independent variable. Moreover, the
whole page image needs to be recognised. In this research, the text line has been
chosen as the unit for training and recognition purposes.

Now, assuming that the horizontal position along the text line is the indepen-
dent variable, a sliding window is scanning the line from right to left. A set of
simple features is extracted from pixels falling within that window. The result-
ing feature vector is mapped against predefined codebook vectors, and replaced
with the symbol representing the nearest codebook vector. This step transfers
the text line image into a sequence of discrete symbols.

Each line image is divided into overlapped narrow windows, see Fig[2l These
windows are then vertically divided into cells where each cell includes a prede-
fined number of pixels. Those cells are used for feature extraction.

Features extracted from the text could be structural [9], spectral [10] or as per
here statistical. Statistical features are easy to compute and script independent.
They avoid any segmentation at word or character level. These features are:

Window
Owverlap

S -
Overlapping 0 =
Cells Eh
- —
T
GJ
=
- —
—
—— L. . 200 O SO S -
T LY
S_]_iﬁing
Window

Fig. 2. Dividing the line into windows and cells

758 M.S. Khorsheed

Fig. 3. Feature extraction: a)original line image. b)vertical derivative of (a).
c)horizontal derivative of (a).

intensity, intensity of horizontal derivative and intensity of vertical derivative,
see Fig3l

The intensity feature represents the number of ones in each cell. The intensity
of horizontal derivative detects the edge through X—axis, then computes the
number of ones in the resulting cell. The intensity of vertical derivative detects
the edge through Y—axis, then computes the number of ones in the resulting cell.
The feature vector of one narrow window is built by stacking features extracted
from each cell in that window.

Sp— 84—

& Qt‘»"f—[tr ek

Fig. 4. HMM structure of the word Makkah “;mkT;” sp denotes space character

2.2 HTK Inference Engine

The hidden Markov model toolkit (HTK) [§] is a portable toolkit for building
and manipulating hidden Markov models. It is primarily designed for building
HMM-based speech recognition systems. HTK was originally developed at the
Speech Vision and Robitics Group of the Cambridge University Engineering
Department (CUED).

Much of the functionality of HTK is built into the library modules available in
C source code. These modules are designed to run with the traditional command
line style interface, so it is simple to write scripts to control HTK tools execution.
The HTK tools are categorized into four phases: data preparation, training,
testing and result analysis tools.

The data preparation tools are designed to obtain the speech data from data
bases, CD ROM or record the speech manually. These tools parametrize the

Mono-font Cursive Arabic Text Recognition 759

speech data and generate the associated speech labels. For the current work, the
task of those tools is performed prior to the HTK, as previously explained, then
the result is converted to HTK data format.

HTK allows HMMs to be built with any desired topology using simple text
files. The training tools adjusts HMM parameters using the prepared training
data, representing text lines, coupled with the data transcription. These tools
apply the Baum—Welch re—estimation procedure [2] to maximise the likelihood
probabilities of the training data given the model.

HTK provides a recognition tool to decode the sequence of observations and
output the associated state sequence. The recognition tool requires a network to
describe the transition probabilities from one model to another. The dictionary
and language model can be input to the tool to help the recogniser to output
the correct state sequence.

The result analysis tool evaluates the performance of the recognition system
by matching the recogniser output data with the original reference transcription.
This comparison is performed using dynamic programming to align the two
transcriptions, the output and the ground truth, and then count the number of:
substitution (S) and deletion (D).

The optimal string match calculates a score for matching the output sample
with respect to the reference line. The procedure works such that identical labels
match with score 0, a substitution carries a score of 10 and a deletion carries a
score of 7. The optimal string match is the label alignment which has the lowest
possible score. Once the optimal alignment has been found, the correction rate
(CR) is then:

 N-D-5§
- N

where N is the total number of labels in the recogniser output sequence.

CR % 100% (1)

229 o JSuin pusdl sl 1,8
A9 e S pupsl sl 19

Pt

S D

Fig. 5. Optimal string matching. The upper line is the reference line.

Fig [l illustrates an Arabic reference line and a possible system output. The
sentence includes 30 lables. The system output includes one subtitution, one
deletion and two insertions. The correction rate equals:

cr="""1"1 100 = 03.33%
30
The example showes how the HTK analysis tool measures the performance of
the recognition system.

760 M.S. Khorsheed

3 Recognition Results

The performance of the proposed system was assessed using a corpus which
includes more than 100 pages of Arabic text in Tahoma font, see Fig[Bl Tahoma
is a simple font with no overlap or ligature. The data corpus includes 18413
words and 100724 letters, not including spaces.

—_
=
=

Correction rate (%o

6 8 10 12 14
Mumber of states / model

Fig. 6. The impact of the number of states per model on system performance

After noise elimination and deskewing, the 100 pages were decomposed into
more than 2500 line images. A set of experiments were performed using 1500
line images for training and 1000 line images for testing. All character models
had the same number of states; 8 states. There is no mathematical method to
calculate the optimal number of states per model. Alternatively, various values
were examined to select the best number of states per model, see Fig

Text line height is proportional to the font size. The line image is measured
in pixels. For the corpus under consideration the line image height varies from
35 pixels to 95 pixels depending on the font type and size. To eleminate this
dependency, all line images were resized to a single height value; 60 pixels. This

IS 350mia s ol 2ot Ll 2 2l 2, LS

Fig. 7. Text lines with different line heights: (a) 43 pixels, (b) 60 pixels and (c) line
image in (a) resized to 60 pixel size

Mono-font Cursive Arabic Text Recognition 761

value equals the mean of image heights of all text lines in the data corpus, see
Fig [Tl

3.1 Cell Size

At any horizontal position, the sliding window is divided into a number of cells,
as shown in Fig Bl These cells may or may not overlap. The overlap can be
vertical or horizontal and it increases the amount of features generated from a
single line and hence increases the processing time.

Table 1. Cell size categories

Category Cell Horizontal Vertical
Size Overlap Overlap
CS 3x3 - -
CSy 3x3 1 pixel -
CSs 3 x3 2 pixels -
CSs 5x5 2 pixels -
CSs 5x5 2pixels 2 pixels

|
=
2

e
E=1
L

Y —
H)
Comection rate (%)

Correction rate (%

- PhEN

N = U =TT 8 16 a2 1 128

L~ _ o (
Y e e =} Log(hd)
[sca Cell size categernies

(a) All categories (b) CS2

Fig. 8. System performance for the Tahoma font

The first set of experiments studied the cell size parameter. Variuos combina-
tions of cell sizes and overlaps were tested, see Table [Il

Fig Ba shows the correction rate, C'R, of the five categories for the Tahoma
font. The codebook here includes 64 clusters. The results illustrates that HTK
was more efficiently tuned for Tahoma font rather than for Thuluth font. This
is sensible due to decorative curves found at the end of some letters in Thuluth
font which overlap with succeeding letters.

3.2 Codebook Size

After extracting features from a line image, the feature vector dimensionality is
reduced from 2D to 1D using K-means clustering algorithm [2]. Mapping the 2D

762 M.S. Khorsheed

feature vector to the nearest cluster is based on the minimum FEuclidean distance
measure.

This set of expriments studied the codebook size parameter. Five different
codebook size values were examined for each font for each category: 8,16, 32,64
and 128. A total number of 50 codebooks were created for this purpose. Fig[8-b
shows the correction rates of C'Ss. It illustrates the improvement in the system
performance as the codebook size increases. This conclusion is also applicable to
other cell size categories.

3.3 Tri-HMMs

Character models implemented so far are independent; isolated from preceding
and succeeding character models. This type is referred to as a mono—model. It
has two main advantages: (1) it is easy to train since the total number of models
is small; 60 models, (2) the labelling procedure is simple and straightforward. A
more efficient type, though more complex, is referred to as a tri-model. Here,
each HMM represents a character, its predecessor and its successor. The total
number of HMMs jumps to 9393 models. Training and recognition procedures are
the same for both types. However, the labelling procedure is more complex with
tri-models. The context-dependant tri-HMMs increases the system performance
from 84% to 92%.

4 Conclusion

A new system to recognise cursive Arabic text has been presented. The proposed
system is based on HMM Toolkit basically designed for speech recognition pur-
pose. Various model parameters have been studied using a corpus that includes
data typewritten in a computer—generated font; Tahoma. The system was capa-
ble to learn complex ligatures and ovelaps. The system performance has been
improved when implementing the tri-model scheme. Future work will concen-
trate on enlarging the data corpus to include more fonts.

References

1. M. S. Khorsheed, “Off-line Arabic character recognition — A review,” Pattern
Analysis and Applications, vol. 5, no. 1, pp. 31-45, 2002.

2. L. Rabiner and B. Juang, Fundamentals Of Speech Recognition. Prentice Hall,
1993.

3. H. Kim, K. Kim, S. Kim, and J. Lee, “On-line recognition of handwritten chinese
characters based on hmms,” Pattern Recognition, vol. 30, no. 9, pp. 1489-1500,
1997.

4. W. Kim and R. Park, “Off-line recognition of handwritten korean and alphanumeric
characters using hmms,” Pattern Recognition, vol. 29, no. 5, pp. 845-858, 1996.

5. M. Pechwitz and V. Maergner, “Hmm based approach for handwritten arabic word
recognition using ifn/enit database,” in The 7th International Conference on Doc-
ument Analysis and Pattern Recognition, pp. 890-894, 2003.

10.

Mono-font Cursive Arabic Text Recognition 763

. T. Sari, L. Souici, and M. Sellami, “Offline handwritten arabic character segmen-
tation algorithm: Acsa,” in The 8th International Workshop on Frontiers in Hand-
writing Recognition, pp. 452-457, 2002.

. I. Bazzi, R. Schwartz, and J. Makhoul, “An omnifont open-vocabulary OCR, system
for English and Arabic,” IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, vol. 21, no. 6, pp. 495-504, 1999.

. S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D. Ollason, V. Valtchev,
and P. Woodland, The HTK Book. Cambridge University Engineering Dept., 2001.

. M. S. Khorsheed, “Recognising handwritten Arabic manuscripts using a single

hidden markov model,” Pattern Recognition Letters, vol. 24, no. 14, pp. 22352242,

2003.

M. S. Khorsheed, “A lexicon based system with multiple hmms to recognise type-

written and handwritten Arabic words,” in The 17th National Computer Confer-

ence, (Madinah, Saudi Arabia), pp. 613-621, 5-8 April 2004.

	Introduction
	System Overview
	Feature Extraction
	HTK Inference Engine

	Recognition Results
	Cell Size
	Codebook Size
	Tri--HMMs

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

