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Abstract. Recently human gait has been considered as a useful biometric sup-
porting high performance human identification systems. We propose a view-
based pedestrian identification method using the dynamic silhouettes of a human 
body modeled with the hidden Markov model (HMM). Two types of gait mod-
els have been developed both with a cyclic architecture: one is a discrete HMM 
method using a self-organizing map-based VQ codebook and the other is a con-
tinuous HMM method using feature vectors transformed into a PCA space. Ex-
perimental results showed a consistent performance trend over a range of 
model’s parameters and the recognition rate up to 88.1%. Compared with other 
methods, the proposed models and techniques are believed to have a sufficient 
potential for a successful application to gait recognition. 

1   Introduction 

Recognizing people by their gait, the style of walking of an individual, can be per-
formed without asking them to take any specific actions and even without making 
them be aware whether they are being watched or not. From Johansson’s studies in 
psychophysics with moving light displays (MLD) attached to body parts, it appeared 
that humans have the capability of recognizing their acquaintance only through their 
gait [1].  

Recently human motion analysis has been receiving increasing attention from 
computer vision researchers and it is well explained in the review papers by J. K. 
Aggarwal et al. [2], C. Cedras et al. [3], and D. M. Gavrila et al. [4]. According to 
these papers two distinct methods for human motion analysis are distinguished: 
‘model-based method’ using a priori shape models, and the other, called ‘appearance-
based’ or ‘view-based’, without using explicit shape models. Both methods take a 
common sequential process of (1) feature extraction, (2) feature correspondence, and 
(3) high-level processing. The difference between them lies in the way of processing 
feature correspondence. ‘Model-based’ methods compare the input features taken 
from an input image with the parameters of the 2D or 3D body models prepared in 
advance, and make feature correspondence automatically. On the contrary, the ‘ap-
pearance-based’ methods carry out the feature correspondence by varying the values 
of position, velocity, shape, color, and so on from consecutive frames. 

A brief review is in order. In the works of A. Kale et al. [5, 6], they used the width of 
the pedestrian’s silhouette of the binarized images as the feature vector and developed 
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five basic stances from k-means clustering. Then a new feature vector composed of 
the Euclidean distance between an input feature vector and each of the 5 basic stances 
was the final feature vector for training HMM and recognizing people. On the other 
hand, J. J. Little et al. [7] extracted the frequency and phase of the gait derived from 
optical flow as the feature vector. In [8], C. BenAbdelkader et al. encoded the planar 
dynamics of a walking person in a 2D plot consisting of the pairwise image similari-
ties of the sequence of images of the person and proposed a recognition method using 
k-nearest neighbor after reducing the dimension of the feature vector. Whereas R. 
Collins et al. [9] introduced a view-dependent method using template matching of 
body silhouettes. The key frames from a test sequence were extracted by performing 
cyclic gait analysis and those frames were compared to training frames using normal-
ized correlation. The recognition was performed by nearest neighbor matching among 
correlation scores.  

In this paper, we use people’s silhouette as a profile vector and represent the char-
acteristics of the gait with the sequences of the profile vectors. Since body shape 
alone is not enough for gait recognition, we need to take account of the gait dynamics 
which can be modeled by a ‘Markov chain’. A hidden Markov model or HMM is a 
Markov chain variant that is very powerful for modeling highly variable and noisy 
patterns. We have chosen this model for gait recognition. In this work, the profile 
vector used for the recognition is composed of a fixed number of horizontal distance 
measurements of the left, right boundary of a person from the center and then normal-
ized with respect to the height of the person. This feature can be directly compared 
with the features of A. Kale et al. [5, 6] and it has turned out that the features used in 
our work showed better performance. We have designed two separate recognizers, 
each using discrete hidden Markov models (DHMM) and continuous hidden Markov 
models (CHMM) respectively. For the training of DHMMs, each feature vector is 
quantized to a codeword by a self-organization map (SOM). For the training of 
CHMMs, feature vector is mapped to a point in the PCA space to reduce the dimen-
sion. In this way we kept the models from being overfitted due to the lack of training 
data. 

The contribution of this paper is found in the way of representing the structural 
characteristics and the modeling dynamic characteristics of the human gait. The struc-
tural characteristics are represented by the left and right boundaries of the person and 
the dynamical characteristics are well models by an HMM. The HMM has one-way 
directed circular ring topology fitted to recognizing a person in a video sequence 
without external segmentation into a single gait cycle. This type of an HMM does not 
require a specific starting point in a gait cycle. Another benefit of this model we be-
lieve is that the longer the input sequences are, the better the recognition rate is. 

2   Profile Extraction 

One of the simplest and most direct ways to represent the shape of a pedestrian is the 
silhouette against the background. The silhouette can be described as an ordered  
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sequence of boundary points and we define it as a profile vector that represents the 
shape characteristics of the person. A profile vector is composed of the horizontal 
distances from the horizontal center to the left and right boundary of the human blob 
B (Fig.1). The horizontal center of the person is calculated as 
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where, B is a set of foreground image pixels, cX  is the horizontal center of B, B  is 

the number of pixels and (x, y) is the coordinate of the pixel in the image. If we con-
sider all the boundary pixels of the silhouette in composing a profile vector, its di-
mension of the vector will be too high and variable from one frame to another. So, we 
choose only 40 pixels of the silhouette of the human blob, 20 pixels from the left and 
20 pixels from the right sampled at a fixed vertical interval from the bottom. The 
elements of the vector are then normalized with respect to the height of the human 
blob. 
 

 

Fig. 1. Composition of a profile vector 

3   Model of Human Gait 

In this paper, we create two kinds of gait models using the discrete hidden Markov 
model (DHMM), and the continuous hidden Markov model (CHMM), to represent the 
dynamic characteristics of a human gait. The input data for the DHMM are the code-
word sequences quantized from the profile vector sequences by a self-organization 
map (SOM) and those for the CHMM are the sequence vector transformed into a 
subspace of PCA. We first explain the vector quantization for the DHMM and then 
the PCA for the CHMM. 

3.1   SOM 

SOM is a topology preserving feature map. It being simple, we chose this for a vector 
quantizer of the feature vectors. Taking account of the fact that a human gait is com-
posed of a cyclic sequence of stereotypic stances, we designed the output layer of the 
SOM to have a ring topology with each state corresponding to a typical stance in the 
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sequence. The SOM is trained with the profile vectors extracted from the input image 
sequences. The set of trained weight vectors are considered as a codebook for the gait 
pattern space. With this SOM we quantize each input profile vector into a codeword. 

 
arg min k

k
codeword = −x w .         (2) 

 
Here ⋅  is the Euclidean norm of the difference between the input profile vector and 

the code vector, x  is an input vector and kw  is the codeword vector. We choose the 

codeword whose code vector has the minimum Euclidean distance from the input 
profile vector. 

3.2   Principal Component Analysis 

The principal component analysis is the method that can be used to reduce the dimen-
sion of any vectors by considering the variance of and the relationship among vari-
ables, while minimizing the loss of the information. It reduces the dimension of a 
vector by transforming it into the direction that has a large variance. This is originated 
from the fact that there is more information in the direction having a large variance 
compared to the direction having the small variance. We use this method to reduce the 
dimension of the profile vectors for the training of the CHMM. 

It is known that the sum of the eigenvalues of the covariance matrix is equal to the 
total variance of the original variables. We can consider a mapping to a reduced di-
mension by specifying that the new components must account for at least a fraction of 
d of the total variance. Choosing a value of d, which is a fraction of the total variance, 
between 70% and 90% preserves most of the information in x [10]. We then choose k 
so that 
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where, iλ  denotes the eigenvalues and p is the rank of the covariance matrix. 

3.3   Gait Model 

Recognizing people using structural features of body silhouette is not easy since sim-
ple structural characteristic can be shared by many individuals. We can exploit the 
observation that people have their own dynamic characteristics or temporal features, 
even though they have similar structural characteristics. These dynamic characteris-
tics can be represented by the Markov chain in an HMM. 

The transition of the states in an HMM is modeled by the ‘Markov process’. The 
sequence of the transition of the states is not observable, i.e. hidden, and it is possible 
to estimate it through an observable data. 

In this paper, we design the topology of an HMM as a circular ring (Fig. 2) consid-
ering that human gait is periodic. The parameters of the DHMM are trained using  
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Fig. 2. Topology of a gait HMM 

the codeword sequences quantized by the SOM and those of the CHMM are trained 
using the reduced vectors transformed into a PCA space. 

Since the HMMs are trained for each person in the data set, it can be used as a way 
to represent the characteristics of the specific person’s gait. In other words, when 
there is an input vector sequence taken from the video sequences of a person’s gait, 
the HMM which best represents the characteristics of the person’s gait will produce 
the highest likelihood for the input vector sequence. The likelihood of each HMM is 
computed by the forward algorithm. 

 
( )ˆ arg max | i

i

i P λ= X .         (3) 
      
Here, X  is the input vector sequence, iλ  is the HMM model for the ith person. 

4   Experiment and Analysis 

The proposed method was tested on a video database consisting of seven sequences 
for each of the six subjects, taken from the web site of the University of Calgary in 
Canada [11]. Those video sequences were captured at 15 frame rate, 24 bit colors and 
an image size of 320×160. Each sequence includes 85 frames and 6 gait cycles on 
average. 

4.1   Data Coding 

Fig. 3 shows the example of the vector quantization for a half cycle of a person’s gait 
using an SOM with seven output nodes. The quantized vector sequences are used for 
the DHMM training. 

A profile vector contains the 40 boundary points as marked in Fig. 4(a). Each of 
the elements is the horizontal distance from the vertical center to the left and right 
boundary of a human blob and is numbered in clockwise starting from the left bottom 
(Fig. 4(a)). The covariance matrix of all the profile vectors used for training motivates 
us to reduce the dimension. As shown in Fig. 4(b), only a small fraction of elements 
(covariances) are significant implying great variation and correlation. Those numbers 
in each axis indicate the nth element of a profile vector. It is conjectured that these 
bright colored parts correspond to key features to be used to recognize people. Those 
components are feet/legs (1-5, 35-40) and hands/arms (11-15) regions. 
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Fig. 3. Vector quantization example for half cycle 

   
     (a)               (b) 

Fig. 4. (a) The elements of the profile vector (b) Visualization of the covariance matrix of the 
profile vectors 

4.2   Recognition 

Due to the lack of the test data, cross validation was used. In the DHMM test by vary-
ing the number of codeword and states, it showed the highest performance, 88.10%, 
with seven states and seven code vectors. The detailed results over a number of states 
with fixed codebook size are shown in Table 1. 

Table 1. Results of DHMM (codebook size = 7) 

DHMM test 

# States 5 6 7 8 9 

Hits(%) 40.48 47.30 88.10 69.05 0.0 

For the test of the CHMM, we varied the reduced-dimension of each profile vec-
tors. The highest performance was obtained with seven states and eight dimensions. 
The result with seven states is shown over a number of dimensions in Table 2. 
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Table 2. Results of CHMM (# of states = 7) 

CHMM test 

Dimension 5 6 7 8 9 

Hits(%) 76.19 73.81 69.05 88.10 76.19 

4.3    Performance 

In the third experiment, we compared the performance with those of the two other 
methods by J. J. Little et al. [7] and A. Kale et al. [5] using the same data. In the J. J. 
Little et al. research, they achieved a recognition rate of 90.5% by composing feature 
vectors with the frequency and phase taken from optical flow using the video se-
quences of twice as big as the frame size and the frame rate of our data. Direct com-
parison shows that J. J. Little et al reported higher performance than ours, but it was 
on different (or more detailed) data set. On the other hand, A. Kale et al’s method 
achieved 64.3% on our data set with five HMM states. The comparison between our 
method and that of A. Kale et al. is shown in Fig. 5. Although we can not strongly 
argue for the statistical significance of the result, our system’s performance was 
higher in all cases with a single candidate. 

 

Fig. 5. Performance comparison with Kale’s 

5   Conclusion 

We proposed an improved gait recognition method using HMMs. It added new fea-
tures including SOM-based codebook and a profile vector representation for each 
frame, and the cyclic HMM topology for the gait dynamics. When tested on the video 
data from the web site of the University of Calgary in Canada by varying the number 
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of states, codebook sizes and the number of dimensions, we achieved the highest 
recognition rates with seven states in both the DHMM and the CHMM. 

In this work, we used a background subtraction technique to extract a silhouette 
without considering clothes, illumination, camera angle and walking angle. And we 
used a small data set for test. These are the direction of immediate future work. One 
advantage of the model-based approach is that we can estimate the inner structure of 
the pedestrian from the SOM and HMM as shown in Fig. 6. This result can be used to 
confirm the silhouette shape and/or to enable further understanding of human motion 
of activity. 

 

Fig. 6. Pre-estimated stick figure 
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