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Abstract. In this paper, we explore how the trace of the heat kernel can be used to
characterise graphs for the purposes of measuring similarity and clustering. The
heat-kernel is the solution of the heat-equation and may be computed by expo-
nentiating the Laplacian eigensystem with time. To characterise the shape of the
heat-kernel trace we use the zeta-function, which is found by exponentiating and
summing the reciprocals of the Laplacian eigenvalues. From the Mellin trans-
form, it follows that the zeta-function is the moment generating function of the
heat-kernel trace. We explore the use of the heat-kernel moments as a means of
characterising graph structure for the purposes of clustering. Experiments with the
COIL and Oxford-Caltech databases reveal the effectiveness of the representation.

1 Introduction

The Laplacian spectrum of a graph has found widespread use in computer vision for a
number of applications including segmentation [2] and routing [3], graph clustering[10]
and graph indexing[4]. For instance, the Fiedler vector [1] [12] [13], i.e. the eigenvec-
tor associated with the smallest non-zero eigenvalue, can be used to perform pairwise
clustering of data. The Laplacian eigenvalues may be used to characterise graphs for
the purposes of clustering. Several authors have explored the use of the Laplacian and
related operators to map data to manifolds in a low dimensional space [9] [15] [16] [17]
[5]. These methods share the feature of using the spectrum of the Laplacian matrix to
map data specified in terms of a proximity matrix to a vector space. For instance in
the Laplacian eigenmap [15], the mapping is determined by the raw Laplacian spec-
trum. The diffusion map [5] of Lafon and Coifman constructs the mapping by raising
the Laplacian eigensystem to a negative integer power. This mapping is shown to pre-
serve the distances between nodes under a random walk, or diffusion, on the graph. In
the heat-kernel embedding of Lebanon and Lafferty [6], the embedding is based on the
heat-kernel and this is found by exponentiating the Laplacian eigensystem.

The aim in this paper is to explore whether the trace of the heat-kernel [7] can be used
for the purposes of characterising the properties of graphs. The trace of the heat kernel
is found by summing a series of terms, each of which is the result of exponentiating a
Laplacian eigenvalue with time. As a result the heat-kernel trace is a function whose
parameters are the Laplacian eigenvalues and whose argument is time. Our aim in this
paper is to explore whether the shape of this function can be used to characterise the
corresponding graph. There are several ways in which this can be done. In spectral
geometry, the heat kernel trace has been used to characterise the differential geometry

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 306 2006.
(© Springer-Verlag Berlin Heidelberg 2006



Trace Formula Analysis of Graphs 307

of manifolds [7] [8]. Here the spectrum of the Laplace-Beltrami operator is used to
construct a trace-function. This function can be expanded as a polynomial series in
time, and the co-efficients of the series can be related to the Ricci curvature tensor of the
manifold. Unfortunately, the relationships between the elements of the Ricci curvature
tensor and the co-efficients are difficult to determine, and are only tabulated up to third
order [8]. For large graphs, the Laplacian can be viewed as a discrete approximation of
the Laplace-Beltrami operator and this analysis can be carried over from manifolds to
graphs [14].

However, in this paper we deal with rather small graphs and take a different ap-
proach. Our idea is to measure the shape of the heat-kernel trace by taking moments
with respect to time. Using the Mellin transform it is straightforward to show that the
moment generating function is related to the zeta function of the graph. The zeta func-
tion is a series found by exponentiating and summing the reciprocals of the non-zero
eigenvalues of the Laplacian. We construct a feature-vector whose components are the
values of the zeta-function with integer argument.

Experiments with real world data taken from the COIL and Caltech-Oxford
databases reveal that the zeta-function provides useful features for clustering graphs
and to outperform the Laplacian spectrum.

2 The Laplacian Eigensystem and the Heat-Kernel

To commence, suppose that the graph under study is denoted by G = (V, E) where
V is the set of nodes and £ C V x V is the set of edges. Since we wish to adopt a
graph-spectral approach we introduce the adjacency matrix A for the graph where the
elements are

1ifu,v € K
0 otherwise

A(’U,, U) = { (1)
We also construct the diagonal degree matrix D, whose elements are given by
D(u,u) = 3, cy A(u,v). From the degree matrix and the adjacency matrix we con-
struct the Laplacian matrix L = D — A, i.e. the degree matrix minus the adjacency
matrix. The normalised Laplacian is given by L =D 2LD 2. The spectral decom-
position of the normalised Laplacian matrix is L = ®APT, where A = diag(M1, Mg, ...,
Av)(0 = A1 < Az < ... < Ay))is the diagonal matrix with the ordered eigenvalues
as elements and @ = (¢1|p2|....|¢|y|) is the matrix with the ordered eigenvectors as
columns. Since L is symmetric and positive semi-definite, the eigenvalues of the nor-
malised Laplacian are all positive. The eigenvector associated with the smallest non-
zero eigenvector is referred to as the Fiedler-vector.
We are interested in the heat equation associated with the Laplacian, i.e.

Ohy

o — —Lh, 2)

where h; is the heat kernel and ¢ is time. The heat kernel can hence be viewed as describ-
ing diffusion across the edges of the graph with time. The rate of flow is determined by
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the Laplacian of the graph. The solution to the heat equation is found by exponentiating
the Laplacian eigenspectrum, i.e.

4
hy = Zexp[—)\it]@qblr = P exp[—tA]PT 3)

The heat kernel is a |V| x |V| matrix, and for the nodes u and v of the graph G the
resulting element is
VI

When ¢ tends to zero, then h; ~ I — ﬁt, i.e. the kernel depends on the local con-
nectivity structure or topology of the graph. If, on the other hand, ¢ is large, then
hy ~ exp[ft)\g]gﬁgqbg, where )\, is the smallest non-zero eigenvalue and ¢ is the as-
sociated eigenvector, i.e. the Fiedler vector. Hence, the large time behavior is governed
by the global structure of the graph.

The trace of the heat kernel is

Z(t) =Tr[h) = Z exp[—A\;t] )

To provide an illustration of the potential utility of the trace-formula, in Figure 1 we
show four small graphs with rather different topologies. Figure 2 shows the trace of
the heat kernel as a function of ¢ for the different graphs. From the plot it is clear that
the curves have a distinct shape and could form the basis of a useful representation
to distinguish graphs. For instance, the more “dumbbell” shaped the graph the more
strongly peaked the trace of the heat-kernel at the origin. This is due to the fact the
spectral gap, i.e. the size of Ay, determines the rate of decay of the trace with time, and
this in turn is a measure of the degree of separation of the graph into strongly connected
subgraphs or “clusters”.

3 Zeta-Function and Heat-Kernel Trace Moments

The aim in this paper is to use the shape of the heat-kernel trace function as a means
of characterising graph-structure. Our characterisation is found by taking moments of
trace-function over time.

To commence our development, we consider the zeta function associated with the
Laplacian eigenvalues. The zeta function is given by

=3 A" (6)
i 70

In other words, it is the result of exponentiating and summing the reciprocal of the
non-zero Laplacian eigenvalues.
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Fig. 1. Four graphs used for heat-kernel trace analysis

Four graphs' trace formula vs the t variable

— square graph

per ol
— Simple dumbbell graph
Complex dumbbell graph

Fig. 2. Heat kernel trace as a function of ¢ for four simple graphs

To establish the link between the zeta function and the trace of the heat-kernel we
make use of the Mellin transform

1 o0

A = / £ expl—Ast]dt (7

CI(s) o

where -
I'(s)= / t*~ ! exp[—t]dt ®)

0
Hence, we can write the zeta function as a moment generating function
1 R
— S— .

((s) = I'(s) / t Z exp[—A;t]dt 9)

0 Ai#£0

The sum of exponentials inside the integral is clearly linked to the trace of the heat-
kernel. To show this we make use of the fact that

Trih] =C+ > exp[-A] (10)
;i #£0
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where C' is the multiplicity of the zero eigenvalue of the Laplacian, or the number
of connected components of the graph. Substituting this result back into the Mellin
transform, we have

C(s) = FES) /OOo ts_l{Tr[ht]—C}dt (11)

As a result the zeta function is related to the moments of the heat-kernel trace. It is
hence a way of characterising the shape of the heat kernel trace.

4 Experiments

We have experimented with the zeta-function characterisation of the heat-kernel trace.
The data used for our study furnished by two data-bases used widely in the object recog-
nition literature, namely the COIL data-base and Oxford-Caltech data-base. For the Coil
data-base, we extract the feature points using the method of Harris and Stephens [18].
We have extracted graphs from the images by computing the Voronoi tessellations of the
feature-points, and constructing the region adjacency graph, i.e. the Delaunay triangu-
lation, of the Voronoi regions. Figure 3 shows some examples images with the extracted
Delaunay graph overlayed for each of the four objects studied. For the Caltech-Oxford
data-base, in Figure 4, we use Gestalt relation graphs between line-segments. For each
image we extract line-segments using the Canny edge detector and contour polygonali-
sation. We treat each line-segment as a node in the relation graph. The weights between
each pair of nodes are from the relative distance and relative angles attributes between
the line-segments. The weighted links between the line segments capture the regular
Gestalt-inspired relationships of proximity, parallelism, closure, and continuity [19].
The graphs used in our study are undirected and unattributed.

Both data-sets contain multiple images of either objects of the same class or views
of the same object in different poses with respect to the camera. Example images from
the data-sets are shown in Figures 3 and 4.

We commence by illustrating the behavior of the zeta-function for the images of ob-
jects from COIL data-base. From left-to-right and top-to-bottom in Figure 5 we show

TR
. )/

AV
LR
N

Fig. 3. Example images of four objects from the COIL data-base with their Delaunay graphs
overlayed
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Fig. 5. Zeta function variation with view number

the values of (1), ¢(2), ((3) and ¢(4) as a function of view-number for the four objects.
The different curves in the four plots correspond to the different objects. The main feature
to note is that the curves for the different objects are well separated, and that the indi-
vidual values of the zeta-function do not vary significantly with view number. Moreover
the fluctuations in the values are generally smaller than the differences between different
objects. This feature is shown more clearly in Figure 6. Here we show the average value
of the zeta-function moments as a function of the moment order. The different curves are
for different objects. The error-bars show the standard deviation of the moment over the
different views (instances) of the same object. The left-hand plot is for the COIL data
and the right-hand plot for the Oxford-Caltech data. The moments do not overlap for the
different objects, and the best separation is achieved for moments of intermediate order.
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Fig. 6. Zeta function moments as a function or order for the different objects (COIL left and
Oxford-Caltech right)

Fig. 8. Zeta-function and Spectral Clustering for the Oxford-Caltech database

In the left-hand panel of Figure 7 we show the result of performing principal compo-
nents analysis on a feature-vector f = ({(1),((2).....,(10))T which has as its compo-
nents the zeta-function evaluated at the integers 1 to 10. Here we project the graphs onto
the eigenspace spanned by the first three eigenvectors of the feature-vector covariance
matrix. The different objects are denoted by points of a different color. The different
objects are well separated in the eigenspace. For comparison the right-hand panel in
Figure 7 we show the result of repeating this analysis on a vector of leading eigenval-
ues of the Laplacian matrix f4 = (A1, Aa...., A\10)” . In the eigenspace, the objects are
severely overlapped, and the clustering is poorer. In Figure 8 we repeat the analysis
of the zeta-function and Laplacian spectrum for the objects from the Caltech-Oxford
database. Again, the best clusters are obtained using the zeta-function moments.
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Conclusions

In this paper we have explored the use of the zeta-function as a means of characterising
the shape of the heat-kernel trace for the purposes of graph-clustering. Using the Mellin
transform, we have shown that the zeta-function is linked to the moment generating
function of the heat-kernel trace. We have experimentally explored the use of the zeta-
function as a means of characterising graphs for the purposes of clustering. The method
works well on the COIL and Caltech-Oxford data-bases.
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