
A Zero-Dimensional Gröbner Basis for AES-128
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Abstract. We demonstrate an efficient method for computing a Gröbner
basis of a zero-dimensional ideal describing the key-recovery problem from
a single plaintext/ciphertext pair for the full AES-128. This Gröbner ba-
sis is relative to a degree-lexicographical order. We investigate whether the
existence of this Gröbner basis has any security implications for the AES.
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1 Introduction

Gröbner bases are standard representations of polynomial ideals that possess
several useful properties:

– given a Gröbner basis of an ideal I ⊂ R, we can efficiently decide whether a
polynomial f ∈ R lies in I

– for suitable term orders (e.g. lexicographical orders), the variety of the ideal
can be efficiently computed; this yields solutions for the polynomial system
induced by the ideal.

Usually, the Gröbner basis of a set of polynomials is computed using either
a variant of Buchberger’s algorithm [3] or using Faugere’s F4 [10] or F5 [11]
algorithm. These algorithms involve polynomials reductions which are costly.
In general the time and the space complexity of these algorithms is difficult to
predict. For polynomials in a large number of variables, these algorithms quickly
become infeasible.

Rijndael, the block cipher that has been selected as the Advanced Encryption
Standard (AES) in 2001, has become the industry-wide standard block cipher by
now. Its design, the wide-trail strategy, is considered state of the art. However,
Rijndael has from the beginning been critized for its mathematical simplicity
and rich algebraic structure [15,13,8]. On the other hand this criticism has not
yet substantiated into an attack; quite to the contrary, claims of an algebraic
attack using XSL [8] have recently been debunked [6].

For the Rijndael block cipher, two algebraic representations in the form of mul-
tivariate polynomial systems of equations have been proposed so far. Courtois
and Pieprzyk have demonstrated how to obtain overdefined systems of quadratic
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A Zero-Dimensional Gröbner Basis for AES-128 79

equations over GF (2), while Murphy and Robshaw have constructed an embed-
ding for the AES called Big Encryption System (BES) for which a system of
overdefined quadratic equations over GF (28) exists [16].

A representation considering the output of the S-Box as a polynomial expres-
sion of the input over GF (28) has thus far been neglected because the polyno-
mials in this case are of relatively high degree. Using this representation we can
describe the key recovery problem for the AES cipher with a key length of 128
bits as a system of 200 polynomial equations of degree 254 and 152 linear equa-
tions. In this paper we will show that by choosing an appropriate term order and
by applying linear operations only, we can generate a Gröbner basis for AES-128
from this system without a single polynomial reduction.

The structure of this paper is as follows: in Section 2 we establish the notation
used in this paper, in Section 3 we explain how to construct the Gröbner basis
for Rijndael, in Section 4 we study the cryptanalytic importance of our result.
Finally we summarize the impact of our result in Section 5 and conclude.

2 Notation

We assume the reader to be familiar with the description of AES as given in
[17]. In the following we restrict ourselves to AES-128, i.e. Rijndael with a block
and key size of 128 bits.

We will deviate from the standard representation by using a column vector
instead of a matrix for the internal state and the round keys. The elements in the
column vector are identified with the elements of the matrix in a column-wise
fashion by the following map:

ϕ :F 4×4 →F 16,

⎛
⎜⎝

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

⎞
⎟⎠ �→(s0,0, s1,0, . . . , s0,1, s1,1, . . .)

T (1)

Furthermore we define the 16 × 16 matrix P to be the permutation matrix
that achieves the exchange of elements in the column vector that is equivalent
to transposing the state matrix.

The above notation allows us to express the diffusion performed by the
MixColumns and ShiftRows operations as a single matrix multiplication.

Let xi,j denote the variable referring to the ith component of the state vector
after the jth round execution. By this definition the variables xi,0 are called
plaintext variables, correspondingly xi,10 are called ciphertext variables. All other
variables xi,j are called intermediate state variables; variables ki,j are called key
variables. We will also refer to ki,0 as cipher key variables.

The field F is the finite field GF (28) as defined for Rijndael. The polynomial
ring R is defined as

R := F [xi,j , ki,j : {0 ≤ i ≤ 15, 0 ≤ j ≤ 10}]
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3 Construction of the Gröbner Basis

In this section we will explain how to construct a degree lexicographical Gröbner
basis describing the AES key recovery problem step by step. To accomplish this
task we will first give a very minimal introduction to Gröbner bases; just enough
to follow this paper. We kindly refer the inclined reader to [9] and [2] for a more
gentle introduction to the topic.

3.1 Gröbner Bases

Some confusion regularly arises out of the expressions term and monomial. One
school calls a product of variables a term and the product of said term and a
coefficient a monomial; notably this is done in [2]. The other camp, e.g. the
authors of [9], uses term and monomial in an interchanged fashion. We adopt
the conventions of [2].

For a given ideal there usually exists more than one Gröbner basis. These are
relative to a so called term order, which we shall now define:

Definition 1 (Term order). A term order ≤ is a linear order on the set of
terms T (R) such that

1. 1 ≤ t for all terms t ∈ T (R)
2. for all terms s, t1, t2 ∈ T (R) whenever t1 ≤ t2 then st1 ≤ st2

The maximum element of the set of terms of a polynomial p under a fixed
term order ≤ shall be referred to as the head term of p, short HT(p).

We will now introduce two useful and widely used term orders. First, however,
we define two technicalities: For a term t = ve1

1 ve2
2 · · · vek

k ∈ T (R) we define the
exponent vector of t to be ε(t) = (e1, e2, . . . , ek) ∈ N

k
0 . The total degree of the

term t then is deg(t) =
∑k

i=1 ei.

Example 1 (lexicographical term order). For terms s, t we define s <lex t iff there
exists an i with 1 ≤ i ≤ k such that the first i − 1 components of ε(s) and ε(t)
are equal but the ith component of ε(s) is smaller than the ith component of
ε(t).

Example 2 (degree lexicographical term order). For terms s, t we define s <dlex t
iff either deg(s) < deg(t) or if deg(s) = deg(t) and s <lex t.

Remark 1. Note that there is more than one lexicographical order and more
than one degree lexicographical term order. Different orderings on the variables
induce different term orders!

The formal definition of a Gröbner basis does not give much insight about how
to construct one:

Definition 2 (Gröbner basis). Let I be an ideal of R. A set of polynomials
{g1, . . . , gm} ⊂ I is a Gröbner basis if the following holds:

〈HT (g1), . . . , HT (gm)〉 = 〈{HT (p) : p ∈ I}〉
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The first Buchberger criterion [4] is a basic test that is used in most implemen-
tations of Buchberger’s algorithm to avoid “useless” polynomial reductions. The
following theorem follows almost instantaneously from this criterion and gives an
important hint how a Gröbner basis can be attained without knowing anything
about polynomial reductions.

Theorem 1. Let G be a set of polynomials and H = {HT (f) : f ∈ G}. If all
elements in H are pairwise prime, then G is a Gröbner basis.

Proof. See [5].

A zero-dimensional ideal is an ideal that has a finite number of solutions over
the closure of the field. It usually is advantageous to have this property for
Gröbner basis computations. By using Corollary 6.56 of [2] we can determine
whether an ideal I is zero-dimensional. Below we state a reduced version of this
corollary:

Lemma 1. Let I be a proper ideal of F [x1, . . . , xn]. Then the following asser-
tions are equivalent:

– dim(I) = 0
– There exists a term order ≤ such that for each 1 ≤ i ≤ n there is gi ∈ I with

HT(gi) = xνi

i for some 0 ≤ νi ∈ N.

3.2 The S-Box

The S-Box used in Rijndael can be interpolated as a sparse polynomial over F :

σ : F → F, x �→ 05x254 + 09x253 + F9x251 + 25x247 + F4x239+
B5x223 + B9x191 + 8Fx127 + 63

(2)

whilst the interpolation polynomial of the inverse S-Box

σ−1 : F → F, x �→
254∑
i=0

cix
i (3)

is dense. This polynomial is given in Appendix A.

3.3 The Linear Transformation

The linear transformation of AES consists of two operations, ShiftRows and
MixColumns. We can perform the linear transform by multiplying the state col-
umn vector with a 16× 16-matrix D from the left. In the following, we calculate
D; however at the start of each round we apply the transposition matrix P since
it makes expressing the operations as matrices easier. At the end we multiply
with the matrix P to undo the initial transposition.

A matrix that shifts the elements of a 1 × 4 row vector cyclically by an offset
t is of the following form:

DSRt =
(
Δi,(j−t) mod 4

)
∈ F 4×4 (4)
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where Δi,j is the Kronecker delta. The ShiftRows operation is equivalent to
multiplying by the matrix DSR:

DSR =

⎛
⎜⎜⎝

DSR0 0 0 0
0 DSR1 0 0
0 0 DSR2 0
0 0 0 DSR3

⎞
⎟⎟⎠ ∈ F 16×16 (5)

The MixColumns operation is applied to each row of the internal state. We
use the matrix DMC to transform the column vector equivalently:

DMC =

⎛
⎜⎜⎝
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠ ⊗ I4 ∈ F 16×16 (6)

where ⊗ denotes the tensor product. Concatenation of the two operations in
the diffusion layer is achieved by multiplying the above matrices, yielding the
matrix D:

D = P · DMC · DSR · P (7)

The diffusion layer of the last round is missing the MixColumns transformation;
it will be described by the matrix D̃:

D̃ = P · DSR · P (8)

This enables us to obtain the following vectorial representation of a system of
16 polynomial equations that holds for rounds 1 ≤ j ≤ 9 of the cipher:

⎛
⎜⎝

σ(x0,(j−1) + k0,(j−1))
...

σ(x15,(j−1) + k15,(j−1))

⎞
⎟⎠ + D−1

⎛
⎜⎝

x0,j

...
x15,j

⎞
⎟⎠ = 0 (9)

For the last round we need to take the simplified diffusion layer and the final
key addition into account:

⎛
⎜⎝

σ (x0,9 + k0,9)
...

σ (x15,9 + k15,9)

⎞
⎟⎠ + D̃−1

⎛
⎜⎝

x0,10 + k0,10
...

x15,10 + k15,10

⎞
⎟⎠ = 0 (10)

Choosing any degree lexicographical term order, either a term x254
i,j or a term

k254
i,j occurs as head term of each polynomial. We take note that none of the

head terms is a power of a plaintext nor of a ciphertext variable. Moreover all
of the head terms are pairwise prime. The variable order chosen will influence
whether the head term is a power of a key variable or of an intermediate state
variable.
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3.4 The Key Schedule

In order to obtain a Gröbner basis of both the cipher and the key scheduling
polynomials, we need to set up the key scheduling in a slightly different way.
Usually, the key scheduling expresses the elements of the round subkey of round
1 ≤ j ≤ 10 as a vector of polynomials in the key variables of the previous round
as follows: ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k0,j

k1,j

k2,j

k3,j

k4,j

...
k15,j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k0,j−1
k1,j−1
k2,j−1
k3,j−1
k4,j−1

...
k15,j−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ(k15,j−1)
σ(k12,j−1)
σ(k13,j−1)
σ(k14,j−1)

k0,j

...
k11,j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γj−1
0
0
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

where the γ0, . . . , γ9 are the round constants. To make all head terms pairwise
prime (see also Section 3.5 on the term order chosen), we we have to proceed in
reverse order: ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ−1(k0,j + k0,j−1 + γj−1)
σ−1(k1,j + k1,j−1)
σ−1(k2,j + k2,j−1)
σ−1(k3,j + k3,j−1)

k4,j + k4,j−1
...

k15,j + k15,j−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k15,j−1
k12,j−1
k13,j−1
k14,j−1

k0,j

...
k11,j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 (12)

3.5 Choosing a Suitable Variable Order

The plaintext and ciphertext polynomials simply are of the form

xi,0 + pi pi ∈ F, 0 ≤ i ≤ 15 (13)

respectively
xi,0 + ci ci ∈ F, 0 ≤ i ≤ 15. (14)

Let A be the union of the left-hand side of equations (9), (10) and (12) for all
rounds 1 ≤ j ≤ 10 as well as the plaintext and ciphertext polynomials. Ordering
the variables as follows makes all head terms pairwise prime:

1. plaintext variables: x0,0 < . . . < x15,0
2. ciphertext variables: x0,10 < . . . < x15,10
3. key variables of all rounds in natural order: k0,0 < k1,0 < . . . < k15,10
4. intermediate state variables in their natural order

The degree lexicographical term order with the above variable order will be
in the following be referred to as <A. By Theorem 1, the set of polynomials A
is a Gröbner basis relative to this term order! Moreover, checking Lemma 1 we
verify that this ideal is zero-dimensional.
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4 Exploiting the Gröbner Basis

In the previous section we have shown how to obtain a zero-dimensional Gröbner
basis A for AES-128. In this section we explore the cryptanalytic impact of this
finding. To this end, we investigate the complexity of a Gröbner basis conversion
algorithm, find an invariant under the elimination of variables and explain why
the näıve way of applying the ideal membership test does not work for guessing
parts of the round key.

4.1 Complexity of Gröbner Basis Conversions

An obvious question is whether the Gröbner basis we have computed in the
previous section can be efficiently converted to a different, more suitable order,
i.e. a lexicographical order or an elimination order [1].

Two algorithms and variations of them are known for performing Gröbner
basis conversions, the FGLM algorithm [12] and the Gröbner Walk [7]. While
the FGLM algorithm as described in [12] only works for zero-dimensional ideals,
the Gröbner Walk naturally also works for ideals of positive dimension. Since we
have established that A is zero-dimensional, we are in a position to use FGLM
and give an estimate for its time complexity below.

An important characteristic of the ideal is the vector space dimension of
the residue class ring obtained when factoring the polynomial ring R by the
ideal I:

Definition 3. Let R := F [x1, . . . , xn]. Then the F -space dimension of the ideal
I ⊂ R shall be denoted by dim(R/I).

From Lemma 6.51 and Proposition 6.52 in [2] it is straightforward to deduce the
following lemma:

Lemma 2. Let ≤ be a term order on T (R) and G a Gröbner basis of I w.r.t.
≤. Then

dim(R/I) = # {t ∈ T (R) : s � t for all s ∈ HT(I)}
= # {t ∈ T (R) : s � t for all s ∈ HT(G)}

Applying the lemma to a Gröbner basis with univariate head terms yields the
following corollary:

Corollary 1. Let G = {g1, . . . , gn} be a Gröbner basis for the ideal
I ⊂ F [x1, . . . , xn] with head terms xd1

1 , . . . , xdn
n . Then dim(R/I) = d1 · · · · · dn.

This result is sufficient to give a bound on the complexity of the Gröbner basis
conversion using FGLM. The following theorem is a slightly rephrased version of
Theorem 5.1 in [12]:

Theorem 2. Let F be a finite field and R = F [x1, . . . , xn]. Furthermore G1 ⊂ R
is the Gröbner basis relative to a term order <1 of an ideal I, and D = dim(R/I).
We can then convert G1 into a Gröbner basis G2 relative to a term order <2 in
O(nD3) field operations.
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From Corollary 1 we conclude that the vector space dimension of the ideal gen-
erated by the Gröbner basis A is way too big for the FGLM algorithm be useful
for cryptanalytic purposes in this case:

dim(R/A) = 254200 ≈ 21598 (15)

For the Gröbner Walk, the running time strongly depends on the source and the
target term order. It is an open problem to give bounds on the time and space
complexity for this algorithm. The only bounds known are local bounds, namely
for adjacent term orders, due to Kalkbrener [14].

4.2 Elimination of Variables

In this section we establish that the dimension of the vector space of the ideal
remains invariant when eliminating certain variables. We first prove the following
more general statement:

Proposition 1. Let I ′ be a zero-dimensional ideal of R′ := F [x1, . . . , xn], I an
ideal of R := R′[xn+1] and I ′ = I ∩ R′. Then dimR/I = dimR′/I ′ iff there exists
a polynomial g ∈ R′ such that xn+1 + g ∈ I.

Proof. W.l.o.g. we fix a lexicographical term ordering such that xn+1 is the
greatest variable. Let RT(I) and RT(I ′) be defined as follows:

RT(I) = {t ∈ T (R) : s � t for all s ∈ HT(I)}
RT(I ′) = {t ∈ T (R′) : s � t for all s ∈ HT(I ′)} ⊂ RT(I)

By Lemma 2, dimK(R/I) = #RT(I) holds. Thus it is sufficient to prove that
#RT(I) = #RT(I ′). Since xn+1 � t for t ∈ T (R′), the equality RT(I) = RT(I ′)
holds iff xn+1 ∈ HT(I), i.e. exists a g ∈ R′ for which xn+1 + g ∈ I. �

Corollary 2. For the set of polynomials A the dimension dim(R/I) is invariant
under the elimination of all variables except the round key variables ki,0 with
0 ≤ i ≤ 15 and ki,j with 0 ≤ i ≤ 3, 1 ≤ j ≤ 9.

Proof. By induction using Proposition 1.

So even eliminating a significant amount of variables does not reduce the com-
plexity of converting the Gröbner basis to a term order suitable for key recovery.

4.3 Taking the Field Equations into Account

Let R = F [x1, . . . , xn] be a polynomial ring over finite field F = GF (2m) with
q = 2m elements. For every element τ ∈ F the relation τq = τ holds; the equations

xq
i + xi = 0 (16)

are commonly called field equations. The set of roots of each of these equations is
the set of all elements of the field F . By adjoining the set of all field polynomials
F — the left-hand side of Equation 16 — to the set of polynomials A, we
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eliminate all points of the variety that only exist in the closure but not in the
ground field. The resulting set does not form a Gröbner basis, however.

What we have to do is to compute the intersection of two varieties; this is
usually achieved by computing the Gröbner basis of the sum of the corresponding
ideals. We have a set of polynomials A, describing AES which is a Gröbner basis
relative to the order <A, and a second set of polynomials F , which also forms
a Gröbner basis relative to the same order. It is however unclear how to exploit
the Gröbner basis property of the input.

4.4 Testing Keys

Gröbner bases were invented to solve the ideal membership problem. So why are
we not able to simply test whether a linear polynomial of the form

ki + C, C ∈ F (17)

— with C being a key variable guess — lies in the ideal? After all, this would
allow us to determine the key piecementally by guessing each byte.

Several problems present themselves here. First of all, the polynomial system
has solutions over the closure of the ground field, which means that we have to
test for a polynomial

g = p ·
∏

(ki + Cj)tj , tj ∈ N0, Cj ∈ F

instead, where the Cj denote candidate values for the key variable and p is a
product of irreducible non-linear polynomials. Moreover the dimension of the
ideal again plays an important role here: it is an upper bound on the number
of solutions of the corresponding polynomial system in the closure of the field.
Hence the degree of g is expected to be very large.

5 Implications

As far as the authors are aware at the time of writing this paper, the existence
of the above Gröbner basis has no security implications for AES. We conjecture
that methods similar to the one presented in this paper can be used to produce
total-degree Gröbner bases for many other iterated block ciphers – however we
like to point out that because of the high algebraic structure of Rijndael, it
makes for an excellent example.

6 Conclusion

We have demonstrated that by choosing a particular variable order, degree lexi-
cographical Gröbner bases for AES-128 can be constructed without polynomial
reductions. We have analyzed the implications of this finding and have shown
that several obvious approaches do not translate into a successful cryptanaly-
sis. It is an open problem whether the results contained in this paper can be
leveraged into an attack.
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A Polynomial Interpolation of the Inverse S-Box of
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AEx214+E4x213+93x212+8Bx211+CBx210+65x209+C0x208+1Ex207+

8Ex206+32x205+1Dx204+A5x203+76x202+A9x201+2Cx200+13x199+

05x198+60x197+FDx196+1Bx195+ABx194+64x193+C1x192+A8x191+

7Fx190+55x189+DBx188+ECx187+20x186+C4x185+DBx184+7Ex183+

92x182+80x181+A3x180+59x179+91x178+91x177+81x176+4Ex175+

11x174+DDx173+4Ex172+D3x171+E3x170+19x169+E7x168+03x167+

24x166+45x165+DAx164+EAx163+87x162+2Dx161+23x160+82x159+

38x158+B7x157+9Ex156+B3x155+2Ax154+3Ex153+1Cx152+ECx151+

C3x150+45x149+EDx148+D5x147+2Ax146+8Dx145+EDx144+37x143+

26x142+E0x141+BCx140+58x139+E2x138+6Cx137+24x136+55x135+

C7x134+AAx133+09x132+4Fx131+82x130+CAx129+10x128+EEx127+

1Ax126+2Ex125+40x124+27x123+81x122+92x121+B1x120+02x119+

8Bx118+87x117+7Fx116+B0x115+6Fx114+53x113+08x112+CBx111+

03x110+B0x109+DFx108+1Fx107+A7x106+A2x105+FEx104+8Ex103+

A8x102+E1x101+71x100+FFx99+55x98+5Ax97+1Dx96+9Dx95+

BFx94+E8x93+BAx92+6Bx91+72x90+E3x89+04x88+D9x87+

38x86+D3x85+B9x84+16x83+52x82+18x81+19x80+3Ex79+

9Ex78+03x77+56x76+A6x75+71x74+03x73+E4x72+86x71+

F5x70+B0x69+05x68+D1x67+10x66+E2x65+E5x64+CBx63+

B1x62+F2x61+8Ex60+C7x59+0Cx58+A7x57+BFx56+46x55+

0Bx54+01x53+C5x52+A3x51+50x50+77x49+EAx48+05x47+

65x46+8Ex45+89x44+D4x43+6Dx42+D3x41+75x40+65x39+

13x38+2Fx37+86x36+AFx35+7Cx34+7Bx33+85x32+C8x31+

E8x30+04x29+7Bx28+CFx27+2Fx26+8Ax25+9Ax24+3Dx23+

CFx22+21x21+39x20+D9x19+29x18+73x17+F6x16+23x15+

40x14+1Bx13+B2x12+C0x11+6Dx10+85x9+1Cx8+8Ax7+

2Cx6+BBx5+90x4+1Ex3+7Ex2+F3x1+52
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