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Abstract. The domain of robotic soccer is known as a highly dynamic
and non-deterministic environment for multiagent research. We intro-
duce an approach using Hierarchical Task Network planning in each of
the agents for high-level coordination and description of team strategies.
Our approach facilitates the maintenance of expert knowledge specified
as team strategies separated from the agent implementation. By com-
bining high level plans with reactive basic operators, agents can pursue
a grand strategy while staying reactive to changes in the environment.
Our results show that the use of a planner in a multiagent system is both
possible and useful despite the constraints in dynamic environments.

1 Introduction

Coordination among different agents in a multiagent system (MAS) is considered
as one of the most import challenges in order to achieve a common goal. This
task becomes increasingly difficult in highly dynamic, partially observable, and
adversarial environments such as robotic soccer. Noisy sensor data and imperfect
actuators further add to this problem.

For our work, we have in mind a multiagent system where the user specifies
not only a general task for the system, but also the way specific situations
are handled. On the other hand, the user can expect a certain set of available
primitives that handle simple tasks on their own. The idea is that a designer can
change the team behavior for specific situations. With the widely used reactive
approaches, changes are complicated because of interdependencies so that simple
changes can have impact on more than one situation. Another observation we
made with previous approaches was the difficulty to specify strategies for reactive
multiagent teams. Even though reactivity is a key quality in soccer, long term
strategies seem to be as useful. Classical planning approaches are a solution to
compute actions that lead towards given goals, but are in general regarded as
not applicable to highly dynamic multiagent scenarios.

In this work, we suggest to use Hierarchical Task Network (HTN) planners
in each of the agents in order to achieve coordinated team behavior, while at
the same time our agents should always follow the strategy as suggested by
the human expert. The expert knowledge should be separated from the rest
of the agent code, in a way that it can be easily specified and changed. While
pursuing the given strategy, the agents should keep as much of their reactiveness
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as possible. Different levels of detail in the description of strategies facilitate the
generation of useful information for debugging or synchronization.

HTN planning is based upon work presented in [I5]. It makes use of domain
knowledge to speed up the planning and is able to solve classical planning prob-
lems orders of magnitude more quickly than classical planners if provided with a
good set of HTNs. In our work, we followed the formalization of soccer domain
knowledge in [5] but adapted it for the use in HTN planning.

Furthermore, we show how it is possible to use an HTN planner in the domain
of robotic soccer, even though it is very different from environments used in
classical planning with deterministic operators and a single planning agent being
the only reason for changes in the world. For our approach, we have chosen a
team of agents in the RoboCup Soccer Simulation League 3D [§].

We start by reviewing relevant related work, and then describe our approach
in detail, outlining problems that arose while trying to adapt the planner to be
used in the MAS, and the solutions to overcome them. We present and discuss
the results of our first tests and give directions for future work.

2 Related Work

Several approaches that use a planning component in a MAS can be found in the
literature. In [4], the authors describe a formalism to integrate the HTN planning
system SHOP [13] with the IMPACT [17] multiagent environment (A-SHOP).
While the environment of this work clearly is a multiagent system, the planning
is carried out centralized by a single agent. This is a contrast to our approach,
which uses a planner in each of the agents to coordinate their actions.

Bowling et al. [2] presents a strategy system that makes use of plays to coordi-
nate team behavior of robots in the RoboCup Small Size League. Multiple plays
are managed in a playbook which is responsible to choose appropriate plays, and
evaluate them for adaption purposes. Effects of individual plays are not speci-
fied due to the difficulties in predicting the outcome of operators in the dynamic
environment. This is in contrast to our approach, as we use desired effects of the
operators in our plans as described in section Bl The planning component in [2]
is also centralized.

In [9], the use of coordination graphs [7] to coordinate a team of agents in
dynamic environments without explicit communication is proposed. The coor-
dination graphs are applied to the continuous domain of robotic soccer where a
discretization of the state is achieved by assigning roles to the different agents,
similar to the approach in [I6]. The coordination graphs are then built on the
derived set of roles.

In [TIL12], the behavior of agents in a Multiagent System is specified using
UML statecharts. Agents are designed in a top-down manner with a layered
architecture. At the highest level global patterns of behavior are specified in an
abstract way. Explicit specification of cooperation and multiagent behaviors can
be realized.
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0 method diagram_4
pre [ is_current_formation(F),
#formation(F,A,back,_,Side),

P #formation(F,B,forward,_,Side),
& b #formation(F,C,_,attacking,center),
“ o (-] [ ° #formation(F,D,forward,_,OtherSide),
#different (Side,OtherSide),

- } #different (Side,center)
]
subtasks [pass(A,B),
° pass(B,C),leading_pass(C,D)].

—_—

Fig. 1. Building up play with Diagram #4 from [I0] (left) and its notation as HTN
method for our planner (right). Preconditions prefixed with '#’ denote function calls.

3 A Planner for Soccer Agents

The main focus of our work was to achieve high-level coordination for a team
of several agents in a dynamic environment. All planning should be done in a
distributed fashion. The system should allow for easy specification of team plans,
and automatically generate individual actions for the agents during execution.

In [5], we present an approach to model soccer knowledge, as it can be found
in soccer theory books. The focus of this work was the representation of diagrams
used in [I0] to describe moves to be used in specific phases of the match. We
derive an ontology from [10] which breaks down the top level task play soccer into
subtasks by means of aggregation and specialization. A subset of this ontology
can be found in Tab. [l The hierarchy of the tasks and subtasks facilitates the
collection of useful debugging output during development.

In Hierarchical Task Network (HTN) planning, the objective is to perform
tasks. Tasks can be complex or primitive. HT'N planners use methods to expand
complex tasks into subtasks, until the tasks are primitive. Primitive tasks can be
performed directly by using planning operators. Changes to basic HTN planning
algorithms are necessary in order to use it for the soccer domain, because here
the outcome of operators is not deterministic.

Because it is impossible to foresee how the world will look like after a few
actions, our planner generates what is called plan stub in [I], a task network
with a primitive task as the first task. As soon as a plan stub has been found,
an agent can start executing its task. The algorithm in Fig. 2] expands a list of

Table 1. Some complex tasks with subtasks (’|’: alternatives; ’,’: sequences)
play soccer offensive phase | defensive phase | nothing
offensive phase upon ball possession, build up play, final touch, shooting
build up play build up play long pass | build up play diagonal pass
build up play long pass diagram 3 | diagram 4 | ...
diagram 4 pass(A,B), pass(B,C), leading pass(C,D)

pass(B,C) do pass(B) | do receive pass | do positioning
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Function: plan(snow, < t1, ..., tx >, 0, M)
Returns: (w,s), with w an ordered set of tasks, s a state; or failure

if kK =0 then return (0, snow) // i.e., the empty plan
if t1 is a pending primitive task then
active «— {(a,0)|a is a ground instance of an operator in O,
o is a substitution such that a is relevant for o(t1),
and a is applicable to Spow };
if active = () then return failure;
nondeterministically choose any (a, o) € active;
return (o(< t1,...,tx >), Y(Snow,a));
else if t1 is a pending complex task then
active — {m|m is a ground instance of a method in M,
o is a substitution such that m is relevant for o(t1),
and m is applicable t0 Spow };
if active = () then return failure;
nondeterministically choose any (m, o) € active;
w « subtasks(m).o (< t1, ..., tk >);
set all tasks in front of ¢; to pending, set t1 to expanded;
return plan(spow,w, O, M);
else
// t1 is an already executed expanded task and can be removed
return plan(spow, < t2, ..., tx >,0, M);

Fig. 2. Creating an initial plan stub (Notation according to [6])

tasks to a plan stub. At the same time, the desired successor state is computed
and returned. The second algorithm (see Fig. [B) removes executed tasks from
the plan and uses the first algorithm then to create an updated plan stub.

To handle non-determinism, we treat a plan as a stack. Tasks on this stack
are marked as either pending or as expanded. Pending tasks are either about to
be executed, if they are primitive, or waiting to be further expanded, if they are
complex. Tasks marked as expanded are complex tasks which already have been
expanded into subtasks. If a subtask of a complex task fails, all the remaining
subtasks of that complex task are removed from the stack and it is checked if the
complex task can be tried again. If a task was finished successfully, it is simply
removed from the stack.

Our plan operators realizing primitive tasks describe only the desired effects
of an action. Using desired effects of an action we can check if the action was
executed successfully. Simultaneously executed actions which are not part of the
desired effects of the operator are simply ignored in the description.

To give an example, we assume that the planner is about to plan for a situation
like in Fig. [l and the complex task play soccer has already been partially
expanded as shown in Fig. @ (left). All the pending tasks in Fig.  are still
complex tasks. At this level of expansion, the plan still represents a team plan,
as seen from a global perspective. The team task pass(2,9) will expand to
do pass(9) for agent #2, agent #9 has to do a do receive pass for the same
team task. The other agents position themselves relatively to the current ball
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Function: Step(sezpected7 Snow,y < t17 ceey tk >, 07 M)
Returns: (w, s), with w a set of ordered tasks, s a state; or failure

if k =0 then return (0, spow) // i.e., the empty plan
if t1 is a pending task then
if Sexpectea s valid in Spow then
i «— the position of the first non-primitive task in the list;
return plan(spow, < ti,...,tx >,0, M );
else
// t1 was unsuccessful; remove all pending children of our parent task
return step(Sexpected, Snow, < t2, ..., tk >,0, M );
else
// t1 is an unsuccessfully terminated expanded task, try to re-apply it
active < {m|m is a ground instance of a method in M,
o is a substitution such that m is relevant for o(¢1),
and m is applicable t0 Spow };
if active = () then
// t1 cannot be re-applied, remove it from the list and recurse
return step(Sezpected, Snow, < t2, ..., tx >, 0, M);
else
nondeterministically choose any (m, o) € active;
w « subtasks(m).o(< t1, ..., tx >);
set all tasks in front of ¢; to pending, set t1 to expanded;
return plan(snow, w, O, M);

Fig. 3. Remove the top primitive tasks and create a new plan stub

pending-pass(2,9) method pass(A,B)
pending-pass (9,10) pre [my_number(A)]
pending-leading-pass(10,11)
expanded-diagram-4
expanded-build_up_long_pass

do_positioning].

method pass(A,B)
pre [my_number(B)]

subtasks [do_pass(B) with pass(we,A,B),
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expa.nded-build_up_play subtasks [do_receive_pass with pass(we,A,B)].

pending-final_touch
pending-shooting method pass(A,B)

pre [my_number(C),#\=(A,C),#\=(B,C)]

expanded-offensive_phase subtasks [do_positioning with pass(we,A,B)].

expanded-play_soccer

Fig. 4. Plan stack during planning (left) and different methods to reduce the team task

pass(A,B) to agent tasks (right)

position with do positioning at the same time. The desired effect of pass(2,9)
is the same for all the agents, even if the derived primitive task is different
depending on the role of the agent. To express that an agent should execute
the do positioning behavior while taking the effect of a simultaneous pass
between two teammates into account, we are using terms like do positioning
with pass(we,2,9) in our planner. Figure [ (right) shows methods reducing

the team task pass(A,B) to different primitive player tasks.
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pending-(do_receive_pass with
pass(we, 2, 9)),
expanded-pass(2, 9),
pending-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram-4,

pending-(do_positioning with
pass(we, 2, 9)),
expanded-pass(2, 9),
pending-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram-4,

Fig. 5. Step 1: Plan Stubs for player 11 and player 9 (see also Fig. [l

pending-(do_pass(10) with
pass(we, 9, 10)),
pending-do_positioning,
expanded-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram_4,

pending-(do_positioning with
pass(we, 9, 10)),
expanded-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram_4,

Fig. 6. Step 2: Plan Stubs for player 11 and player 9

In different agents, the applicable methods for the top team task pass(2,9)
lead to different plan stubs. This is an important difference to the work presented
in [1]. The plan stubs created as first step for agent 9 and agent 11 are shown in
Fig. Bl When a plan stub is found, the top primitive tasks are passed to the C++
module of our agent and executed. The agent has to execute all pending primitive
tasks until the next step in the plan starts. If there are pending primitive tasks
after one step is finished, these agent tasks are simply removed from the plan
stack and the next team task can be expanded. Figure [0l shows the plan stub for
the second step from the diagram in Fig. [l For player 11, the expansion leads
to a plan stub with two primitive tasks in a plan step while for player 9 there
is only one task to be executed. Each step in plans for our team stops or starts
with an agent being in ball possession. If any of the agents on the field is in ball
possession, we can check for the desired effect of the previous action.

4 Results and Discussion

For our approach of generating coordinated actions in a team we implemented
an HTN planner in Prolog which supports interleaving of planning and acting.
Our planner supports team actions by explicitly taking the effects of operators
simultaneously used by teammates into account. The planner ensures that the
agents follow the strategy specified by the user of the system by generating
individual actions for each of the agents that are in accordance with it. The
lazy evaluation in the expansion of subtasks which generates plan stubs rather
than a full plan, makes the planning process very fast and enables the agents to
stay reactive to unexpected changes in the environment. The reactiveness could,
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however, be increased by adding a situation evaluation mechanism that is used
prior to invoking the planner. This would improve the ability to exploit sudden,
short-lived opportunities during the game.

Creating strong teams is possible with many approaches. We strongly be-
lieve that our approach leads to a modular behavior design and facilitates rapid
specification of team behavior for users of our agent architecture. Our plans
can describe plays as introduced in [2], which have shown to be useful for syn-
chronization in a team. Our approach supports different levels of abstraction in
plans. That means there are different levels of detail available to describe what
our team and each single agent is actually doing. Additionally, the planner can
find alternative ways to achieve tasks. The approach in [2] was used for Small
Size League; but for larger teams, more opportunities are possible for which an
approach using fixed teammates seems to restrictive. On the other hand, the
approach in [2] supports adaptation by changing weights for the selection of suc-
cessful plays. In our approach, the corresponding functionality could be achieved
by changing the order in which HTN methods are used to reduce tasks. At this
point in time, our approach does not support this yet. As soon as we do have an
adaptive component in our approach, it makes sense to compare results of our
team with and without adaptation.

Although more detailed evaluations have to be carried out, the first tests
using the planner seem very promising and indicate that our approach provides
a flexible, easily extendable method for coordinating a team of agents in dynamic
domains like the RoboCup 3D Simulation League.

5 Conclusion and Future Work

We presented a novel approach that uses an HTN planning component to coor-
dinate the behavior of multiple agents in a dynamic MAS. We formalized expert
domain knowledge and used it in the planning methods to subdivide the given
tasks. The hierarchical structure of the plans speeds up the planning and also
helps to generate useful debugging output for development. Furthermore, the
system is easily extendable as the planning logic and the domain knowledge are
separated.

In order to use the system in RoboCup competitions, we plan to integrate a lot
more subdivision strategies for the different tasks as described in the diagrams
in [I0]. A desirable enhancement to our work would be the integration of an
adaption mechanism. Monitoring the success of different strategies against a
certain opponent, and using this information in the choice of several applicable
action possibilities, as e.g. outlined in [2], should be explored. The introduction
of durative actions into the planner (see for instance [3]) would give a more fine
grained control over the parallelism in the multiagent plans. Finally, we want
to restrict the sensors of the agents to receive only partial information about
the current world state, and address the issues that result for the distributed
planning process.
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