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Abstract. This paper explores how sensor and motion modeling can
be improved to better Markov localization by exploiting deviations from
expected sensor readings. Proprioception is achieved by monitoring tar-
get and actual motions of robot joints. This provides information about
whether or not an action was executed as desired, yielding a quality
measure of the current odometry. Odometry is usually extremely prone
to errors for legged robots, especially in dynamic environments where
collisions are often unavoidable, due to the many degrees of freedom of
the robot and the numerous possibilities of motion hindrance. A quality
measure helps differentiate the periods of unhindered motion from pe-
riods where robot motion was impaired for whatever reason. Negative
evidence is collected when a robot fails to detect a landmark that it ex-
pects to see. Therefore the gaze direction of the camera has to be modeled
accordingly. This enables the robot to localize where it could not when
only using landmarks. In the general localization task, the probability
distribution converges more quickly when negative information is taken
into account.

1 Introduction

Selflocalization, the estimation of position and orientation of a mobile robot,
remains an important and valuable task for mobile robotics. One of the most
successfully applied approaches is called Monte-Carlo-Localization. This method
is used in numerous robot navigation problem domains, such as office navigation
[1], museum tour guides [13], RoboCup [7], as well as outdoor or less structured
environments [9]. We propose 2 extensions affecting the sensor model as well as
the motion model.

1. We show how negative information can be incorporated into Monte Carlo
localization. The sensor model is extended by modeling the probability of
non-detection events.
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2. The motion model is improved through careful modeling of proprioceptive
information. The resulting model is incorporated into the action update of
the particle filter.

The adjustments and changes presented improve the general ability to localize
and also allow the robot to localize in areas where it was previously unable. They
enable the robot to quickly recover its belief after collision events and to adjust
quickly to large displacements (kidnapped robot).

Negative information denotes the ascertained absence of expected sensor read-
ings. This is incorporated into the current belief much like an additional sensor.
Proprioception is based on the comparison of actual motion to intended motion.
This information is used to enhance the influence of action commands onto the
belief. The extensions each prove to be a useful addition to the particle filter used,
but are not particle filter specific approaches and can be used in other Bayes
Filters. The positive impact on localization is shown in real world experiments
using the Sony Aibo ERS-7 robot.

2 Monte Carlo Localization

The Monte Carlo Localization method is a probabilistic method, utilizing Bayes
law and the Markov assumption. The robot maintains a set of samples, called
particles. The particles approximate the belief of the robot’s position, a prob-
ability distribution over the possible positions of the robot. The current belief
of the robot’s position is modeled as particle density, allowing for multi-modal
probability distributions and beliefs. Each particle represents a hypothetical po-
sition of the robot. Belief Bel(st), the localization estimate at time t, to be at
position st is determined by all previous robot actions ut and observations zt.
Using Bayes law and the Markov assumption, Bel(st) can be written as a func-
tion that only depends on the previous belief Bel(st−1), the last robot action
ut−1, and the current observation zt:

Bel−(st)←−
∫

p(st|st−1, ut−1)︸ ︷︷ ︸
motion model

Bel(st−1)dst−1 (1)

Bel(st)←− η p(zt|st)︸ ︷︷ ︸
sensor model

Bel−(st) (2)

with normalizing constant η. Equation 1 shows the a priori belief Bel−(st) which
takes into account the previous belief and propagates it using the motion model
of the robot. It is the belief prior to the measurement. The measurement is then
incorporated into the belief as described in (2) using the sensor model (‘sen-
sor updating’). In Markov localization, given an initial belief Bel(s0) at t = t0,
the robot updates its belief using odometry and then incorporates new sensor
information. Each time new information arrives the robot updates its particle
distribution using the previous motion command, the resulting distribution is
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updated using the gathered sensor information. This 2 step operation requires
2 models. The motion model p(st|st−1, ut−1) tries to model the effect of mo-
tion commands on the hypothetical positions. The sensor model incorporates
environment and sensor information regarding this environment into the cur-
rent belief. The particle filter employed for our work is based on the method
described in [10]. Here particles consist of a robot pose and a probability. The
robot pose (x, y, θ) represents the position and orientation of the robot (x,y co-
ordinates on the field in mm and orientation in radians). The likelihood p is a
measure of the plausibility of the hypothesis being at the specified robot pose.
The approach first moves all particles according to the motion model of the ac-
tion chosen. Afterwards the probabilities of the particles are adjusted using the
sensory input and the sensor model. In a third step, called resampling particles
are moved, deleted from the particle set or injected from observation, based on
their probability.

3 Proprioceptive Motion Modeling

If obstacle avoidance fails robots are often unable to detect collisions since many
designs, like the robot used in this work, lack touch sensors or bumpers. Apart
from the current action failing, collisions (and subsequently being stuck) have
severe impact on the robot’s localization if odometry is used to any degree in
the localization process. For these approaches to be robust against collisions,
they tend to not trust odometry much. This paper is based on work dealing
with collisions detection for a Sony Aibo using the walking engine and software
framework described in [3]. The approach uses the servo motor’s direction sensors
for the task of estimating the quality of the odometry data gathered by the
walking engine. In analogy to biology we call it proprioception because intrinsic
data of the leg sensors is used.

3.1 Motion Model

The motion model consists of consecutive acquired odometry data incorporated
into the Belief, as well as a random error Δerror, which is related to the distance
traveled and the angle rotated. Every particle is updated using the odometry
offset accumulated since the last update.

posenew = poseold + Δodometry + Δerror (3)

Where Δerror is defined as

Δerror =

⎛
⎝ 0.1d× random(−1 . . .1)

0.02d× random(−1 . . . 1)
(0.002d + 0.2α)× random(−1 . . . 1)

⎞
⎠ (4)

3.2 Collision Detection

The Aibo is not equipped with sensors to directly perceive the contact with
obstacles. We have shown ways of detecting collisions using the sensor readings



Exploiting the Unexpected 27

Fig. 1. Sensor and actuator data (shoulder joint FL1) for a freely walking robot. The
corresponding difference function shows discrepancies between actuator and sensor
data, caused by walking motions (peaks in the curve).

from the servo motors of the robot’s legs in [3]. The comparison of motor com-
mands and actual movement (as sensed by the servo’s position sensor) can be
used to detect collisions (see fig.1). This comparison has to compensate for the
phase shift between the two signals and has to cope with arbitrary movements
and accelerations produced by the behavioral layers of the robot. The method
provides a virtual collision sensor that can be used to improve the motion
model.

3.3 Extended Motion Model

The extended motion model accounts for the supplementary information pro-
vided by the collision detection module, by changing Δerror as well as affecting
the accumulated odometry update data in a random way. The binary decision
of the collision sensor has a static impact on the motion noise. This means that
Δerror is no longer dependent on the distance traveled and the angle rotated,
but rather is a uniform noise, within an interval expected to be a possible out-
come of collisions. But also odometry data can not be fully relied upon, which
is accounted for by randomly updating particles through the gathered odometry
information, with the assumption that the robot most probably ends up some-
where between the requested destination and the starting point. The noise tries
to account for the severe and unforeseeable impact of the collision. If collisions
are detected, every particle is updated by:

posenew = poseold + random(0...1) ·Δodometry + Δerror

Where Δerror is

Δerror =

⎛
⎝ 40× random(−1 . . . 1)

40× random(−1 . . . 1)
0.5× random(−1 . . . 1)

⎞
⎠ (5)

Otherwise, when no collision was detected, the motion model is not extended
and the update is performed as usual(3). The effect of the changes are illustrated
in fig.2 and 3.
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Fig. 2. Collision Experiment: A robot starts walking from the center circle in the
direction of the goal and turns left before reaching the penalty area. The distributions
entropy with (�) and without the extended motion model (top) and the corresponding
collision ”sensor” (bottom, values greater than 4 are interpreted as a collision).

Entropy. We use the expected entropy H as an information theoretical quality
measure of the position estimate Bel(st) [2]:

Hp(st) = −
∑
st

Bel(st) log(Bel(st)) (6)

The sum runs over all possible states. The entropy of the particle distribution
becomes zero if the robot is perfectly localized in one position. Maximal values
of H mean that Bel(st) is uniformly distributed.

Fig. 3 illustrates the effect of the described motion modeling on the particle
distribution. A robot is walking from the center circle in the direction of the goal
when a collision occurs. It then continues towards the goal and turns left before
reaching the penalty area. When the collision is modeled, the uncertainty in the
belief is clearly visible and can be used to trigger appropriate robot behavior.

4 Negative Evidence Modeling

The used localization algorithm uses field lines and landmarks to perform
the sensor updating of the current belief. We extend this approach through
the use of negative information. Two main reasons make it hard to actually
implement a system that integrates negative evidence: the target (landmark)
may not be there or the sensor may simply be unable to detect the target
(due to occlusions, sensor imperfections, imperfect image processing, etc.).
Differentiating the two cases requires careful sensor modeling. We address this
problem by considering the field of view of the robot and by using obstacle
detection to estimate occlusions. Negative information has been used in object
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Fig. 3. Belief distribution without (2) and with (3) odometry quality used after a
collision (marked by the star on the robot’s path)

tracking (see [12] for an introduction and [5] for an overview). Not seeing the
ball on the RoboCup field causes Monte Carlo particles to be deleted in that
particular region [6]; occlusions are considered by explicitly modeling other
robots’ positions.

4.1 Sensor Model

Whenever the robot senses a landmark, the localization estimate is updated us-
ing the sensor model. This sensor model is acquired before the actual run. It
describes the probability of the measurement z given a state s (position, orien-
tation, etc.) of the robot. If no landmark is detected, the state estimation is up-
dated using (only) the motion model of the robot. Sensory input in our case is
measured bearings to landmark. The approach has been extended by account-
ing for field lines and edges [11] which require a slightly different model and
method. The probability of the particles is derived from the measured bearings
to landmarks.

4.2 Negative Information

Negative information describes the absence of a sensor reading in a situation
where a sensor reading is expected given the current position estimate. To in-
tegrate negative information, imagine a binary sensor being added that fires
whenever the primary sensor does not detect a particular landmark l. Its prob-
ability of it firing is given by:

p(z�
l,t|st) (7)

This sensor model can be used to update the robot’s belief whenever it fails to
detect a landmark, i.e. when negative evidence is acquired. This rather coarse
way of incorporating negative information can be refined by taking into account
the range rt of the robot’s sensors and possible occlusions ot of landmarks. The
sensing range is the physical volume that the sensor is monitoring. In case of a
stationary robot, rt = r0 is constant, for a mobile robot with a pan-tilt camera
it is not. By ot we denote a means of detecting the occurrence of occlusions. In
practice, this can be calculated from a map of the environment, directly sensed
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by a sensor such as a laser range finder, or derived from a model of moving
objects in the environment. Combining the two yields the probability of not
sensing an expected landmark l is:

p(z�
t,l|st, rt, ot) (8)

The absence of the detection of a landmark can be used in the sensor update
step of the Iterative Bayesian Updating (see Algorithm 1).

4.3 Extended Sensor Model

Field of View. Here we show the camera of the Sony Aibo ERS-7. The ERS-7
is a legged robot with a camera mounted in its head. The camera has a horizon-
tal opening angle of 55o and the robot’s head has 3 degrees of freedom (neck tilt,
head pan, head tilt). We abbreviate gaze direction by ϕ = (ϕtilt1, ϕpan, ϕtilt2).
The sensing range is calculated by considering the field of view (FOV) of the
robot:

Occlusion. In order to account for occlusions, we opted for an approach that
has been used successful for detecting obstacles, referred to as ‘visual sonar’
[4, 8]: The camera image is scanned in vertical scan lines and unoccupied space
in the plane of the field is detected, since it can only be of green or white color
(field lines). Scanning for these colors tells the robot where obstacles are and
where there is free space, which in turn can be used to determine whether the
visibility of the landmark was impaired, i.e. if it was occluded by another robot
or some other obstacle. More specifically, if the expected landmark lies in an area
where the robot has detected free space, the likelihood of the corresponding pose
estimate is decreased. If it lies outside of the detected free space, no information
can be inferred. Taking FOV and occlusion into account, the sensor model for
not perceiving an expected landmark is given by:

p(z�
t |st, zt,obstacle) (9)

Where st = (xt, yt, ϑt, ϕt) describes the robot state that consists of the robot pose
(position xt, yt, and orientation ϑt) and the current gaze direction ϕt. These are
used to calculate the field of view of the camera. The sensor updating part of
the localization code was adjusted to account for FOV and occlusion as de-
scribed above. This means that sensor updating is triggered whenever there is
a new camera image regardless of whether or not there was a percept. Before
re-sampling, the weight of an individual particle is calculated as follows: Of all
landmarks L, a subset of landmarks L′ is detected, the subset L� is expected but
not detected, and lastly the subset L� is not detected, but was also not expected,



Exploiting the Unexpected 31

Algorithm 1. Iterative Bayesian updating incorporating negative evidence
1: Bel−(st)←−

∫
p(st|st−1, ut−1)Bel(st−1)dst−1

2: if (landmark l was detected) then
3: Bel(st)←− ηp(zt|st)Bel−(st)
4: else
5: Bel(st)←− ηp(z�

t,l|st, rt, ot)Bel−(st)
6: end if

L = L′ ∪ L� ∪ L� and L� ∩ L′ = ∅. The probability of a particle pi is calculated
by multiplying all the gathered evidences:

pi =
∏
l∈L′

sl(αmeasd, αexpd)

︸ ︷︷ ︸
detected

·
∏

l∈L�

s�
l (ϕ, αexpd)

︸ ︷︷ ︸
expected and not detected

(10)

The function sl is an approximation of the sensor model and returns the like-
lihood of sensing the landmark l at angle αmeasd for a particle pi that expects
this landmark to be at αexpd. Function s�

l models the probability of not sensing
the expected landmark l� given the current sensing range as determined by ϕ,
the robot pose associated with pi, and the obstacle percept zobstacle.

4.4 Experimental Results

Localization Experiment. The following experiment is a localization task on the
real robot. The robot is placed on the field in front of a landmark facing outwards.
The robot performs a scanning motion with its head (pan range [−45o, 45o]) but
does not move otherwise. From where it is standing, it can only see one land-
mark. A panorama composed of actual robot camera images is shown in fig.
4. The a priori belief is assumed uniform. This position was chosen because
it is a particulary difficult spot for the robot to localize given the limited sen-
sor information. The bearing αl to a landmark is used for localization because
the distance measurement is prone to errors. Using just the bearing, only the
orientation of the robot can be inferred.

In the following paragraphs, the basic localization excluding the use of neg-
ative information and localization incorporating negative information are com-
pared. We will first give a more qualitative analysis of the particle distribution
and then show how the entropy of the distribution decreases when negative
information is considered.

Particle Distribution. The basic experiment was conducted using 100 particles
for Monte Carlo localization. It was repeated on a log file (containing camera
images and robot joint angles) using an increased particle count of 2000. This
was done to reveal artifacts due to the small number of particles used in the
standard implementation.
Not using negative information. Without using negative information, the robot
is unable to localize (fig. 5). Only the orientation of the particles is adjusted
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Fig. 4. Top: A panoramic view generated from actual camera images, single camera
image highlighted. The robot can only see one landmark. Below: Photo of the experi-
mental setup in our lab.

according to the sensor readings. The apparent clustering in fig. 5 is not stable
and even after considerable time, the particles do not converge. The distribution
for the larger sample set is uniform (w.r.t. position). Note that the distribution
is not circular because the distance to the landmark was not used. Instead,
only the bearing to the landmark was used. This results in a radial distribution
resembling magnetic field lines.
Incorporating negative information. The negative information gained in this
experiment is only seeing one landmark within the pan range. Incorporating
this information, the robot is able to localize quickly. On average, the robot is
reasonably well localized after 5-10 secs with a pose error of less than Δp =
(35 cm, 35 cm, 20o).

Entropy. We now consider the entropy of the particle distribution as defined
earlier. Fig. 6 shows the progression of the distribution’s entropy over time for
the above localization experiment calculated from the 100 particle distribution.

Not using negative information. The experiments starts with a uniform particle
distribution which equals to maximum entropy. When the landmark comes into
view, a decrease in entropy is observed. This information gain is caused by the
robot now knowing its relative orientation w.r.t. the landmark. Since there are
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Fig. 5. Particle distribution not using negative information, initial uniform distribution
and distribution after 10s. Solid arrows indicate Monte Carlo particles (100). The ex-
periment was repeated using 2000 particles (shaded lines) to better represent the actual
probability distribution. The actual robot position is indicated by the white symbol,
the calculated robot pose by the solid symbol. Not using negative information and
only using the bearing to the landmark the robot is unable to localize. Some clusters of
particles form but they do not converge. As one would expect, the position distribution
is almost uniform but the relative angle is quite distinct. Right. Particle distribution
when negative information is incorporated, enabling the robot to localize quickly.

Fig. 6. Expected entropy of the belief in the localization task with (�) and without
(thin line) using negative information. 1) At first the robot does not see the landmark.
As soon as the landmark comes into the robot’s view (indicated by the dashed vertical
line), the entropy drops. Using negative information, the quality of the localization is
greatly improved and the entropy continues to decrease over time. Note that the entropy
decreases even before the landmark has been seen for the first time. 2) Additionally
using field lines for localization enables the robot to localize. Incorporating negative
information, the rate of convergence is higher and the entropy is significantly lower
than without using it.
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no constraints on the robot’s position, the entropy remains at a relatively high
level. Note that even though there is a drop in entropy, the localization estimate
itself is still highly uncertain.
Incorporating negative information. When using negative information, the en-
tropy decreases even before the first sensor reading. The information gain is
much smaller than that caused by perceiving a landmark, but nevertheless no-
ticeable. As soon as there is a percept, the negative information in combination
with the knowledge of the robot’s orientation results in a quick convergence of
the particle distribution towards the actual robot pose. Remember that without
using negative information no localization was observed.
Using field lines for localization. In our last experiment, field lines were used for
localization in addition to landmarks. This enables the robot to localize quickly
at the actual robot pose even when using the basic localization. Adding negative
information, however, greatly increases the rate of convergence and the overall
level of entropy is reduced even further. It is noteworthy that the decrease of
entropy when incorporating negative information is not obscured by the usage
of lines for localization (which offer a much higher information content than
negative information).

5 Conclusion

We have demonstrated the power of integrating negative information as well as
information about collisions into Markov localization.

We have shown how an odometry-based motion model can be improved using
the knowledge about collisions with obstacles. This knowledge has been obtained
by comparing the motor commands and the sensor readings of the leg joints. In
the case of a collision the influence of the odometry on the motion model was
reduced and extra noise was added that models the impact of an obstacle.

Incorporating negative information into the sensor model makes localization
more stable even in areas where landmarks are rarely visible. The usage of neg-
ative information does, however, require very careful modeling. To avoid false
negatives, the model needs to take into account the sensor’s sensing range and
possible occlusions of landmarks. We have presented how such modeling can
be achieved for a Sony Aibo robot in the RoboCup environment. In real robot
experiments, we have shown that using negative information, a robot is able to
localize in positions where it otherwise would not. The entropy of the distribution
is greatly reduced when negative information is incorporated and the rate of con-
vergence towards the estimated position is increased. Future work will focus on
how negative information can be used for other types of landmarks (e.g. field
lines) and other sensors. Performance evaluation will be continued in more com-
plex situations and the possibilities of reducing the number of particles necessary
for robust Monte Carlo localization will be investigated.
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