
An Online POMDP Algorithm Used by the

PoliceForce Agents in the RoboCupRescue
Simulation

Sébastien Paquet, Ludovic Tobin, and Brahim Chaib-draa

DAMAS Laboratory, Laval University
{spaquet, tobin, chaib}@damas.ift.ulaval.ca

Abstract. In the RoboCupRescue simulation, the PoliceForce agents
have to decide which roads to clear to help other agents to navigate in the
city. In this article, we present how we have modelled their environment
as a POMDP and more importantly we present our new online POMDP
algorithm enabling them to make good decisions in real-time during the
simulation. Our algorithm is based on a look-ahead search to find the
best action to execute at each cycle. We thus avoid the overwhelming
complexity of computing a policy for each possible situation. To show the
efficiency of our algorithm, we present some results on standard POMDPs
and in the RoboCupRescue simulation environment.

1 Introduction

Partially Observable Markov Decision Processes (POMDPs) provide a very gen-
eral model for sequential decision problems in a partially observable environ-
ment. A lot of problems can be modelled with POMDPs, but very few can
be solved because of their computational complexity (POMDPs are PSPACE-
complete [1]), which motivates the search for approximation methods. Recently,
many approximation algorithms have been developed [2, 3, 4, 5, 6] and they all
share in common the fact that they try to solve the problem offline. While these
algorithms can achieve very good performances, they are still not applicable on
large multiagent problems, like the RoboCupRescue simulation.

This paper presents a novel idea for POMDPs that, to our knowledge, have
never received a lot of attention. The idea is to use an online approach based on
a look-ahead search in the belief state space to find the best action to execute at
each cycle. By doing so, we avoid the overwhelming complexity of computing a
policy for every possible situation the agent could encounter. We present results
showing that it is possible to achieve relatively good performances by using a
very short amount of time online. To make our solution even better, we have
incorporated a factored representation in order to speed up the computation
time and reduce the amount of memory required.

In this article, we first describe the formalism of our RTBSS (Real-Time Belief
Space Search) algorithm, followed by some results on standard POMDPs, then
we present an adaptation of our method for the RoboCupRescue simulation
environment and some results showing its efficiency.

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 196–207, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Online POMDP Algorithm 197

2 POMDP

In this section we briefly describe POMDPs [7, 8] and then we introduce factored
POMDPs. Formally, a POMDP is a tuple described as 〈S ,A,T ,R, Ω,O〉 where:

– S is the set of all the environment states;
– A is the set of all possible actions;
– T (s , a, s ′) is the probability of ending in state s ′ if the agent performs action

a in state s ;
– R(s) is the reward associated with being in state s .
– Ω is the set of all possible observations;
– O(s ′, a, o) is the probability of observing o if action a is performed and the

resulting state is s ′.

Since the environment is partially observable, an agent cannot perfectly dis-
tinguish in which state it is. To manage this uncertainty, an agent can maintain
a belief state b which is defined as a probability distribution over S . b(s) means
the probability of being in state s according to belief state b.

The agent also needs to choose an action to do in function of its current
belief state. This action is determined by the policy π, which is a function that
maps a belief state to the action the agent should execute in this belief state.
To construct a policy, the agent has to evaluate the expected reward of a belief
state. To do so, the agent can use the following value function of a belief state
for an horizon of t :

Vt (b) = R(b) + γ max
a

∑

o∈Ω

P(o |b, a)Vt−1(τ(b, a, o)) (1)

R(b) =
∑

s∈S

b(s)R(s) (2)

R(b) is the expected reward for the belief state b and the second part of equa-
tion 1 is the discounted expected future rewards. P(o |b, a) is the probability of
observing o if action a is performed in belief state b:

P(o |b, a) =
∑

s′∈S

O(s ′, a, o)
∑

s∈S

T (s , a, s ′)b(s) (3)

Also, τ(b, a, o) is the belief state update function. It returns the resulting
belief state if action a is done in belief state b and observation o is perceived. If
b′ = τ(b, a, o), then:

b′(s ′) = ηO(s ′, a, o)
∑

s∈S

T (s , a, s ′)b(s) (4)

where η is a normalizing constant. Finally, the policy can be obtained according
to:

πt (b) = argmax
a

[
R(b) + γ

∑

o∈Ω

P(o |b, a)Vt−1(τ(b, a, o))

]
(5)

198 S. Paquet, L. Tobin, and B. Chaib-draa

Fig. 1. Belief states without dependance (left) and with dependance (right)

2.1 Factored POMDP

The traditional POMDP model is not suited to big environments because it
requires explicitly enumerating all the states. However, most environments can
be described by a set of different features which allows representing them much
more compactly. Let X = {X1,X2, . . . ,XM} be the set of M random variables
that fully describe a system state. We can then define a state by assigning a value
to each variable: s = {X1 = x1, . . . ,XM = xM} or more compactly s = {xi}M

i=1.
With such a factored representation it is then possible to compactly represent

the transition and observation functions as a dynamic Bayesian network [9].
Also, if the state variables can be partitioned into probabilistically indepen-
dent subsets, then the joint distribution representing the belief state can be
compactly represented by the product of the marginal distributions of each
subset [4]. Therefore, by maintaining the probabilities on variables instead of
states, it is much easier to update the belief state and use it for approximation
methods.

Figure 1 shows an example of two belief states. On the left, the variables are
all independent, thus there is one vector of probabilities for each variable. On the
right, the last two variables are dependent and thus there are only two vectors.
Moreover, even if all variables are dependent, it is still possible to factorize the
belief state with minimal degradation of the solution’s quality. Some methods
have been developed to automatically generate groups of variables that offer
an interesting compromise between compactness of the representation and the
performance of the agent [4, 10]. It is important to mention that the factorization
is not necessary for our method, but if it can be used, it can accelerate the
calculations, thus helping our algorithm to search deeper.

2.2 Formalization

More formally, to take advantage of the factored representation of the belief
state, we define a function ω : B → PS :

ω(b) = {{xi}M
i=1 | (∀ xi) Pb(Xi = xi) > 0} (6)

This function returns, according to a belief state, all the states the agent could
be in. We know that a state is impossible if one of the variables has a probability
of zero according to b. Moreover, if the variables are ordered approximately
according to their certainty (see Figure 1), this subset of states can be rapidly
constructed because each time we encounter a variable with a probability equal

An Online POMDP Algorithm 199

to zero, we can immediately exclude all the corresponding states. The following
equation can then be computed much more rapidly than equation 2:

R(b) =
∑

s∈ω(b)

R(s)b(s) (7)

In fact, the less uncertainty the agent has, the smaller the subset of possible
states is and the faster the computation of equation 7 is compared to equation 2.

Now that we consider only the states that an agent can be in, we would also
like to have a function that returns the states that are reachable from a certain
belief state. To do so, we define a new function α : A×B ×Ω → P S that takes
as parameters the current belief state b, the action a that was performed and
the observation perceived o and returns all the states that the agent can reach:

α(a, b, o) = {s ′ | (∀ s ∈ ω(b)) T (s , a, s ′) �= 0 ∧O(s ′, a, o) �= 0} (8)

The probability of making an observation (P(o |a, b)) can also be expressed
using α and ω:

P(o | a, b) =
∑

s′∈α(a,b,o)

O(s ′, a, o)
∑

s∈ω(b)

T (s , a, s ′)b(s). (9)

3 Online Decision Making

Instead of computing a policy offline, we adopted an online approach where
the agent rather performs a local search at each step in the environment, thus
avoiding a lot of computations. The advantage of such a method is that it can
be applied to problems with a huge state space.

3.1 Belief State Value Approximation

In section 2, we described how it was possible to exactly compute the value of a
belief state (equation 1). In this section, we instead explain how we estimate the
value of a belief state for our online approach by using a look-ahead search. The
main idea is to construct a tree where the nodes are belief states and where the
branches are a combination of actions and observations (see Figure 2). To do so,
we have defined a new function δ : B×N → R that looks like equation 1, but that
is based on a depth-first search instead of dynamic programming. The function
takes as parameters a belief state b and a remaining depth d and returns an
estimation of the value of b by performing a search of depth d . For the first call,
d is initialized at D , the maximum depth allowed for the search.

δ(b, d) =

{
U (b) , if d =0
R(b) + γmax

a

∑
o∈Ω

(P(o | b, a) × δ(τ(b, a, o), d − 1)) , if d >0 (10)

where R(b) is computed using equation 7 and P(o |b, a) using equation 9.

200 S. Paquet, L. Tobin, and B. Chaib-draa

b0

b1 b2 b3

a1 a2 an

o1
o2 on

...

...

Fig. 2. A search tree

When d = 0, we are at the bottom of the search tree. In this situation, we
need a way to estimate the value of the current belief state. To do so, we need
a utility function U (b), that gives an estimation of the real value of this belief
state (if the function U (b) was perfect, their would be no need for a search). If
it is not possible to find a better utility function, we can use U (b) = R(b).

When d > 0, the value of a belief state at a depth of D − d is simply the
immediate reward for being in this belief state added to the maximum discounted
reward of the subtrees underneath this belief state.

Finally, the agent’s policy which returns the action the agent should do in a
certain belief state is defined as:

π(b,D) = argmax
a

∑

o∈Ω

P(o | b, a)δ(τ(b, a, o),D − 1). (11)

3.2 RTBSS Algorithm

We now describe our RTBSS (Real-Time Belief Space Search) algorithm that is
used to construct the search tree and to find the best action. Since it is an online
algorithm, it must be applied each time the agent has to make a decision.

To speed up the search, our algorithm uses a “Branch and Bound” strategy
to cut some sub-trees. The algorithm first explores a path in the tree up to the
desired depth D and then computes the value for this path. This value then
becomes a lower bound on the maximal expected value.

Afterwards, for each node of the tree visited, the algorithm can evaluate with
an heuristic function if it is possible to improve the lower bound by pursuing
the search. This is represented by the Prune function at line 10. The heuristic
function returns an estimation of the best utility value that could be found if
the search was pursued. Thus, if according to the heuristic, it is impossible to
find a value that is better than the lower bound by continuing the search, the
algorithm backtracks and explores another action. If not, the search continues
because there is a non-zero probability that the best solution hides somewhere
in the sub-tree.

Moreover, the heuristic function used in the Prune function must be defined
for each problem. Also, to work well it has to always overestimate the true value.

An Online POMDP Algorithm 201

Algorithm 1. The RTBSS algorithm

1: Function RTBSS(b, d , rAcc)

Inputs: b: The current belief state.
d : The current depth.
rAcc: Accumulated rewards.

Statics: D : The maximal depth search.
bestValue: The best value found in the search.
action: The best action.

2: if d = 0 then
3: finalValue ← rAcc + γD × U (b)
4: if finalValue > bestValue then
5: bestValue ← finalValue
6: end if
7: return finalValue
8: end if
9: rAcc ← rAcc + γD−d × R(b)

10: if Prune(rAcc, d) then
11: return −∞
12: end if
13: actionList ← Sort(b, A)
14: max ← −∞
15: for all a ∈ actionList do
16: expReward ← 0
17: for all o ∈ Ω do
18: b′ ← τ(b, a, o)
19: expReward ← expReward + γD−d × P(o |a, b)× RTBSS(b′, d − 1, rAcc)
20: end for
21: if (d = D ∧ expReward > max) then
22: max ← expReward
23: action ← a
24: end if
25: end for
26: return max

If it does not, it would have the effect of pruning some parts of the tree that might
hide the best solution. On the other hand, if the heuristic always overestimates,
we are guaranteed that all the pruned sub-trees do not contain the best solution.

To link the algorithm with the equations presented, notice that the line 19 of
Algorithm 1 corresponds to the last part of equation 10, where δ is replaced by
RTBSS. Also, the function τ(b, a, o) at line 18 returns the new belief state if o
is perceived after the agent has done action a in belief state b. Note that the
actions are sorted at line 13. The purpose of this is to try the actions that are
the most promising first because it generates more pruning early in the search.

With RTBSS the agent finds at each turn the action that has the maximal
expected value up to a certain horizon of D . As a matter of fact, the performance
of the algorithm strongly depends on the depth of the search. The complexity
of our algorithm is in the worst case of: O((|A| × |Ω|)D). This is if no pruning
is possible, thus with a good heuristic, it is possible to do much better. As we
can see, the complexity of our algorithm depends on the number of actions and

202 S. Paquet, L. Tobin, and B. Chaib-draa

Table 1. Comparison of our approach

Problem Reward Time (s)

Tag (870s,5a,30o)
QMDP -16.75 11.8
RTBSS -10.56 0.231

PBVI [3] -9.18 180880
BBSLS [2] � -8.3 �100000
BPI [4] -6.65 250
HSVI [5] -6.37 10113
Perséus [6] -6.17 1670

RockSample[4,4] (257s,9a,2o)
RTBSS 16.2 0.11

PBVI [5]2 17.1 ∼ 2000
HSVI [5] 18.0 577

RockSample[5,5] (801s,10a,2o)
RTBSS 18.7 0.11

HSVI [5] 19.0 10208

RockSample[5,7] (3201s,12a,2o)
RTBSS 22.6 0.11

HSVI [5] 23.1 10263

RockSample[7,8] (12545s,13a,2o)
RTBSS 20.1 0.21

HSVI [5] 15.1 10266

observations, but not on the number of states. Therefore, even if the environment
has a huge state space, our algorithm would still be applicable, if the number of
actions and observations are kept small.

4 Experiments on Standard POMDPs

This section presents the results obtained in two problems: Tag [3] and RockSam-
ple [5]. If we compare RTBSS with different existing approaches (see Table 1),
we see that our algorithm can be executed much faster than all the other ap-
proaches. Our algorithm does not require any time offline and takes only a few
tenths of a second at each turn. On small problems the performance is not as
good as the best algorithms but the difference is generally not too important.

Moreover, the most interesting results are obtained when the problem becomes
bigger. If we look at the RockSample problems, RTBSS is really close on the
first three smaller problems, but it is much better on the biggest instance of the
problem. RTBSS is better because HSVI has not had time to converge. This
shows the advantage of our approach on large environments.

1 It corresponds to the average time taken by the algorithm at each time it is called
in a simulation.

2 PBVI was presented in [3], but the result on RockSample was published in [5].

An Online POMDP Algorithm 203

Another huge advantage of our algorithm is that if the environment changes,
we do not need to recompute a policy. Let’s suppose that we have the RockSam-
ple problem but at each new simulation, the initial position of the rocks changes.
With offline algorithms, it would require recomputing a new policy for the new
configuration while our algorithm could be applied right away.

5 Experiments on RoboCupRescue

The RoboCupRescue simulation environment consists of a simulation of an
earthquake happening in a city [11]. The goal of the agents (representing fire-
fighters, policemen and ambulance teams) is to minimize the damages caused by
a big earthquake, such as civilians buried, buildings on fire and roads blocked.

For this article, we consider only the policeman agents. Their task is to clear
the most important roads as fast as possible, which is crucial to allow the other
rescuing agents to perform their tasks. However, it is not easy to determine
how the policemen should move in the city because they do not have a lot of
information. They have to decide which road to prioritize and they have to
coordinate themselves so that they do not try to clear the same road.

In this section, we present how we applied our approach in the RoboCupRes-
cue simulation. In fact, we are interested in only a subproblem which can be
formulated as: Having a partial knowledge of the roads that are blocked or not,
the buildings in fire and the position of other agents, which sequence of actions
should a policeman agent perform?

5.1 RoboCupRescue Viewed as a POMDP

We present how we modelled the problem of the RoboCupRescue as a POMDP,
from the point of view of a policeman agent. The different actions an agent can do
are: North, South, East, West and Clear. A state of the system can be described
by approximately 1500 random variables, depending on the simulation.

– Roads : There are approximately 800 roads in a simulation and each road can
either be blocked or cleared.

– Buildings : There are approximately 700 buildings in a simulation. We con-
sider that a building can be on fire or not.

– Agents position: An agent can be on any of the 800 roads and there’s usually
30-40 agents.

If we estimate the number of states, we obtain 2800 × 2700 × 80030 states.
However, a strong majority of them are not possible and will not ever be reached.
The state space of RoboCupRescue is too important to even consider applying
offline algorithms. We must therefore adopt an online method that allows finding
a good solution very quickly.

5.2 Application of RTBSS on RoboCupRescue

This section presents how we have applied RTBSS to this complex environment.
In RoboCupRescue, the online search in the belief state space represents a search

204 S. Paquet, L. Tobin, and B. Chaib-draa

in the possible paths that an agent can take. In the tree, the probability to go
from one belief state to another depends on the probability that the road used
is blocked. One specificity of this problem is that we have to return a path to
the simulator, thus the RTBSS algorithm has been modified to return the best
branch of the tree instead of only the first action.

Furthermore, the key aspect of our approach is that we consider many vari-
ables of the environment to be static during the search in order to minimize the
number of states considered. In the RoboCupRescue, all variables are considered
static except the position of the agent and the variables about the roads. For
the other variables, like the position of the other agents and the position of the
fires, the agent considers that they keep the last value observed. Consequently,
all those fixed variables are represented in the belief state by a vector containing
only zeros except for the last value observed which has a probability of one.
Therefore, the function ω (equation 6) only returns a small subset of states.

More precisely, the beliefs are only maintained for the road variables. Those
variables are the most important for the agent decisions. In other words, the
agent focuses on the more important variables, maintaining beliefs as precisely
as possible, and it abstracts the other variables by considering that they are
fixed and it relies only on its observations to maintain them.

We update the value of the fixed variables only when the agent perceives a
new value. In our model, we consider the observations to be both the direct
agent’s observations and the information received by messages. We are in a
cooperative multiagent system, therefore all agents have complete confidence in
the information received from the other agents.

In complex dynamic multiagent environments, it is often better to rely on
observations than to try to predict everything. There are just too many things
moving in the simulation. Therefore, the agent should focus on the more impor-
tant parts of the environment. To efficiently take all the unpredicted parts of
the environment into consideration, the agent can shorten its loop of observa-
tion and action to keep its belief state up-to-date. This can be done because our
RTBSS algorithm can find an action very quickly. Consequently, the agent makes
frequent observations, thus it does not need a model for the less important parts
of the world, because they do not have time to move a lot between observations.

Moreover, we have defined a dynamic reward function that gives a reward for
clearing a road based on the positions of the fires and the other agents. This
enables the agent to efficiently compute its estimated rewards based on its belief
state without having to explicitly store all rewards for all possible states.

A policeman agent needs to assign a reward to each road in the city, which
are represented as nodes in a graph (see Figure 3). The reward values change
in time based on the positions of the agents and the fires, therefore the agent
needs to recalculate them at each turn. To calculate the reward values, the agent
propagates rewards over the graph, starting from the rewarding roads, which are
the positions of the agents and the fires. For example, if a firefighter agent is on
road r1 then this road would receive a reward of 5, the roads adjacent to r1 in

An Online POMDP Algorithm 205

FF : 3

F : 3

FF : 5

P : -2

P : -1

FF : 4

F : 1

FF: 3

F : 3

P : -3

FF: 4

P : -1

FF : 4

FF : 2

FireFighter (FF)

Fire (F)

Policeman (P)

2 6

1

4

6
33

Fig. 3. Reward function’s graph

the graph would receive a reward of 4, and so on. Also, we add rewards for all
roads in a certain perimeter around a fire.

What is interesting with this reward function is that it can be used to coor-
dinate the policeman agents. The coordination is necessary, because we do not
want all agents to go to the same road. To do so, the agent propagates negative
rewards around the other policeman agents, thus they all repulse each other.
With this simple modification of the reward function, we were able to disperse
efficiently, thus dynamically coordinate up to fifteen agents acting in a really
dynamic environment.

Figure 3 shows an example of a reward graph. The nodes represent the roads
and the reward source is identified in each node. The big number over a node is
the total reward, which is the sum of all rewards identified in the node. As we
can see, roads around the firefighter agent receive positive rewards, while roads
around the policeman agent receive negative rewards. Therefore, the agent would
want to go to roads near the fire and not necessarily go to help the firefighter
because there is already a policeman agent near it. Consequently, agents are
coordinating themselves simply by propagating negative rewards.

5.3 Results and Discussion

In such a huge problem as RoboCupRescue, it was impossible to compare our
approach with other POMDP algorithms. Therefore, we compared our algorithm
RTBSS with an heuristic method for the policeman agents. We have compared it
with our last approach for the policemen in the RoboCupRescue simulation. In
this approach agents were clearing roads according to some priorities. Each agent
received a sector for which it was responsible at the beginning of the simulation.
Afterwards, agents were clearing roads in this order: roads asked by the other
agents, roads around refuges and fires and finally, all the roads in their sector.

The results that we have obtained on 7 different maps are presented in
Figure 4. The approach presented in this paper improved the average score by 11
points. This difference is very important because in competitions, a few tenths
of a point can make a big difference. On the graph, we show a 95% confidence
interval that suggest that our algorithm allows more stable performances.

206 S. Paquet, L. Tobin, and B. Chaib-draa

30

40

50

60

70

80

90

K
ob

e-
P
or

tu
ga

l2
00

4-
Fin

al

Fol
ig
no

-P
or

tu
ga

l2
00

4-
S
em

iF
in
al

K
ob

e-
P
or

tu
ga

l2
00

4-
S
em

iF
in
al

K
ob

e-
P
or

tu
ga

l2
00

4-
R
ou

nd
2

K
ob

e-
P
or

tu
ga

l2
00

4-
R
ou

nd
1

Fol
ig
no

-P
or

tu
ga

l2
00

4-
R
ou

nd
1

K
ob

e-
G
er

m
an

O
pe

n2
00

4-
R
ou

nd
1

Maps

S
c
o

re RTBSS

Heuristic approach

Fig. 4. Scores

0

2

4

6

8

10

12

14

0 50 100 150 200 250

Time

N
u

m
b

e
r

o
f

b
lo

c
k
e
d

 a
g

e
n

ts

RTBSS

Heuristic approach

Fig. 5. Agents blocked

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250

Time

N
u

m
b

e
r

o
f

b
lo

c
k
e
d

 r
o

a
d

s

RTBSS

Heuristic approach

Fig. 6. Roads blocked

Figure 5 shows a comparison of the number of agents that are blocked at each
cycle. The results show that our method allows prioritizing the most important
roads since on average, there are one or two fewer blocked agents. Furthermore,
Figure 6 shows the number of roads that are blocked at each cycle in the simula-
tion. We see that RTBSS allows the policeman agents to clear the roads faster.

Briefly, with RTBSS, agents clear the most important roads faster than with
the heuristic approach. Another result showing the efficiency of our approach is
that it helped us to finish second at the 2004 international competition.

6 Related Work

The first works that come to mind are those approximation methods that aim
to solve larger problems. Particularly, we compared our approach with 5 other
algorithms [2, 3, 4, 5, 6] used to find an approximate solution. These approaches
are very interesting because they achieve good solution quality. In addition,
some of these algorithms can bound their distance from the optimal solution.
However, they can only be applied to relatively small environments because they
all proceed offline and require a lot of computation time on big problems.

For POMDPs, very few researchers have explored the possibilities of online
algorithms. [12] used a real-time dynamic programming approach to learn a belief
state estimation by successive trials in the environment. The main differences
are that they do not search in the belief state tree and they need offline time to
calculate their starting heuristic based on the QMDP approach.

7 Conclusion and Future Work

This paper presents RTBSS, an online POMDP algorithm useful for large, dy-
namic and uncertain environments. The main advantage of such a method is
that it can be applied to problems with huge state spaces where other algorithms
would take way too much time to find a solution. To reinforced our claims, we
showed results on two problems considered to be large in the POMDP literature.
Those results show that RTBSS becomes better as the environment becomes big-
ger, compared to state of the art POMDP approximation algorithms.

We have also applied our algorithm in a complex multiagent environment,
the RoboCupRescue simulation. We showed how we have slightly modified our

An Online POMDP Algorithm 207

basic RTBSS algorithm to take the specificity of multiagent systems more into
consideration, and we presented results showing its efficiency.

In our future work, we would like to improve our online algorithm by reusing
the information computed previously in the simulation. We also want to combine
offline and online strategies, because it might be possible to precompute some
information offline that could be useful online. In short, RTBSS represents a
good step towards making POMDP applicable in real life applications.

References

1. Papadimitriou, C., Tsisiklis, J.N.: The complexity of markov decision processes.
Mathematics of Operations Research 12 (1987) 441–450

2. Braziunas, D., Boutilier, C.: Stochastic local search for POMDP controllers. In:
The Nineteenth National Conference on Artificial Intelligence (AAAI-04). (2004)

3. Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: An anytime al-
gorithm for POMDPs. In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI-03), Acapulco, Mexico (2003) 1025–1032

4. Poupart, P.: Exploiting Structure to Efficiently Solve Large Scale Partially Ob-
servable Markov Decision Processes. PhD thesis, University of Toronto (2005) (to
appear).

5. Smith, T., Simmons, R.: Heuristic search value iteration for POMDPs. In: Pro-
ceedings of the 20th Conference on Uncertainty in Artificial Intelligence(UAI-04),
Banff, Canada (2004)

6. Spaan, M.T.J., Vlassis, N.: A point-based POMDP algorithm for robot planning.
In: In Proceedings of the IEEE International Conference on Robotics and Automa-
tion, New Orleans, Louisiana (2004) 2399–2404

7. Aberdeen, D.: A (revised) survey of approximate methods for solving partially
observable markov decision processes. Technical report, National ICT Australia
(2003)

8. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in par-
tially observable stochastic domains. Technical Report CS-96-08, Brown University
(1996)

9. Boutilier, C., Poole, D.: Computing optimal policies for partially observable de-
cision processes using compact representations. In: Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI-96), Portland, Oregon, USA,
AAAI Press / The MIT Press (1996) 1168–1175

10. Boyen, X., Koller, D.: Tractable inference for complex stochastic processes. In: In
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence.
(1998) 33–42

11. Kitano, H.: Robocup rescue: A grand challenge for multi-agent systems. In: Pro-
ceedings ICMAS 2000, Boston (2000)

12. Geffner, H., Bonet, B.: Solving large POMDPs using real time dynamic program-
ming (1998)

	Introduction
	POMDP
	Factored POMDP
	Formalization

	Online Decision Making
	Belief State Value Approximation
	RTBSS Algorithm

	Experiments on Standard POMDPs
	Experiments on RoboCupRescue
	RoboCupRescue Viewed as a POMDP
	Application of RTBSS on RoboCupRescue
	Results and Discussion

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

