
Security Issues in Service Composition

Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari

Dipartimento di Informatica, Università di Pisa, Italy
{bartolet, degano, giangi}@di.unipi.it

Abstract. We use a distributed, enriched λ-calculus for describing net-
works of services. Both services and their clients can protect themselves,
by imposing security constraints on each other’s behaviour. Then, ser-
vice interaction results in a call-by-property mechanism, that matches
the client requests with service’s. A static approach is also described,
that determines how to compose services while guaranteeing that their
execution is always secure, without resorting to any dynamic check.

1 Introduction

Service-oriented computing (SOC) is an emerging paradigm to design distributed
applications [31, 30, 19]. In this paradigm, applications are built by assembling
together independent computational units, called services. A service is a stand-
alone component distributed over a network, and made available through stan-
dard interaction mechanisms. An important aspect is that services are open, in
that they are built with little or no knowledge about their operating environ-
ment, their clients, and further services therein invoked. Composition of ser-
vices may require peculiar mechanisms to handle complex interaction patterns
(e.g. to implement transactions), while enforcing non-functional requirements
on the system behaviour (e.g. security and service level agreement). Web Ser-
vices [3, 34, 38] built upon XML technologies are possibly the most illustrative
and well developed example of the SOC paradigm. Indeed, a variety of XML-
based technologies already exists for describing, discovering and invoking web
services [18, 14, 5, 39]. There are also several standards for defining and enforcing
non-functional requirements of services, e.g. WS-Security [6], WS-Trust [4] and
WS-Policy [15] among the others.

1.1 Security and Service Composition

The orchestration of services consists of their composition and coordination.
Languages for that have been recently proposed, e.g. BPEL4WS [5, 25]. Service
composition heavily depends on which information about a service is made pub-
lic, on how to choose those services that match the user’s requirements, and
on their actual run-time behaviour. Security makes service composition even
harder. Services may be offered by different providers, which only partially trust
each other. On the one hand, providers have to guarantee the delivered ser-
vice to respect a given security policy, in any interaction with the operational

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 1–16, 2006.
c© IFIP International Federation for Information Processing 2006

2 M. Bartoletti, P. Degano, and G.L. Ferrari

environment, and regardless of who actually called the service. On the other
hand, clients may want to protect their sensible data from the services invoked.

A typical approach consists in endowing the network infrastructure with au-
thentication mechanisms, so to certify the identity of services. However, security
may be breached even by trusted services, either because of unintentional be-
haviour (e.g. bugs), or because the composition of the client and the services
exhibits some behaviour unwanted by the client (e.g. leakage of information).

We have addressed the problem of security in a linguistic framework. In our
approach, clients may protect from their callers by wrapping security-critical por-
tions of their own code into safety framings. These framings enforce the given
security policy on the execution of the wrapped piece of code, aborting it when-
ever about to violate the policy, thus offering additional flexibility with respect
to monolithic global policies, and relieving the programmer of guarding each use
of security-critical resources.

On their side, callers may constrain the behaviour of the called services, by
supplying a security policy at the moment of invocation. We push further this
invocation mechanism, by allowing callers to request services that not only do
obey the imposed security constraints, but that also respect a given contract on
their functional behaviour. The implementation of this so-called call-by-property
invocation mechanism requires that services are published together with a cer-
tified abstraction of their behaviour.

1.2 The Planning Problem

Call-by-property invocation and safety framings make service composition se-
cure. A plan orchestrates the execution of a service-based application, by asso-
ciating the sequence of run-time service requests with a corresponding sequence
of selected services. A major problem is still left open: how to construct a plan
that guarantees no executions will abort because of some action attempting to
violate security.

Determining such a viable plan amounts to selecting from the network those
services that accomplish the requested task, while respecting the security con-
straints on demand. Those services that locally obey the property imposed by
a request are not always good candidates, because their behaviour may affect
security of the whole composition. For example, consider a device with a limited
computational power. Suppose it downloads an applet from the network, and
then delegates a remote service to run it. Although the contract between the
device and the code provider is fulfilled, the applet may violate a security policy
imposed by the executer. To determine the viable plans, one has to check the
effects of all the available applets against the security policies of all the remote
executers.

As a matter of fact, there might be several different kinds of plans, each with
a different expressive power. Among them, one may consider plans that attach
a selection of services to each program point representing a service request. The
expressive power varies according to the nature of the information associated
with each request. Simple plans associate a single service with each request,

Security Issues in Service Composition 3

multi-choice plans map requests into sets of services, and dependent plans also
convey the dependence of a service selection with the choices made in the past (a
sort of continuation-passing plan). These kinds of plans have been studied in [9].
Dependent multi-choice plans are a mix of the last two kinds. Further expressive
power is gained when relaxing the assumption of associating service selections to
the program points where requests are made. Regular plans drive the execution
of a program, by providing it with the possible patterns of service selections, in
the form of a regular expression. Dynamic plans can be updated at run-time,
according to the evaluation of some conditions on the program execution (e.g.
boolean guards in conditionals, number of iterations in a loop, etc.).

1.3 A Static Approach to Secure Service Composition

We have proposed a solution to the planning problem, within a distributed frame-
work [10]. Services are functional units in an enriched λ-calculus, they are ex-
plicitly located at network sites, and they have a published public interface.
Unlike standard syntactic signatures, this interface includes an abstraction of
the service behaviour, in the form of annotated types. To obtain a service with a
specific behaviour, a client queries the network for a published interface match-
ing the requirements. Security is implemented by wrapping the critical blocks
of code inside safety framings (with local scopes, possibly nested), that enforce
the relevant policies during the execution of the block. In the spirit of history-
based security [1], a security policy can inspect the whole execution history at
a given site. Since our framework is fully distributed, our policies cannot span
over multiple sites.

We have introduced a type and effect system for our calculus [21, 28, 35]. The
type of a service describes its functional behaviour, while the effect is a history
expression, representing those histories of events relevant to security. History
expressions extend regular expressions with information about the selection of
services, coupled with their corresponding effect.

We have then devised a way of extracting from a history expression all the
viable plans, i.e. those that successfully drive secure executions. This is a two-
stage construction. A first transformation of history expressions makes them
model-checkable for validity [7]. Valid history expressions guarantee that the
services they come from never go wrong at run-time. From valid histories it is
then immediate to obtain the viable plans, that make any execution monitor
unneeded.

1.4 Trusted Orchestration

Our planning technique acts as a trusted orchestrator of services. It provides
a client with the plans guaranteeing that the invoked services always respect
the required properties. Thus, in our framework the only trusted entity is the
orchestrator, and neither clients nor services need to be such. In particular, the
orchestrator infers functional and behavioural types of each service. Also, it is
responsible for certifying the service code, for publishing its interface, and for

4 M. Bartoletti, P. Degano, and G.L. Ferrari

guaranteeing that services will not arbitrarily change their code on the fly: when
this happens, services need to be certified again.

When an application is injected in the network, the orchestrator provides it
with a viable plan (if any), constructed by composing and analysing the certified
interfaces of the available services. The trustworthiness of the orchestrator relies
upon formal grounds. We proved the soundness of our type and effect system,
and the correctness of the static analysis and model-checking technique that
infers viable plans.

The orchestrator constructs the plans for a client, by considering the view of
the network at the moment the application is injected. To be more dynamic, one
would like to manage the discovering of new services, as well as the case when
existing ones are no longer available.

Both these problems require a special treatment. Multi-choice plans are a first
solution to deal with disappearing services, because they offer many choices for
the same request. Publication of new services poses instead a major problem.
To cope with that, one has to reconfigure plans at run-time, by exploiting the
new interfaces. However, incrementally checking viability of plans is an open
problem. A possible solution is to enrich history expressions with hooks where
new services can be attached. The orchestrator then needs to check the validity
of the newly discovered plans, hopefully in an incremental manner.

1.5 Related Work

The secure composition of components underlies the design of Sewell and Vitek’s
box-π [33], an extension of the π-calculus that allows for expressing safety poli-
cies in the form of security wrappers. These are programs that encapsulate a
component to control the interactions with other (possibly untrusted) compo-
nents. A type system that statically captures the allowed causal information
flows between components. Our safety framings are closely related to wrappers.

Gorla, Hennessy and Sassone [23] consider a calculus for agents which may
migrate between sites in a controlled manner. Each site has a membrane, repre-
senting both a security policy and a classification of the levels of trust of external
sites. A membrane guards the incoming agents before allowing them to execute.

Recently, increasing attention has been devoted to express service contracts
as behavioural (or session) types. These synthetise the essential aspects of the
interaction behaviour of services, while allowing efficient static verification of
properties of composed systems. Session types [24] have been exploited to for-
malize compatibility of components [37] and to describe adaptation of web ser-
vices [16]. Security issues have been recently considered in terms of session types,
e.g. in [13], which proves the decidability of type-checking in an extension of the
π-calculus with session types and correspondence assertions [40].

Other works have proposed type-based methodologies to check security prop-
erties of distributed systems. For instance, Gordon and Jeffrey [22] use a type
and effect system to prove authenticity properties of security protocols. Web ser-
vice authentication has been recently modelled and analysed in [11, 12] through
a process calculus enriched with cryptographic primitives.

Security Issues in Service Composition 5

The problem of discovering and composing Web Services by taking advan-
tage of semantic information has been the subject of a considerable amount of
research and development, [2, 17, 27, 29, 32, 36] to cite a few. The idea is to ex-
tend the primitives of service description languages with basic constructs for
specifying properties of the published interface. We can distinguish between
semantic-web descriptions [2, 29, 32, 36] in which service interfaces are annotated
with parameter ontologies, and behavioural description [17, 27] in which the an-
notation details the ordering of service actions. A different solution to planning
service composition has been proposed in [26], where the problem of composing
services in order to achieve a given goal is expressed as a constraint satisfaction
problem. Our approach extends and complements those based on behavioral de-
scriptions, with an eye to security. Indeed, our methodology fully automates the
process of discovering services and planning their composition in a secure way.

2 Planning Secure Service Compositions

To illustrate our approach, consider the scenario in the figure below. The boxes
model services, distributed over a network. Each box encloses the service code,
and is decorated with the location �i where the service is published.

Assume that the client at site �0 is a device with limited computational ca-
pabilities, wanting to execute some code downloaded from the network. To do
that, the client issues two requests in sequence. The request labelled r1 asks for a
piece of mobile code (e.g. an applet), and it can be served by two code providers
at �1 and �2. The request type τ −→ (τ −→ τ) means that, upon receiving a value
of type τ (which can be an arbitrary base type, immaterial here) the invoked
service replies with a function from τ to τ , with no security constraints.

αc; · · · ϕ′[f()] · · ·

λx. ϕ[αr; · · ·]

λx. αr; · · · ;αw

· · · f() · · ·

�0 �1

�2

�3

�4

f = reqr1
τ −→ (τ −→ τ)

(reqr2
(τ −→ τ) −→ τ) f

Fig. 1. One client (�0), two code providers (�1, �2), and two code executers (�3, �4)

6 M. Bartoletti, P. Degano, and G.L. Ferrari

The service at �1 returns a function that protects itself with a policy ϕ,
permitting its use in certified sites only (modelled by the event αc). Within the
function body, the only security-relevant operation is a read αr on the file system
where the delivered code is run. The code provided by �2 first reads (αr) some
local data, and eventually writes them (αw) back to �2.

Since �0 has a limited computational power, the code f obtained by the request
r1 is passed as a parameter to the service invoked by the request r2. This request
can be served by �3 and �4. The service at �3 is certified (αc), and runs the
provided code f under a “Chinese Wall” security policy ϕ′, requiring that no
data can be written (αw) after reading them (αr). The service at �4 is not
certified, and it simply runs f .

2.1 Programming Model

Clients and services are modelled as expressions in a λ-calculus enriched with
primitives for security and service requests. Security-relevant operations are ren-
dered as side-effects in the calculus, and they are called access events (e.g.
αc, αr, αw). A security policy is a regular property over a sequence η of access
events, namely a history. A piece of code e framed within a policy ϕ (written
ϕ[e]) must respect ϕ at each step of its execution. A service request has the
form reqrρ. The label r uniquely identifies the request, while the request type
ρ is the query pattern to be matched by the invoked service. For instance, the

request type τ
ϕ[•]−−→ τ ′ matches services with functional type τ −→ τ ′, and whose

behaviour respects the policy ϕ. The abstract syntax of services follows.

Syntax of Services

e, e′ ::= x variable
α access event
if b then e else e conditional
λzx. e named abstraction
e e′ application
ϕ[e] safety framing
reqrρ service request
wait � wait reply

The stand-alone evaluation of a service is much alike the call-by-value se-
mantics of the λ-calculus; additionally, it enforces all the policies within their
framings. More precisely, assume that, starting from the current history η, an
expression e may evolve to e′ and extend the history to η′. Then, a framing
ϕ[e] may evolve to ϕ[e′] if η′ satisfies ϕ — otherwise the evaluation gets stuck.
Eventually, values leave the scope of framings.

When a service is plugged into a network, a plan is used to resolve the requests
therein, acting as an orchestrator. For brevity, we consider here only the case of
simple plans, that have the following syntax:

Security Issues in Service Composition 7

Syntax of Simple Plans

π, π′ ::= 0 | r[�] | π | π′

The empty plan 0 has no choices. The plan r[�] associates the service e published
at site � with the request labelled r. The composition operator | is associative,
commutative and idempotent, with identity 0. We require plans to have a single
choice for each request, i.e. r[�] | r[�′] implies � = �′.

A service e is plugged into a network by publishing it at a site �, together
with its interface τ . Hereafter, �〈e : τ〉 denotes such a published service. We
assume that each site publishes a single service, and that interfaces are certified,
e.g. they are inferred by the type system in [10]. Also, we assume that services
cannot invoke each other circularly, because this would make little sense. A
network is a set of clients and published services.

The state of a published service �〈e : τ〉 is denoted by �〈e : τ〉 : η, e′ —
abbreviated as � : η, e′ when unambiguous. The component η is the history
generated so far at site �, and e′ models the code in execution. We assume
here that services are stateless, i.e. the history of a service is cleared at each
instantiation. A network configuration has the form �1 : η1, e

′
1 ‖ · · · ‖ �k : ηk, e′k.

A request r, resolved by the current plan with the service �′, can be served
if the service �′ is available (written �′ :
). In this case, a new instance of
the service is generated: the service code (a function) is applied to the received
argument. The invoker waits until �′ has produced a value. When this happens,
the value is returned to the invoker, and the service becomes available again.

Back to our example, consider the plan π = r1[�2] | r2[�3]. Then, π drives the
following computation (for brevity, we omit the types in requests):

�0 : ε, (λf. reqr2
f) reqr1

‖ �1 :
 ‖ �2 :
 ‖ �3 :
 ‖ �4 :

→π �0 : ε, (λf. reqr2
f) wait �2 ‖ �1 :
 ‖ �2 : ε, λx. αr ; · · · ; αw ‖ �3 :
 ‖ �4 :

→π �0 : ε, (λf. reqr2
f) (λx. αr; · · · ; αw) ‖ �1 :
 ‖ �2 :
 ‖ �3 :
 ‖ �4 :

→π �0 : ε, reqr2
(λx. αr ; · · · ; αw) ‖ �1 :
 ‖ �2 :
 ‖ �3 :
 ‖ �4 :

→π �0 : ε, wait �3 ‖ �1 :
 ‖ �2 :
 ‖ �3 : ε, αc; · · · ; ϕ′[(λx. αr ; · · · ; αw)()] ‖ �4 :

→π �0 : ε, wait �3 ‖ �1 :
 ‖ �2 :
 ‖ �3 : αc, ϕ′[(λx. αr ; · · · ; αw)()] ‖ �4 :

→π �0 : ε, wait �3 ‖ �1 :
 ‖ �2 :
 ‖ �3 : αc, ϕ′[αr; · · · ; αw] ‖ �4 :

→π �0 : ε, wait �3 ‖ �1 :
 ‖ �2 :
 ‖ �3 : αcαr, ϕ′[αw] ‖ �4 :

The computation at site �3 is now aborted, because the history αcαrαw would
otherwise violate the Chinese-Wall policy ϕ′. We have then discovered that the
plan r1[�2] | r2[�3] is not viable. As we will see in a while, our static machinery
infers that also the plan r1[�1] | r2[�4] is not viable (it violates the policy ϕ).
There are two further plans to consider: r1[�1] | r2[�3] and r1[�2] | r2[�4]. These
plans will be shown viable by our static analysis, and they will drive secure
executions that never abort.

8 M. Bartoletti, P. Degano, and G.L. Ferrari

2.2 Types and Effects

We stipulated that the services published in the network have certified interfaces.
To do that, in [10] we have defined a type and effect system, that will also be
used to infer an over-approximation of client behaviour.

Types τ, τ ′ are either base types, or they have the form τ
H−→ τ ′. The an-

notation H over the arrow is a history expression. It describes the latent effect
associated with the function: one of the histories represented by H is generated
when a value is applied to a function with that type. History expressions have
the following abstract syntax:

Syntax of History Expressions

H, H ′ ::= ε empty
h variable
α access event
H · H ′ sequence
H + H ′ choice
ϕ[H] safety framing
μh.H recursion
� : H localization
{πi � Hi}i∈I planned selection

Access events represent the program actions where sensible resources are ac-
cessed; the constructors · and + correspond to sequentialization of code and
conditionals, respectively; safety framings model blocks of code subject to secu-
rity policies; recursion is for loops and recursive functions. The construct � : H
localizes the behaviour H to the site �. E.g., � : α · (�′ : α′) · β denotes two
histories: αβ occurring at location �, and α′ occurring at �′. A planned selec-
tion abstracts the behaviour of service requests. E.g., {r[�1] � H1 · · · r[�k] � Hk}
says that a request r can be resolved into one of the services provided by
the sites �1, . . . , �k, which may generate a history represented by H1, . . . , Hk,
respectively.

A typing judgment Γ, H �� e : τ means that the service e at site � evaluates
to a value of type τ , and produces a history denoted by the effect H . Typing
judgments are similar to those of the simply-typed λ-calculus. To give the flavour
of how the effects are inferred, consider first the rule to type applications:

Γ, H �� e : τ
H′′
−−→ τ ′ Γ, H ′ �� e′ : τ

Γ, H · H ′ · H ′′ �� e e′ : τ ′

The rule says that e is an expression whose evaluation will generate a history in
H . It will reduce to a value which is a function (from τ to τ ′) with latent effect
H ′′. The evaluation of the argument e′ with type τ will generate a history in H ′.
The overall effect of e applied to e′ is H ·H ′ ·H ′′, thus respecting the evaluation
order of the call-by-value semantics (function, argument, latent effect).

Security Issues in Service Composition 9

To give a type to service requests, some auxiliary technical notation is needed:
the interested reader can find all the definitions in [7]. Just to give the intuition,
the typing judgement for a request reqrρ has the following schema:

τ = �{ ρ �r[�′] τ ′ | ∅, ε ��′ e : τ ′ � ≺ �′〈e : τ ′〉 ρ ≈ τ ′ }

Γ, ε �� reqrρ : τ

Requests have an empty actual effect, and a functional type τ . The latent effect
is a planned selection that picks from the network those services known by � and
matching the request type ρ. The relation ρ ≈ τ models ρ being compatible with
τ ; the partial order ≺ represents visibility among services (e.g. � ≺ �′ when �′ is
visible by �). The operator � combines the request type with a service interface;
the operator � suitably assembles such combinations into a planned selection.

Back to our running example, the types inferred for the services are shown
in the figure below (they are displayed as decorations of the boxes). The public
interface of the client is the base type unit , meaning that it cannot be invoked
by other services. The interfaces of the services are as expected; for instance, the
type of �3 is a function that, when applied to a function with latent effect h, will
produce a value of type τ , and a history denoted by αc · ϕ′[h].

�1 : τ −→ (τ
ϕ[αr]−−−→ τ)

�2 : τ −→ (τ αr·αw−−−−→ τ)

�0 : unit

�3 : (τ h−→ τ)
αc·ϕ′[h]−−−−−→ τ

(reqr2
(τ −→ τ) −→ τ) f

αc; · · · ϕ′[f()] · · ·

f = reqr1
τ −→ (τ −→ τ)

λx. ϕ[αr; · · ·]

λx. αr; · · · ;αw

· · · f() · · ·

�4 : (τ h−→ τ) h−→ τ

f

f

Fig. 2. One client, four services, and their (certified) published interfaces

To obtain an over-approximation to the behaviour of the network upon the
injection of a client, our type and effect system suitably combines the abstract
behaviour of the client with the certified interfaces of the services it can invoke.

The inferred history expression approximates the run-time behaviour of each
site in the network. For our running example, the abstract behaviour of the
whole network is rendered by the following history expression H :

10 M. Bartoletti, P. Degano, and G.L. Ferrari

{r2[�3] � �3 : αc · ϕ′[{r1[�1] � ϕ[αr], r1[�2] � αr · αw}]
r2[�4] � �4 : {r1[�1] � ϕ[αr], r1[�2] � αr · αw}}

The intuitive meaning of H is that, under the plan r2[�3] — i.e. if r2 is served
by �3 — the event αc is generated at site �3, followed by a safety framing ϕ′.
This framing wraps ϕ[αr] if �1 is chosen for r1, or αrαw if �2 is chosen instead.
Otherwise, if r2 is served by �4, then the behaviour (on site �4) depends on the
former choice for r1: if �1 was selected, then ϕ[αr], otherwise αrαw. Note also
that no event is generated by the client at site �0.

Say that a computation goes wrong at � when it reaches a configuration whose
state at � is stuck. For example, a configuration η, ϕ[e] is stuck if a step of e would
violate ϕ. Say a plan π viable for e at � when the evolution of e within a network,
under plan π, does not go wrong at �. Then, we say that a history expression H
is π-valid when the plan π is viable for all the histories produced by H under π.

For example, consider the history expression H1 = αc · ϕ′[αr · αw], where ϕ′

requires that no write αw occurs after a read αr. Then, H1 is not 0-valid. Indeed,
under the empty plan 0, the event αw occurs within a safety framing enforcing
ϕ′, and the history αcαrαw does not obey ϕ′.

We have proved two fundamental results about our type and effect system.
First, it correctly over-approximates the actual run-time histories. Second, it
enjoys the following type safety property.

Theorem 1. Let {�i〈ei : τi〉}i∈I be a network, and let ∅, Hi � ei : τi for all
i ∈ I. If Hi is πi-valid, then πi is viable for ei at �i.

Therefore, to find the viable plans for a client, one has to infer the effect H of the
client injected in the network, and then find the plans πi that make H πi-valid.
The following sections show how to do that.

2.3 Extracting Viable Plans I: Linearizing History Expressions

Once extracted a history expression H from a client e, we analyse H to find if
there is any viable plan for the execution of e. This issue is not trivial, because the
effect of selecting a given service for a request is not confined to the execution
of that service. Since each service selection affects the whole execution of a
network, we cannot simply devise a viable plan by selecting services that satisfy
the constraints imposed by the requests, only.

This is actually shown by our running example. Consider again the aborting
computation with plan r1[�2] | r2[�3], here slightly abridged:

�0 : ε, (λf. reqr2
f) reqr1

‖ �2 :
 ‖ �3 :

→π �0 : ε, (λf. reqr2
f) wait �2 ‖ �2 : ε, λx. αr ; · · · ; αw ‖ �3 :

→∗
π �0 : ε, reqr2

(λx. αr ; · · · ; αw) ‖ �2 :
 ‖ �3 :

→π �0 : ε, wait �3 ‖ �2 :
 ‖ �3 : ε, αc; · · · ; ϕ′[(λx. αr ; · · · ; αw)()]
→∗

π �0 : ε, wait �3 ‖ �2 :
 ‖ �3 : αcαr, ϕ′[αw]

Security Issues in Service Composition 11

The choice of the service �2 for the request r1 results in downloading an ap-
plet from site �2. This seems correct, until the plan chooses the service �3 to
execute the applet. The computation aborts because the applet provided by �2
attempts to violate the policy ϕ′, that becomes active after the service �2 has
returned.

As a matter of fact, the tree-shaped structure of planned selections makes
it difficult to determine the plans under which a history expression is valid.
To cope with this problem, we have devised a static analysis that “linearizes”
such a tree structure into a set of history expressions, forming an equivalent
planned selection {π1 � H1 · · · πk � Hk}, where no Hi has further planned
selections.

In our running example, we find that H is equivalent to the following H ′:

H ′ = {r1[�1] | r2[�3] � �3 : αc · ϕ′[ϕ[αr]],
r1[�2] | r2[�4] � �4 : αr · αw,

r1[�1] | r2[�4] � �4 : ϕ[αr],
r1[�2] | r2[�3] � �3 : αc · ϕ′[αr · αw]}

Every element of H ′ clearly separates the plan from the associated abstract
behaviour. This piece of behaviour has no further plans within, and so it is
easier to model-check its validity.

For instance, under the plan r1[�1] | r2[�3], the overall abstract behaviour is
αc · ϕ′[ϕ[αr]] at site �3. As already seen, the first two plans in H ′ are viable,
while the others give rise to non-valid behaviour. The plan r1[�2] | r2[�4] is not
viable, because the policy ϕ would be violated when the obtained code f is run
on a non certified site; instead, the plan r1[�2] | r2[�3] would violate ϕ′.

Given a history expression H , we obtain its linearization as follows. First,
we define an equational theory of history expressions: an equation H ≡ H ′

means that H and H ′ represent the same histories, under all plans. Roughly, our
equations say that each history expression C(H) is equivalent to some planned
selection H ′. For instance, when C(H) = ϕ[H], we have that:

ϕ[{π1 � H1 · · · πk � Hk} ≡ {π1 � ϕ[H1] · · ·πk � ϕ[Hk]}

If C(H) is already a planned selection, then either it is linear, or it has one level
of nesting more than H ′. For instance, if C(H) = {π0 � H}, then:

{π0 � {π1 � H1 · · · πk � Hk}} ≡ {π0 | π1 � H1 · · · π0 | πk � Hk}

When oriented from left to right, these equations give rise to a rewriting sys-
tem that is easily proved finitely terminating and confluent – up to the equa-
tional laws (commutativity, associativity, idempotence, and zero) of the algebra
of plans. The resulting planned selection is linear.

For instance, the linearization of the history expression H inferred for our
client is constructed as follows:

12 M. Bartoletti, P. Degano, and G.L. Ferrari

{r2[�3] � �3 : αc · ϕ′[{r1[�1] � ϕ[αr], r1[�2] � αr · αw}]
r2[�4] � �4 : {r1[�1] � ϕ[αr], r1[�2] � αr · αw}}

≡ {r2[�3] � �3 : αc · {r1[�1] � ϕ′[ϕ[αr]], r1[�2] � ϕ′[αr · αw}]]
r2[�4] � {r1[�1] � �4 : ϕ[αr], r1[�2] � �4 : αr · αw}}

≡ {r2[�3] � {r1[�1] � �3 : αc · ϕ′[ϕ[αr]], r1[�2] � �3 : αc · ϕ′[αr · αw}]]
r2[�4] � {r1[�1] � �4 : ϕ[αr], r1[�2] � �4 : αr · αw}}

≡ {r1[�1] | r2[�3] � �3 : αc · ϕ′[ϕ[αr]], r1[�2] | r2[�4] � �4 : αr · αw,

r1[�1] | r2[�4] � �4 : ϕ[αr], r1[�2] | r2[�3] � �3 : αc · ϕ′[αr · αw]}

The technical role of linearization is unveiled by the following theorem, that
will enable us to detect the viable plans for service composition.

Theorem 2. If H = {π1 �H1 · · · πk �Hk} is linear, and Hi is 0-valid for some
i ∈ 1..k, then H is πi-valid.

Summing up, we extract from an client e a history expression H , we linearize it
into {π1 � H1 · · ·πk � Hk}, and if some Hi is valid, then we can deduce that H
is πi-valid. By Theorem 1, the plan πi safely drives the execution of e, without
resorting to any run-time monitor.

2.4 Extracting Viable Plans II: Verifying Validity

To verify the validity of history expressions that have no planned selections, it
suffices to apply the verification technique of [7], briefly described below. Our
technique consists in smoothly transforming history expressions in procesess of
Basic Process Algebras (BPAs), and in model checking them with Finite State
Automata (FSA). The standard decision procedure for verifying that a BPA
process p satisfies a (ω-regular) property ϕ amounts to constructing the push-
down automaton for p and the Büchi automaton for the negation of ϕ. Then,
the property holds if the (context-free) language accepted by the conjunction of
the above, which is still a pushdown automaton, is empty. This problem is decid-
able, and several algorithms and tools show this approach feasible [20]. Since our
execution histories are always finite and our properties are regular, it turns out
that we can simplify this procedure by using FSA, instead of Büchi automata.

However, our notion of validity is non-regular, because of the arbitrary nesting
of framings. As an example, language denoted by H = μh. α + h · h + ϕ[h] is
context-free and non-regular, because it contains unbounded nesting of framings
(technically, it is equivalent to the language of balanced parentheses). Since
context-free languages are not closed under intersection, the emptiness problem
is undecidable. To apply the procedure sketched above, we then manipulate
history expressions in order to make validity a regular property.

The intuition is that non-regularity is a consequence of redundant fram-
ings, i.e. vacuous nesting of the same framing. For example, the history η =
αϕ[α′ϕ′[ϕ[α′′]]] has an inner redundant safety framing ϕ around α′′. Since α′′ is
already under the scope of the outermost ϕ-framing, it happens that η is valid
if and only if αϕ[α′ϕ′[α′′]] is valid.

Security Issues in Service Composition 13

In [8], we have defined a validity-preserving transformation that, given a his-
tory expression H , yields a H ↓ that does not generate redundant safety framings.
Also, for each policy ϕ, we have defined a formula ϕ[] to be used in verifying the
validity (w.r.t. ϕ) of histories with no redundant framings.

For instance, consider again ϕ′ saying that no event αw can occur after αr.
The finite state automata enforcing ϕ and ϕ[] are shown below, where the special
events [ϕ and]ϕ denote the opening and closing of the scope of ϕ, respectively.
It is immediate to check that the history [ϕαr]ϕαw is accepted by Aϕ[] , while
αc[ϕαrαw]ϕ is not.

q0

αr

q1
αr

q2

q1 q2
αrq0

[ϕ]ϕ[ϕ]ϕ

αr

αr

αw

αw

αr, αw

αw αr αr, αw

αw

αw

q′0 q′1

Validity of history expression H with no planned selections can be decided by
showing that the BPA generated by the regularization of H (written BPA(H ↓))
satisfies a suitably constructed regular formula.

Together with Theorem 1, this dispenses us from using an execution monitor
to enforce the security policies on demand.

Theorem 3. A history expression H with no planned selections is 0-valid iff:

�BPA(H ↓)� |=
∧

ϕ∈H

ϕ[]

Back to our running example, we have that:

αc[ϕ′ [ϕαr]ϕ]ϕ′ |= ϕ[] ∧ ϕ′
[] =⇒ r1[�1] | r2[�3] viable,

αrαw |= tt =⇒ r1[�2] | r2[�4] viable,
[ϕαr]ϕ �|= ϕ[] =⇒ r1[�1] | r2[�4] not viable

αc[ϕ′αrαw]ϕ′ �|= ϕ′
[] =⇒ r1[�2] | r2[�3] not viable

2.5 Beyond Simple Plans

Recall that so far we have only considered simple plans that associate a single
service with each request. Indeed, planning service composition can be more
complex, as we will show in a while.

14 M. Bartoletti, P. Degano, and G.L. Ferrari

Assume first that the two requests r1 and r2 in the client are repeatedly
performed in a loop. Then, suppose that a new service for r2 is discovered at
site �5, offering to run the code f without any constraints. Note that, if we stick
to simple plans, then we must choose once and for all one among the viable
plans, i.e. r1[�1] | r2[�3], r1[�2] | r2[�4], and r1[�2] | r2[�5]. Consequently, at each
iteration of the loop the same service is taken for the request r2. To be more
flexible (i.e. in case the service chosen for r2 becomes unavailable), we would like
to accept as valid also the plan r1[�2] | r2[�4, �5], where r2 can be served by either
�4 or �5. This is just an example of multi-choice plans, where a request can be
resolved by a set of services. In our running example, this has the advantage of
permitting to select for r2 between �4 and �5 at each iteration of the loop.

Consider now another slight extension of our example, where the client is
billed for the services it has invoked. To do that, assume that an argument g is
passed to the request r1, to invoke a billing service through a request r3, and so
let the code provider invoice the customer �0 for the service. The same function
g is also passed later on the service which will actually run the code f , to charge
�0 for the cost of the execution.

A billing service acts as a function that takes as input an invoice (of some type
τ ′, immaterial here) and delivers back a payment certification, i.e. a function
of type τ ′ αpaid−−−→ τ ′ that generates αpaid to signal successful transaction. Let
τb = τ ′ −→ (τ ′ αpaid−−−→ τ ′) be the type of billing services. Then, the request types
of r1 and r2 would have the following form:

ρ1 = τ × τb
ψ−→ (τ −→ τ) ρ2 = (τ −→ τ) × τb

ψ−→ τ

where the property ψ on demand requires that payment is accomplished before
the control returns back to the client.

Assume now that two billing services �6 and �7 are discovered in the network.
The service �6 can be used by certified users only, while �7 imposes no constraints.
Clearly, the service which provides the code and the one which runs it can
choose different billing services. However, neither simple nor multi-choice plans
can render adequately this situation. The simple plan (yet ill-formed) that seems
to solve the problem is r1[�1] | r2[�3] | r3[�6] | r3[�7]. However, this plan cannot
express the linkage between the choice for r3 within code providers, and that
within code executers.

We therefore extend plans to keep track of dependencies among choices. The
dependent plan r1[�1.r3[�7]] | r2[�3.r3[�6]] is viable: the request r3 is resolved
with �7 within the service �1 chosen for r1, while it is resolved with �6 within the
service �3 chosen for r2. In [9] we have shown how to extract viable plans from
history expressions, also in the case of multi-choice and dependent plans.

3 Conclusions

A static approach has been proposed to study secure orchestration of services.
We have surveyed a distributed calculus with an explicit notion of location and

Security Issues in Service Composition 15

of located executions. Our calculus has primitives for enforcing local security
policies, and for invoking services that respect given security requirements.

We have devised a way of statically constructing the plans that drive suc-
cessful, secure executions. The actual histories that can occur at run-time are
over-approximated by a type and effect system. These approximations are then
model-checked to find the plans that guarantee secure executions, without the
need of execution monitoring.

Acknowledgments

Research partially supported by the EU, within the FETPI Global Computing,
Project IST-2005-16004 Sensoria (Software Engineering for Service-Oriented
Overlay Computers).

References

1. M. Abadi and C. Fournet. Access control based on execution history. In Proc. 10th
Annual Network and Distributed System Security Symposium, 2003.

2. R. Akkiraju et al. Web Service Semantics. WSDL-S technical note (version 1.0),
2005.

3. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Archi-
tectures and Applications. Springer-Verlag, 2004.

4. S. Anderson et al. Web Services Trust Language (WS-Trust), 2005.
5. T. Andrews et al. Business Process Execution Language for Web Services

(BPEL4WS), Version 1.1, 2003.
6. B. Atkinson et al. Web Services Security (WS-Security), 2002.
7. M. Bartoletti, P. Degano, and G. L. Ferrari. Enforcing secure service composition.

In Proc. 18th Computer Security Foundations Workshop (CSFW), 2005.
8. M. Bartoletti, P. Degano, and G. L. Ferrari. History based access control with

local policies. In Proc. Fossacs, 2005.
9. M. Bartoletti, P. Degano, and G. L. Ferrari. Plans for service composition. In

Workshop on Issues in the Theory of Security (WITS), 2006.
10. M. Bartoletti, P. Degano, and G. L. Ferrari. Types and effects for secure service or-

chestration. In To appear in Proc. 19th Computer Security Foundations Workshop
(CSFW), 2006.

11. K. Bhargavan, R. Corin, C. Fournet, and A. D. Gordon. Secure sessions for web
services. In Proc. ACM Workshop on Secure Web Services, 2004.

12. K. Bhargavan, C. Fournet, and A. D. Gordon. A semantics for web services au-
thentication. In Proc. ACM Symposium on Principles of Programming Languages,
2004.

13. E. Bonelli, A. Compagnoni, and E. Gunter. Typechecking safe process synchro-
nization. In Proc. Foundations of Global Ubiquitous Computing, 2004.

14. D. Box et al. Simple Object Access Protocol (SOAP) 1.1. WRC Note, 2000.
15. D. Box et al. Web Services Policy Framework (WS-Policy), 2002.
16. A. Brogi, C. Canal, and E. Pimentel. Behavioural types and component adaptation.

In Proc. AMAST, 2004.
17. A. Brogi and R. Popescu. Towards semi-automated workflow-based aggregation of

web services. In Proc. ICSOC, 2005.

16 M. Bartoletti, P. Degano, and G.L. Ferrari

18. R. Chinnici, M. Gudgina, J. Moreau, and S. Weerawarana. Web Service Description
Language (WSDL), Version 1.2, 2002.

19. F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarane. The next step in
web services. Communications of the ACM, 46(10), 2003.

20. J. Esparza. On the decidability of model checking for several μ-calculi and Petri
nets. In Proc. 19th Int. Colloquium on Trees in Algebra and Programming, 1994.

21. D. K. Gifford and J. M. Lucassen. Integrating functional and imperative program-
ming. In ACM Conference on LISP and Functional Programming, 1986.

22. A. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic proto-
cols. In Proc. IEEE Computer Security Foundations Workshop, 2002.

23. D. Gorla, M. Hennessy, and V. Sassone. Security policies as membranes in systems
for global computing. In Proc. FGUC, 2004.

24. K. Honda, V. Vansconcelos, and M. Kubo. Language primitives and type discipline
for structures communication-based programming. In Proc. ESOP, 1998.

25. R. Khalaf, N. Mukhi, and S. Weerawarana. Service oriented composition in
BPEL4WS. In Proc. WWW, 2003.

26. A. Lazovik, M. Aiello, and R. Gennari. Encoding requests to web service compo-
sitions as constraints. In Constraint Programming CP, 2005.

27. S. B. Mokhtar, N. Georgantas, and V. Issarny. Ad hoc composition of user tasks
in pervasive computing environment. In Software Composition, 2005.

28. F. Nielson and H. R. Nielson. Type and effect systems. In Correct System Design,
1999.

29. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matchmaking of
web services capabilities. In First International Semantic Web Conference on The
Semantic Web, 2002.

30. M. P. Papazoglou. Service-oriented computing: Concepts, characteristics and di-
rections. In WISE, 2003.

31. M. Papazouglou and D. Georgakopoulos. Special issue on service oriented com-
puting. Communications of the ACM, 46(10), 2003.

32. P. Rajasekaran, J. A. Miller, K. Verma, and A. P. Sheth. Enhancing web services
description and discovery to facilitate composition. In Semantic Web Services and
Web Process Composition, 2005.

33. P. Sewell and J. Vitek. Secure composition of untrusted code: box-π, wrappers and
causality types. Journal of Computer Security, 11(2), 2003.

34. M. Stal. Web services: Beyond component-based computing. Communications of
the ACM, 55(10), 2002.

35. J.-P. Talpin and P. Jouvelot. The type and effect discipline. Information and
Computation, 2(111), 1994.

36. P. Traverso and M. Pistore. Automated composition of semantic web services into
executable processes. In Proc. ISWC, 2004.

37. A. Vallecillo, V. Vansconcelos, and A. Ravara. Typing the behaviours of objects
and components using session types. In Proc. of FOCLASA, 2002.

38. W. Vogels. Web services are not distributed objects. IEEE Internet Computing,
7(6), 2003.

39. W3C. UDDI Technical White Paper, 2000.
40. T. Woo and S. Lam. A semantic model for authentication protocols. In IEEE

Symposium on Security and Privacy, 1993.

	Security Issues in Service Composition

