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Abstract. “Certificateless public-key cryptosystem” is a new and at-
tractive paradigm, which avoids the inherent key escrow property in
identity-based public-key cryptosystems, and does not need expensive
certificates as in the public key infrastructure. A strong security model
for certificateless public key encryption was established by Al-Riyami
and Paterson in 2003. In this paper, we first present a security model
for certificateless public-key signature schemes, and then propose an ef-
ficient construction based on bilinear pairings. The security of the pro-
posed scheme can be proved to be equivalent to the computational Diffie-
Hellman problem in the random oracle model with a tight reduction.

1 Introduction

In traditional certificate-based public key cryptosystems, a user’s public-key is
generated randomly and is uncorrelated to his identity. The key therefore needs
to be certified by some trusted authority with respect to the user’s identity.
This approach takes the form of digital certificates generated by some trusted
Certification Authorities (CAs), which aim at vouching for the fact that a given
public-key actually belongs to its alleged owner. Any other user who wants to use
the public-key must first verify the corresponding certificate for the validity of
the key. Currently, PKI (Public Key Infrastructure) is an important mechanism
to maintain certificates and disseminate trust information among users in a
hierarchical manner. However, PKIs in practice is very costly to deploy and
cumbersome to use.

In [17], Shamir introduced the notion of identity-based (ID-based) public-key
cryptography (ID-PKC). This notion is to use a binary string which can uniquely
identify a user (or an entity in general) as the user’s public key. Examples of
such a binary string include email address, IP address, social security number,
etc. The motivation of ID-PKC is to simplify key management and remove the
need of public key certificates as much as possible. Certificates are only needed
for some trusted authorities called ID-based Private Key Generators (PKGs)
[15]. These PKGs are responsible for generating private keys for users (unlike
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conventional public key schemes, users do not generate their own private keys).
Although this does not completely remove the need of certificates, it drastically
reduces the cost and complexity of the system as individual end users do not
need to obtain certificates for their public keys.

An inherent problem of ID-based cryptography is the key escrow problem, i.e.,
the private key of a user is known to the PKG. The PKG can literally decrypt any
ciphertext and forge signature on any message as any user. Therefore, it seems
that ID-based cryptography may only be suitable for small private networks
with low security requirements. To tackle this problem, several proposals have
been made using multiple authority approach [5, 8]. If the master key of the
PKG is distributed over several authorities and a private key is constructed in
some threshold manner [5], key escrow problem may be alleviated. However, in
many applications, multiple identifications for a user by multiple authorities can
be quite a burden. Generating a new private key by adding multiple private
keys [8] is another approach, but in this scheme, PKGs have no countermeasure
against users’ illegal usage. In [12], Gentry proposed an approach in which the
private key is generated using some user-chosen secret information.

Independent of Gentry’s work, in [1], Al-Riyami and Paterson successfully re-
moved the necessity of certificates in a similar manner to that of user-chosen se-
crets, and they referred to it as certificateless public key cryptography (CL-PKC).
Unlike ID-based cryptography, a user’s private key in a CL-PKCscheme is not gen-
erated by the Key Generation Center (KGC) alone. Instead, it is a combination of
some contribution of the KGC (called partial-private-key) and some user-chosen
secret, in such a way that the key escrow problem can be solved. In particular, the
KGC cannot obtain the user’s private-key. Meanwhile, CL-PKC schemes are not
purely ID-based, and there exists an additional public-key for each user. In order
to encrypt a message, one has to know both the user’s identity and this additional
public key. Moreover and more importantly, this additional public key does not
need to be certified by any trusted authority. The structure of the scheme ensures
that the key can be verified without a certificate. In [1], a strong security model
was established for certificateless public key encryption. The model has two types
of adversaries. Type I adversary represents a malicious third party and Type II
adversary represents a malicious KGC. More details of these two types of adver-
saries will be given in the later part of this paper. In [1, 2], efficient constructions
of certificateless encryption based on bilinear pairings were proposed, and in [7], a
scheme not using bilinear pairings was proposed.

Note that key escrow means that the KGC knows the key, not generates the
key. In CL-PKC, the KGC can still generate keys but the KGC does not know
the key if it is generated by the user. In ID-based cryptography, the user can-
not generate a key for himself. Hence the key escrow problem is inherent. In
certificate-based cryptography or CL-PKC, both the CA or the KGC, respec-
tively, can generate the key. Therefore, we should assume the similar degree of
trust on the CA to that of the KGC in this aspect. In other words, CL-PKC
retains the beauty of PKI/CA that the KGC does not know the key generated
by the user.
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In conventional application of digital signature, no signer wants his signing
key to be escrowed by others. So it seems to be more urgent to solve the key es-
crow problem as in ID-based setting. In [1], a certificateless public-key signature
(CL-PKS) scheme was also proposed. However, a security model for analyzing
the scheme’s security in terms of unforgeability was not formalized. Also, the
scheme was recently found to be vulnerable to key replacement attack [13]. The
key replacement attack is launched by the malicious third party (i.e. Type I ad-
versary) who replaces the additional public key of the targeting user with another
key chosen by the adversary. By using this attack, the adversary can successfully
forge signature on any message as the user. In [13], Huang et al. also proposed
an improved scheme. In their security analysis, the Type I adversary can replace
an entity’s public-key, but is also required to provide a replacing secret value
corresponding to the replacing public key. Hence the challenger (or game sim-
ulator) also learns the replaced secret. This restriction seems too strong to be
reasonable. Due to the un-certified feature of user’s public-key in the certificate-
less setting, a signer does not need to provide any proof about his knowledge of
the corresponding secret value of the public-key. In addition, a signature veri-
fier does not check whether a signer knows the secret either. The model in [18]
did not deal with this either. We will discuss this further when presenting our
security model..

Moreover, for a CL-PKS scheme, the validity of a certificateless signature and
the validity of a un-certified public-key can be verified at the same time, which
is different from certificateless public-key encryption, where the encryptor does
not know whether the public-key used to encrypt is valid or not.

In this paper, we first develop a security model for CL-PKS schemes. The
model captures the notion of existential unforgeability of certificateless signature
against Type I and Type II adversaries. We then propose an efficient and simple
certificateless public-key signature scheme and show its security in our model.

Paper organization. The rest of the paper is organized as follows. A security
model for CL-PKS is given in Section 2. In Section 3, we propose a CL-PKS
scheme based on bilinear pairings. Its security is analyzed in Section 4. We
conclude the paper in Section 5.

2 Security Model for Certificateless Public-Key Signature

Definition 1 (CL-PKS). A CL-PKS (Certificateless Public Key Signature)
scheme, Π , consists of the following probabilistic, polynomial-time algorithms:

– Setup: It takes as input a security parameter 1k, and returns a list params
of system parameters and a master private key masterKey.
The parameter list params also defines message space M, and is publicly
known. The algorithm is assumed to be run by a Key Generation Center
(KGC) for the initial setup of a certificateless system.

– Partial-Private-Key-Extract: It takes as inputs params, masterKey and
a user identity ID ∈ {0, 1}∗, and outputs a partial private key DID.
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This algorithm is run by the KGC once for each user, and the partial pri-
vate key generated is assumed to be distributed securely to the corresponding
user.

– Set-Secret-Value: Taking as inputs params and a user’s identity ID, this
algorithm generates a secret value sID. This algorithm is supposed to be run
by each user in the system.

– Set-Private-Key: This algorithm takes params, a user’s partial private key
DID and his secret value sID, and outputs the full private key SKID. This
algorithm is run by each user.

– Set-Public-Key: It takes as inputs params and a user’s secret value sID,
and generates a public key PKID for that user. This algorithm is run by the
user, and the resulting public key is assumed to be publicly known.

– CL-Sign: This is the certificateless signing algorithm. It takes as inputs
params, a message m, a user’s identity ID, and the user’s full private key
SKID, and outputs a signature σ.

– CL-Verify: This is the verification algorithm, a deterministic algorithm that
takes as inputs params, a public key PKID, a message M , a user’s identity
ID, and a signature σ, and returns a bit b. b = 1 means that the signature
is accepted, whereas b = 0 means rejected.

For security analysis of a CL-PKS, we extend the model for ID-based signature
schemes so that the extension allows an adversary to extract partial private keys,
or private keys, or both. We must also consider the ability of the adversary to
replace the public key of any user with a value of his choice, because there is no
certificate in a certificateless signature scheme.

Five oracles can be accessed by the adversary. The first is a partial private
key exposure oracle that returns DID on input a user’s identity ID. The second
is a private key exposure oracle that returns SKID on input a user’s identity
ID if that user’s public-key has not been replaced. The third is a public key
request oracle that returns PKID on input an identity ID. The fourth is a
public key replacement oracle that replaces the public key PKID with PK ′

ID

for a user with identity ID . The fifth is a signing oracle OCL-Sign(·) that returns
CL-Sign(params, m, ID, SKID) on input (m, ID).

Similar to Al-Riyami and Paterson’s certificateless public-key encryption
scheme [1], the security of a certificateless signature scheme can be analyzed
by considering two types of adversaries. The first type of adversary (Type I ) AI

is meant to represent third party attacks against the existential unforgeability
of the scheme. Due to the uncertified nature of the public-keys generated by
the users, we must assume that the adversary is able to replace users’ public-
keys at will. This represents the adversary’s ability to fool a user on accepting a
signature by using a public key that is supplied by the adversary.

Al-Riyami and Paterson’s security model for certificateless encryption allows
the adversary to make decryption queries, even for public keys which have al-
ready been replaced. This means that the challenger must be able to correctly
answer decryption queries for public keys where the corresponding secret keys
may not be known to the challenger. This is a very strong security require-
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ment, and it is unclear how realistic this restriction is. In fact, several papers
[4, 9, 11, 18] have chosen to weaken this requirement so that the challenger is
not forced to provide correct decryption of ciphertexts after the corresponding
public-key has been replaced. Instead, they only require that ciphertexts can be
decrypted if the public key is replaced while the corresponding secret value is
also supplied by the adversary.

As for a certificateless public-key signature scheme, a “weakened” security
definition requires that the adversary can only request signatures on identities
for which if the public key has been replaced with some value that is not equal
to its original value, then the corresponding secret information is also provided
during the key replacement. However, it is not compulsory for the adversary
to provide the corresponding secret information when the adversary replaces a
public key.

It seems that this weakened requirement is more reasonable, at least for a
certificateless signature scheme. First, we can never expect that a signer will
produce a valid signature for a public key that he does not know the corre-
sponding private key in the real world. Second, the cost of obtaining a partial
private key is much more expensive than generating a pair of secret value sID

and public key PKID for a user. Therefore, a certificateless signature scheme
may be implemented in such a way that the partial-private-key is kept invari-
ant for a long period, while the pair (sID, PKID) can be changed arbitrarily by
the user. Thus an attack is allowed to replace (sID, PKID) with a key pair of
adversary’s choice when it has access to the terminal-devices..

The second type of adversary (Type II) AII for a certificateless signature
scheme represents a malicious key generation center.. Here, the adversary is
equipped with the key generation center’s master key, but cannot replace any
user’s public key. In fact, if the Type II adversary is allowed to replace an user’s
public-key, then the adversary can definitely forge signatures of the user. This
is the trivial case and is comparable to the damage caused by a malicious
Certification Authority (CA) in the conventional certificate-based cryptosys-
tem. Therefore, we do not consider this scenario in certificateless cryptography
also.

Definition 2 (EUF-CMA of CL-PKS). Let AI and AII denote a Type I
attacker and a Type II attacker, respectively. Let Π be a CL-PKS scheme. We
consider two games “Game I” and “Game II” where AI and AII interact with
their “Challenger” in these two games, respectively. We say that a CL-PKS
scheme is existentially unforgeable against adaptive chosen message attacks, if
the success probability of both AI and AII is negligible. Note that the Challenger
keeps a history of “query-answer” while interacting with the attackers.

Game-I: This is the game in which AI interacts with the “Challenger”:

Phase I-1: The Challenger runs Setup(1k) for generating masterKey and
params. The Challenger then gives params to AI while keeping masterKey secret.

Phase I-2: AI performs the following oracle-query operations:
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– Extract Partial Private Key: each of which is denoted by (ID, “partial
key extract”). On receiving such a query, the Challenger computes DID =
Partial-Private-Key-Extract(params, masterKey, ID) and returns it
to AI.

– Extract Private Key: each of which is denoted by (ID, “private key ex-
tract”). Upon receiving such a query, the Challenger first computes DID =
Partial-Private-Key-Extract(params, masterKey, ID) and then sID =
Set-Secret-Value (params, ID) as well as SKID = Set-Private-Key
(params, DID, sID). It returns SKID to AI.

– Request Public Key: each of which is denoted by (ID, “public key re-
quest”).. Upon receiving such a query, the Challenger computes DID =
Partial-Private-Key-Extract(params, masterKey, ID), and sID= Set-
Secret-Value (params, ID). It then computes PKID= Set-Public-Key
(params, sID) and returns it to AI.

– Replace Public Key: AI may replace a public key PKID with a value
chosen by him. It is not required for AI to provide the corresponding secret
value when making this query.

– Signing Queries: each of which is of the form (ID, M , “signature”). On
receiving such a query, the Challenger finds SKID from its “query-answer”
list, computes σ=CL-Sign(params, M , ID, SKID), and returns it to AI.
If the public key PKID has been replaced by AI, then the Challenger cannot
find SKID and thus the signing oracle’s answer may be incorrect. In such
case, we assume that AI may additionally submit the secret information sID

corresponding to the replaced public-key PKID to the signing oracle.

Phase I-3: Finally, AI outputs a message M∗, and a signature σ∗ corresponding
to a target identity ID∗ and a public key PKID∗ . Note that ID∗ cannot be an
identity for which the private key has been extracted. Also, ID∗ cannot be an
identity for which both the public key has been replaced and the partial private
key has been extracted. Moreover, M∗ should not be queried to the signing
oracle with respect to ID∗ and PKID∗ . However, in case that the PKID∗ is
different from the original public key of the entity with identity ID∗, AI needs
not to provide the corresponding secret value to the Challenger if it has not made
signing queries for the identity ID∗ and public key PKID∗ .

Game II: This is a game in which AII interacts with the “Challenger”.

– Phase II-1: The challenger runs Setup(·) to generate masterKey and
params. The challenger gives both params and masterKey to AII.

– Phase II-2: AII performs the following operations:
• Compute partial private key associated with ID: AII computes DID =
Partial-Private-Key-Extract(params, masterKey, ID). This can be
done by AII since it holds the master key.

• Make private key extraction queries: On receiving such a query, the
Challenger computes DID = Partial-Private-Key-Extract(params,
masterKey, ID), sID = Set-Secret-Value(params, ID), and SKID =
Set-Private-Key(params, DID, sID). It then returns SKID to AII.
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• Make public key request queries: On receiving such a query, the Chal-
lenger sets DID = Partial-Private-Key-Extract(params, masterKey,
ID), sID = Set-Secret-Value(params, ID), and then computes PKID

= Set-Public-Key(params, sID, ID). It returns PKID to AII.
• Make signing queries: On receiving such a query, the Challenger finds

SKID from its “query-answer” list, computes σ = CL-Sign(params, M ,
ID, SKID), and returns it to AII.

– Phase II-3: AII outputs a message M∗ and a signature σ∗ corresponding
to a target identity ID∗ and a public key PKID∗ . Note that ID∗ has not
been issued as a private key query. Moreover, M∗ should not be queried to
the signing oracle with respect to ID∗ and PKID∗ .

We say that an adversary A (AI or AII) succeeds in the above games (Game I
or Game II) if CL-Verify(params, PKID∗ , M∗, ID∗, σ∗)=1. Denote the proba-
bility of A’s success by SuccA(k). If for any probabilistic polynomial time (PPT)
adversary A, the success probability SuccA(k) is negligible, then we say that a
CL-PKS scheme is existentially unforgeable against chosen message attacks.

Remark: The definition of security against a Type II adversary is as strong as
Al-Riyami and Paterson’s security notion for certificateless public-key encryp-
tion, where AII can requesting for private-keys of its own choices. In fact, this
is also a very strong security notion, and it is unclear how realistic it is. As AII

has the knowledge of the master key and hence can compute the partial private-
key of any user, it gives the same degree of damage as a malicious KGC in the
traditional certificate-based setting. Therefore, some authors [9] have chosen to
weaken this notion and taken the security against AII as the traditional public-
key cryptosystems, i.e., the private-key extraction query is not allowed to make
by a Type II adversary AII.

3 An Efficient CL-PKS Scheme Based on Bilinear
Pairings

In this section, we propose an efficient certificateless public-key signature scheme
based on bilinear pairings. Some definitions and properties of bilinear pairings
are first reviewed in the following.

3.1 Preliminaries

Let G1 be a cyclic additive group generated by P , whose order is a prime q, and
G2 be a cyclic multiplicative group of the same order. Let e : G1 × G1 → G2 be a
pairing which satisfies the following conditions:

1. Bilinearity: For any P, Q, R ∈ G1, we have e(P + Q, R) = e(P, R) e(Q, R)
and e(P, Q + R) = e(P, Q)e(P, R). In particular, for any a, b ∈ Z∗

q ,

e(aP, bP ) = e(P, P )ab = e(P, abP ) = e(abP, P ).
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2. Non-degeneracy: There exists P, Q ∈ G1, such that e(P, Q) �= 1.
3. Computability: There is an efficient algorithm to compute e(P, Q) for all

P, Q ∈ G1.

We write G1 with an additive notation and G2 with a multiplicative notation,
since in general implementation G1 will be the group of points on an elliptic
curve and G2 will denote a multiplicative subgroup of a finite field. Typically,
the map e will be derived from either the Weil or Tate pairing on an elliptic curve
over a finite field. We refer readers to [5, 3] for a more comprehensive description
on how these groups, pairings and other parameters should be selected for effi-
ciency and security. Interested readers may also refer to [16] for a comprehensive
bibliography of cryptographic works based on pairings.

The computational Diffie-Hellman (CDH) problem in G1 states that, given
P , aP , bP for randomly chosen a, b ∈ Z∗

q , it is computationally infeasible to
compute abP .

3.2 Our Construction

The proposed certificateless public-key signature scheme comprises the following
seven algorithms.

Setup:
1. On input a security parameter 1k where k ∈ N, the algorithm first generates

〈G1, G2, e〉, where (G1, +) and (G2, ·) are cyclic groups of prime order q and e :
G1 × G1 → G2 is a bilinear pairing.

2. Arbitrarily choose a generator P ∈ G1.
3. Select a master-key s ∈R Z∗

q uniformly and set Ppub = sP .
4. Choose three distinct hash functions H1, H2 and H3, each of them maps

from {0, 1}∗ to G1.
The system parameter list is params=〈G1, G2, e, q, P, Ppub, H1, H2, H3〉. The

master-key is s.

Partial-Private-Key-Extract: This algorithm takes as inputs params, master-
key s, IDA ∈ {0, 1}∗, and carries out the following for generating a partial private
key DA for a user A with identity IDA.

1. Compute QA = H1(IDA).
2. Output the partial private key DA = sQA.

It is easy to see that DA is actually a signature [6] on ID for the key pair
(Ppub, s), and user A can check its correctness by checking whether e(DA, P ) =
e(QA, Ppub).

Set-Secret-Value: This algorithm picks x ∈ Z∗
q at random and sets x as user

A’s secret value.

Set-Private-Key: This algorithm takes as inputs params, A’s partial private-
key DA and A’s secret value x, and outputs a pair is A’s full private key SKA =
〈DA, x〉. So, the private key for A is just the pair consisting of the partial private
key and the secret value.
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Set-Public-Key: This algorithm takes as inputs params and A’s secret value
x, and generates A’s public-key as PKA = xP .

CL-Sign. On inputs params, a message m ∈ {0, 1}∗, signer A’s identity IDA

and his private key SKA = 〈DA, x〉, the signer randomly picks r ∈ Z∗
q , computes

U = rP and

V = DA + rH2(m, IDA, PKA, U) + xH3(m, IDA, PKA),

where PKA = xP . The signature is σ = (U, V ).

CL-Verify. Given params, PKA, message m, IDA and signature σ = (U, V ), the
algorithm computes QA = H1(IDA) and accepts the signature if the following
equation holds:

e(V, P ) = e(QA, Ppub)e(H2(m, IDA, PKA, U), U)e(H3(m, IDA, PKA), PKA)
(1)

The correctness of the scheme follows from the fact that DA = sQA and

e(V, P ) = e(sQA, P )e(rH2(m, IDA, PKA, U), P )e(xH3(m, IDA, PKA), P )
= e(QA, sP )e(H2(m, IDA, PKA, U), rP )e(H3(m, IDA, PKA), xP )
= e(QA, Ppub)e(H2(m, IDA, PKA, U), U)e(H3(m, IDA, PKA), PKA).

The current set up of our construction allows a user to create more than one
public key for the same partial private key. This can be a useful property in
some applications, but may be not desirable in others. In the latter case, an
alternative technique of [1] can be used to generate users’ key. An entity A first
generate its secret value xA and public key PKA = xAP , and QA is defined as
QA = H1(IDA‖PKA). The partial private key is still DA = sQA and the private
key is SKA = (DA, xA). In this technique, QA binds a user’s identifier IDA and
its public keyPKA, and thus a user can only create one public key for which he
knows the corresponding private key.

4 Security Proof

Theorem 1. In the random oracle model, our certificateless public key signa-
ture scheme is existentially unforgeable against adaptive chosen-message attacks
under the assumption that the CDH problem in G1 is intractable.

The theorem follows at once from Lemmas 1 and 2, according to Definition 2.

Lemma 1. If a probabilistic polynomial-time forger AI has an advantage ε in
forging a signature in an attack modelled by Game I of Definition 2 after run-
ning in time t and making qHi queries to random oracles Hi for i = 1, 2, 3, qParE
queries to the partial private-key extraction oracle, qPK queries to the public-key
request oracle, and qSig queries to the signing oracle, then the CDH problem can
be solved with probability

ε′ >
(
ε − (qS(qH2 + qS) + 2)/2k

)
/e

(
qParE + 1

)
,
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within time t′ < t + (qH1 + qH2 + qH3 + qParE + qPK + qSig)tm + (2qSig + 1)tmm,
where tm is the time to compute a scalar multiplication in G1 and tmm is the
time to perform a multi-exponentiation in G1.

Proof. Let AI be a Type I adversary who can break our CL-PKS scheme. Suppose
AI has a success probability ε and running time t. We show how AI can be
used by a PPT algorithm B to solve the CDH problem in G1. It is interesting
to note that the reductionist proof can be obtained without the requirement
that AI should have submitted the secret information sID corresponding to the
replaced public-key PKID when querying the signing oracle. And a tight security
reduction similar to that of the ID-based signature scheme [14] can be obtained.

Let (X = aP, Y = bP ) ∈ G1 × G1 be a random instance of the CDH problem
taken as input by B. The algorithm B initializes AI with Ppub = X , and then
starts performing oracle simulation. Without loss of generality, we assume that,
for any key extraction query or signature query involving an identity, an H1(·)
oracle query has previously been made on that identity. And B maintains a list
L = {(ID, DID, PKID, sID)} while AI is making queries throughout the game.
B responds to AI’s oracle queries as follows.

Queries on Oracle H1: The proof technique of Coron [10] is used to answer
such queries. When an identity ID is submitted to oracle H1, B first flips a coin
T ∈ {0, 1} that yields 0 with probability ζ and 1 with probability 1 − ζ, and
picks t1 ∈ Z∗

q at random. If T = 0, then the hash value H1(ID) is defined as
t1P ∈ G1. If T = 1, then B returns t1Y ∈ G1. In both cases, B inserts a tuple
(ID, t1, T ) in a list L1 = {(ID, t1, T )} to keep track the way it answered the
queries.

Partial Private Key Queries: Suppose the request is on an identity ID. B recov-
ers the corresponding (ID, t1, T ) from the list L1 (recall that such a tuple must
exist because of the aforementioned assumption).. If T = 1, then B outputs “fail-
ure” and halts because it is unable to coherently answer the query. Otherwise,
B looks up the list L and performs as follows.

– If the list L contains (ID, DID, PKID, sID), B checks whether DID =⊥. If
DID �=⊥, B returns DID to AI. If DID =⊥, B recovers the corresponding
(ID, t1, T ) from the list L1. Noting T = 0 means that H1(ID) was previously
defined to be t1P ∈ G1 and DID = t1Ppub = t1X ∈ G1 is the partial private
key associated to ID. Thus B returns DID to AI and writes DID in the list
L.

– If the list L does not contain (ID, DID, PKID, sID), B recovers the cor-
responding (ID, t1, T ) from the list L1, sets DID = t1Ppub = t1X and
returns DID to AI. B also sets PKID = sID =⊥ and adds an element
(ID, DID, PKID, sID) to the list L.

Public Key Queries: Suppose the query is made on an identity ID.

– If the list L contains (ID, DID, PKID, sID), B checks whether PKID =⊥. If
PKID �=⊥, B returns PKID to AI. Otherwise, B randomly chooses w ∈ Z∗

q
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and sets PKID = wP and sID = w. B returns PKID to AI and saves
(PKID, sID) into the list L.

– If the list L does not contain (ID, DID, PKID, sID), B sets DID =⊥, and
then randomly chooses w ∈ Z∗

q and sets PKID = wP and sID = w. B
returns PKID to AI and adds (ID, DID, PKID, sID) to the list L.

Private Key Extraction Queries: Suppose the query is made on an identity
ID. B recovers the corresponding (ID, t1, T ) from the list L1. If T = 1, then B
outputs “failure” and halts because it is unable to coherently answer the query.
Otherwise, B looks up the list L and performs as follows.

– If the list L contains (ID, DID, PKID, sID), B checks whether DID =⊥
and PKID =⊥. If DID =⊥, B makes a partial private key query itself to
obtain DID. If PKID =⊥, B makes a public key query itself to generate
(PKID = wP, sID = w). Then B saves these values in the list L and returns
SKID = (DID, w) to AI.

– If the list L does not contain an item {(ID, DID, PKID, sID)}, B makes a
partial private key query and a public key query on ID itself, and then adds
(ID, DID, PKID, sID) to the list L and returns SKID = (DID, sID).

Public Key Replacement Queries: Suppose AI makes the query with an input
(ID, PK ′

ID).

– If the list L contains an element (ID, DID, PKID, sID), B sets PKID =
PK ′

ID and sID =⊥.
– If the list L does not contain an item (ID, DID, PKID, sID), B sets DID =⊥,

PKID = PK ′
ID, sID =⊥, and adds an element (ID, DID, PKID, sID) to L.

Queries on Oracle H2: Suppose (m, ID, PKID, U) is submitted to oracle H2(·).
B first scans a list L2 = {(m, ID, PKID, U, H2, t2)} to check whether H2 has
already been defined for that input. If so, the previously defined value is returned.
Otherwise, B picks at random t2 ∈ Z∗

q , and returns H2 = t2P ∈ G1 as a hash
value of H2(m, ID, PKID, U) to AI (we abuse the notation H2 here), and also
stores the values in the list L2.

Queries on Oracle H3: Suppose (m, ID, PKID) is submitted to oracle H3(·).
B first scans a list L3 = {(m, ID, PKID, H3, t3)} to check whether H3 has
already been defined for that input. If so, the previously defined value is returned.
Otherwise, B picks at random t3 ∈ Z∗

q , and returns H3 = t3P ∈ G1 as a hash
value of H3(m, ID, PKID) to AI (we abuse the notation H3 here), and also
stores the values in the list L3.

Signing Oracle Queries: Suppose that AI queries the oracle with an input
(m, ID). Without loss of generality, we assume that the list L contains an item
(ID, DID, PKID, sID), and PKID �=⊥. (If the list L does not contain such an
item, or if PKID =⊥, B runs a public key query to get (PKID, sID).)

Then B picks at random two numbers v, u ∈ Z∗
q , sets U = vPpub, and de-

fines the hash value of H2(m, ID, PKID, U) as H2 = v−1(uP − QID) ∈ G1
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(B halts and outputs “failure” if H2 turns out to have already been defined
for (m, ID, PKID, U)). Then B looks up the list L3 for (m, ID, PKID, H3, t3)
such that the hash value of H3(m, ID, PKID) has been defined to H3 = t3P
(If such an item does not exist, B makes a query on oracle H3). Finally, B sets
V = uPpub + t3PKID. Now (U, V ) is returned to AI, which appears to be a valid
signature since

e(QID, Ppub)e(H2, U)e(H3, PKID)
= e(QID, Ppub)e(v−1(uP − QID), vPpub)e(t3P, PKID)
= e(QID, Ppub)e(uP − QID, Ppub)e(P, t3PKID)
= e(QID, Ppub)e(P, uPpub)e(QID, Ppub)−1e(P, t3PKID)
= e(P, uPpub + t3PKID) = e(V, P ).

Note that, the above simulation for signing queries works even in the strong
case that B does not know the secret value sID corresponding to the public key
PKID of a user with identity ID.

Eventually, AI outputs a forgery σ̃ = (Ũ , Ṽ ) on a message m̃, for an identity
˜ID with public key PK ˜ID..1 Now B recovers the triple ( ˜ID, t̃3, T̃ ) from L1. If

T̃ = 0, then B outputs “failure” and stops.. Otherwise, it goes on and finds out an
item (m̃, ˜ID, PK ˜ID, Ũ , H̃2, t̃2) in the list L2, and an item (m̃, ˜ID, PK ˜ID, H̃3, t̃3)
in the list L3. Note that the list L2 and L3 must contain such entries with
overwhelming probability (otherwise, B stops and outputs “failure”). Note that
H̃2 = H2(m̃, ˜ID, PK ˜ID, Ũ) is t̃2P ∈ G1, and H̃3 = H3(m̃, ˜ID, PK ˜ID) is t̃3P ∈
G1. If AI succeeds in the game, then

e(Ṽ , P ) = e(Q ˜ID, X)e(H̃2, Ũ)e(H̃3, PK ˜ID)

with H̃2 = t̃2P , H̃3 = t̃3P and Q ˜ID = t̃1Y for known elements t̃1, t̃2, t̃3 ∈ Z∗
q .

Therefore,
e(Ṽ − t̃2Ũ − t̃3 ˜PKID, P ) = e(t̃1Y, X),

and thus t̃−1
1 (Ṽ − t̃2Ũ − t̃3PK ˜ID) is the solution to the target CDH instance

(X, Y ) ∈ G1 × G1.
Now we evaluate B’s probability of failure.. B’s simulation of oracle H3 is

perfect. One can also readily check that the probability of failure in handling
a signing query because of a conflict on H2 is at most qS(qH2 + qS)/2k, as L2
never has more than qH2 + qS entries, while the probability for AI to output a
valid forgery σ̃ on a message m̃ for an identity ˜ID with public key PK ˜ID, with-
out asking the corresponding H2(m̃, ˜ID, PK ˜ID, Ũ) query or H3(m̃, ˜ID, PK ˜ID)
query, is at most 2/2k. And, by an analysis similar to Coron’s technique [10],
the probability ζqParE (1− ζ) for B not to fail in key extraction queries or because
AI produces its forgery on a ‘bad’ identity ˜ID is greater than 1 − 1/e(qParE +
1) when the optimal probability ζopt = qParE/(qParE + 1) is taken. Therefore,

1 We remark again that the Challenger B may not know the secret value s ˜ID corre-
sponding to PK ˜ID, while a reduction can be given even if B does not know s ˜ID.
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it results that B’s advantage in solving the CDH problem in G1 is at least(
ε − (qS(qH2 + qS) + 2)/2k

)
/e

(
qParE + 1

)
.

Lemma 2. If a PPT forger AII has an advantage ε in forging a signature in an
attack modelled by Game II of Definition 2 after running in time t and making
qHi queries to random oracles Hi for i = 2, 3, qE queries to the private-key
extraction oracle, qPK queries to the public-key request oracle, and qSig queries to
the signing oracle, then the CDH problem can be solved with probability

ε′ >
(
ε − (qS(qH2 + qS) + 2)/2k

)
/e

(
qE + 1),

within time t′ < t + (qH2 + qH3 + qPK + qSig)tm + (2qSig + 1)tmm, where tm is the
time to compute a scalar multiplication in G1 and tmm is the time to perform a
multi-exponentiation in G1.

Proof. Suppose AII is a Type II adversary that (t, ε)-breaks our certificateless
signature scheme. We show how to construct a t′-time algorithm B that solves the
CDH problem on G1 with probability at least ε′. Let (X = aP, Y = bP ) ∈ G1×G1
be a random instance of the CDH problem taken as input by B.

B randomly chooses s ∈ Z∗
q as the master key, and then initializes AII with

Ppub = sP and also the master key s. The adversary AII then starts making
oracle queries such as those described in Definition 2. Note that the partial
private key DID = sH1(ID) can be computed by both B and AII, thus the hash
function H1(·) is not modelled as a random oracle in this case.

B maintains a list L = {(ID, PKID, sID, T )}, which does not need to be made
in advance and is populated when AII makes certain queries specified below.

Public Key Queries: Suppose the query is make on an identity ID.

– If the list L contains (ID, PKID, sID, T ), B returns PKID to AII.
– If the list L does not contain (ID, PKID, sID), as in Coron’s proof [10], B

flips a coin T ∈ {0, 1} that yields 0 with probability ζ and 1 with probability
1 − ζ. B also picks a number w ∈ Z∗

q at random. If T = 0, the value of
PKID is defined as wP ∈ G1. If T = 1, B returns wY ∈ G1. In both
cases, B sets sID = w, and inserts a tuple (ID, PKID, sID, T ) into a list
L1 = {(ID, PKID, sID, T )} to keep track the way it answered the queries.
B returns PKID to AII.

Private Key Extraction Queries: Suppose the query is made on an identity ID.

– If the list L contains (ID, PKID, sID, T ), B returns SKID = (DID, sID) to
AII if T = 0, and halts otherwise.

– If the list L does not contain an item {(ID, PKID, sID, T )}, B makes a
public key query on ID itself, and adds (ID, PKID, sID, T ) to the list L.
Then it returns SKID = (DID, sID) if T = 0, and halts otherwise.

Queries on Oracle H2: When a tuple (m, ID, PKID, U) is submitted to oracle
H2(·), B first scans a list L2 = {(m, ID, PKID, U, H2, t2)} to check whether H2
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has already been defined for that input. If so, the existing value is returned.
Otherwise, B picks a random number t2 ∈ Z∗

q , and returns H2 = t2P ∈ G1 as
the hash value of H2(m, ID, PKID, U) to AII, and also stores the values in the
list L2.

Queries on Oracle H3: When a tuple (m, ID, PKID) is submitted to oracle
H3(·), B first scans a list L3 = {(m, ID, PKID, H3, t3)} to check whether H3
has already been defined for that input. If so, the existing value is returned.
Otherwise, B picks at random t3 ∈ Z∗

q , and returns H3 = t3Y ∈ G1 as a hash
value of H3(m, ID, PKID) to AII, and also stores the values in the list L3.

Signing Oracle Queries: Suppose AII makes the query with an input (m, ID).
Without loss of generality, we assume that there is an item (ID, PKID, ·, ·) in
the list L.

First, B picks v, u ∈ Z∗
q at random, sets U = uPKID, V = vPKID + DID

and defines the hash value of H2(ID, M, PKID, U) as H2 = u−1(vP − H3),
where H3 = H3(m, ID, PKID) (B halts and outputs “failure” if H2 turns out
to have already been defined for (m, ID, PKID, U)). Now (U, V ) is returned to
AII, which appears to be a valid signature since

e(QID, Ppub)e(H2, U)e(H3, PKID)
= e(QID, Ppub)e(u−1(vP − H3), uPKID)e(H3, PKID)
= e(sQID, P )e(vP, PKID)e(−H3, PKID)e(H3, PKID)
= e(DID, P )e(vPKID, P )
= e(vPKID + DID, P ) = e(V, P ).

Eventually, AII outputs a forgery σ̃ = (Ũ , Ṽ ) on a message m̃, for an iden-
tity ˜ID with public key PK ˜ID. Then B recovers ( ˜ID, PK ˜ID, s ˜ID, T̃ ) from L1

and evaluates T̃ . If T̃ = 0, then B outputs “failure” and stops. Otherwise, it
looks up an item (m̃, ˜ID, PK ˜ID, Ũ , H̃2, t̃2) in the list L2 such that the value
of H̃2 = H2(m̃, ˜ID, PK ˜ID, Ũ) has been defined to be t̃2P . B also looks up
an item (m̃, ˜ID, PK ˜ID, H̃3, t̃3) in the list L3 such that the value of H̃3 =
H3(m̃, ˜ID, PK ˜ID) has been defined to be t̃3Y . Note that the lists L2 and L3
must contain such entries with overwhelming probability. If AII succeeds in the
game, then

e(Ṽ , P ) = e(Q ˜ID, Ppub)e(H̃2, Ũ)e(H̃3, PK ˜ID)

with H̃2 = t̃2P , H̃3 = t̃3Y , Ppub = sP and PK ˜ID = s ˜IDX , for known elements
t̃2, t̃3, s, s ˜ID ∈ Z∗

q . Therefore,

e(Ṽ − sQ ˜ID − t̃2Ũ , P ) = e(t̃3Y, s ˜IDX),

and thus (s ˜ID t̃3)−1(Ṽ −sQ ˜ID − t̃2Ũ) is the solution to the CDH instance (X, Y ).
Now we evaluate the failure probability of B. Our simulation for oracle H3 is

perfect. Also, the probability for B to fail in handling a signing query because of
a conflict on H2 is at most qS(qH2 + qS)/2k. The probability for AII to output
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a valid forgery σ̃ on a message m̃ for identity ˜ID with public key ˜PKID, with-
out asking the corresponding H2(m̃, ˜ID, ˜PKID, Ũ) query or H3(m̃, ˜ID, ˜PKID)
query, is at most 2/2k. And, by an analysis similar to Coron’s [10], we can see
that the probability ζqE (1 − ζ) for B not to fail in a private key extraction
query or because AII produces its forgery on a ‘bad’ identity ˜ID is greater
than 1 − 1/e(qE + 1) when the optimal probability ζopt = qE/(qE + 1) is
taken. Hence, B’s advantage in solving the CDH problem in G1 is at least(
ε − (qS(qH2 + qS) + 2)/2k

)
/e

(
qE + 1

)
.

5 Conclusion

Al-Riyami and Paterson introduced the new paradigm of certificateless public
key cryptography in 2003. They established a security model for certificateless
public key encryption and proposed some efficient constructions. In this paper,
we proposed a security model for certificateless public-key signature, and an effi-
cient construction based on bilinear pairings. We also showed that the proposed
scheme is tightly equivalent to the computational Diffie-Hellman problem in the
random oracle model.
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