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Abstract. In 2004, the inventors of TTM cryptosystems proposed a new
scheme that could resist the existing attacks, in particular, the Goubin-
Courtois attack [GC00] and the Ding-Schmidt attack [DS03]. In this
paper, we show the new version is still insecure, and we find that the
polynomial components of the cipher (Fi) satisfy nontrivial equations of
the special form

n−1∑

i=0

aixi +
∑

0≤j≤k≤m−1

bjkFjFk +
m−1∑

j=0

cjFj + d = 0,

which could be found with 238 computations. From these equations and
consequently the linear equations we derive from these equations for any
given ciphertext, we can eliminate some of the variables xi by restricting
the functions to an affine subspace, such that, on this subspace, we can
trivialize the ”lock” polynomials, which are the key structure to ensure
its security in this new instance of TTM. Then with method similar to
Ding-Schmidt [DS03], we can find the corresponding plaintext for any
given ciphertext. The total computational complexity of the attack is
less than 239 operations over a finite field of size 28. Our results are fur-
ther confirmed by computer experiments.

Keywords: Multivariate public key cryptography, TTM, quadratic
polynomial.

1 Introduction

Public key cryptography is an important tool for our modern information society.
Traditional public key cryptosystems such as RSA and ElGamal rely on hard
number theory based problems such as factoring or discrete logarithms. However,
techniques for factorization and solving discrete logarithm continually improve
and polynomial time quantum algorithms can be used to solve both problems
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efficiently [Sho97]. Hence, there is a need to search for alternatives which are
based on other classes of problems.

Multivariate public key cryptosystem (MPKC) is one of the promising al-
ternatives. The security of MPKC relies on the difficulty of solving systems of
nonlinear polynomial equations with many variables, and the latter is a NP-hard
problem in general. The public key of MPKC is mostly a set of quadratic poly-
nomials. These polynomials are derived from composition of maps. Compared
with RSA public key cryptosystems, the computation in MPKC can be very fast
because it is operated on a small finite field. So MPKC may be suitable for even
low-end devices.

The first promising construction of MPKC is the Matsumoto-Imai (MI)
scheme [MI88] proposed in 1988. Unfortunately, it was defeated by Patarin in
1995 with the linearization method [Pat95].

Tame transformation method (TTM) schemes [Moh99] was proposed by Moh
in 1999. The central map of TTM is the so-called tame transformations which
is closely related to the famous Jacobian conjecture in algebraic geometry. The
construction of TTM is very beautiful, and the decryption of TTM is very fast
due to its special design.

But by now, all instances of TTM are insecure. In 2000, Goubin and Courtois
claimed that they completely defeated all possible instances of TTM schemes us-
ing the Minrank method and demonstrated it by defeating one of the challenges
set by the inventors of TTM [GC00]. However, the inventors of TTM refuted the
claim, and they presented another construction to support their claim [CM01].
But this new scheme also had a defect common among all the existing TTM
schemes at that time. Ding and Schmidt pointed out that there exist lineariza-
tion equations satisfied by the components of the ciphers, and they extended
linearization method to attack this new version [DS03]. In order to resist these
attacks, the inventors of TTM proposed another new instance [MCY04] in 2004,
and they claimed the security is 2148 against the Goubin-Courtois attack. To
resist the Ding-Schmidt attack, they incorporated new lock polynomials which
can not be trivialized by Ding-Schmidt attack.

Unfortunately, we find this new implementation of TTM also has a defect,
that is, there exist nontrivial equations of the special form

n−1∑

i=0

aixi +
∑

0≤j≤k≤m−1

bjkFjFk +
m−1∑

j=0

cjFj + d = 0.

We call them second order linearization equations. We use these equations
as a starting point to trivialize the lock polynomials in the TTM instance. In
other words, for any given valid ciphertext, we can find an affine subspace W in
the plaintext space such that all lock polynomials become constants on W . Then
with method similar to Ding-Schmidt [DS03], we can recover the corresponding
plaintext for a given ciphertext easily. This attack in principle is very similar to
the attack of Ding and Hodges in [DH03]. The total computational complexity
of our attack is less than 239.
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The paper is organized as follows. We introduce the basic ideas and new in-
stance of TTM schemes in Section 2. In Section 3, we describe how to attack this
new TTM, present a practical attack procedure, and calculate the complexity of
our attack. Finally, in Section 4, we conclude the paper.

2 TTM Cryptosystems

2.1 Basic Idea of TTM Schemes

Let K be a small finite field. The TTM systems is constructed as a composition of
several maps φ1, φ2, · · · , and φl, F = φl ◦φl−1 ◦ · · ·◦φ1, where φi is a polynomial
map from Kni to Kni+1 and n = n1 ≤ n2 ≤ · · · ≤ nl+1 = m, such that

1. The value of F (x0, · · · , xn−1) at any given (x0, · · · , xn−1) is easy to compute.
2. Each φi is easy to invert, and F (x0, · · · , xn−1) is also easy to invert if one

knows the composition factors of F , namely the φi. But it is hard to invert
F if one does not know the factorization.

3. Some of the φi are linear polynomials, while F is a quadratic polynomial
map.

The expression of F (x0, · · · , xn−1) is taken as the public key in a TTM sys-
tem and the linear φi as the secret key. F : K

n → K
m is a set of quadratic

polynomials. In all known instances of TTM design, one uses the following two
types of maps for the φi :

1. Linear affine maps of the form f(X) = AX + b, where X , b ∈ K
∗ are vectors

and A is an invertible matrix.
2. Tame transformations. They are maps of the form

(y0, · · · , ym−1)
= J(x0, · · · , xn−1)
= (x0, x1 + q1(x0), · · · , xn−1 + qn−1(x0, · · · , xn−2),

qn(x0, · · · , xn−1), · · · , qm−1(x0, · · · , xn−1)).

The inventor, an expert in algebraic geometry, uses the basic concept of tame
transformation from algebraic geometry. The inverting process of a tame trans-
formation is very simple and is also a tame transformation.

The key construction of TTM schemes is the so-called lock polynomials. In
the new instance [MCY04], a set of new lock polynomial Gj(x0, · · · , xn−1), j =
0, · · · , 6, is constructed, where the central map becomes

J(x0, · · · , xn−1)
= (x0 + G0, x1 + q1(x0) + G1, · · · , x6 + q6(x0, · · · , x5) + G6,

x7 + q7(x0, · · · , x6), · · · , xn−1 + qn−1(x0, · · · , xn−2),
qn(x0, · · · , xn−1), · · · , qm−1(x0, · · · , xn−1)).

A pure triangular system can be solved by Minrank method, therefore the
lock polynomials are needed to resist this attack. Our attack uses a different
method and we start from first trying to trivialize these lock polynomials.
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2.2 New Instance of TTM

We use the same notation as in [MCY04]. Take K as the finite field with 28

elements and m = 110 and n = 55. The map F : K
55 → K

110 is a composition
of 4 maps φ1, φ2, φ3, and φ4, namely F = φ4 ◦ φ3 ◦ φ2 ◦ φ1:

F : K
55 φ1−→ K

55 φ2−→ K
110 φ3−→ K

110 φ4−→ K
110.

φ1 and φ4 are invertible affine linear maps, φ2 is a tame quadratic transformation,
and φ3 is a degree 8 map using lock polynomials.

The expressions of φ2 and φ3 are public information in the TTM system. φ1
and φ4 are taken as the private key, while the expression of the map (y0, · · · , y109)
= F (x0, ..., x54) is the public key. Each component polynomial yi = Fi(x0, ...x54)
of F is a quadratic polynomial. To encrypt a plaintext (x0, ..., x54) is to evaluate
F at it.

Define

(x̄0, · · · , x̄54) = φ1(x0, · · · , x54), (ȳ0, · · · , ȳ110) = φ2(x̄0, · · · , x̄54),
(z0, · · · , z110) = φ3(ȳ0, · · · , ȳ110), (y0, · · · , y110) = φ4((z0, · · · , z110).

The exact description of φ2 is given in appendix.
Seven lock polynomials, Gj(x̄0, · · · , x̄n−1), 0 ≤ j ≤ 7, are used to define φ3

and they are defined as follows:

R1 := ȳ66ȳ67 + ȳ68ȳ69 + ȳ70ȳ31 + ȳ71ȳ32 + ȳ72ȳ33 + ȳ73ȳ34 + ȳ74ȳ75 + ȳ76ȳ35 + ȳ45;
R2 := ȳ77ȳ78 + ȳ79ȳ80 + ȳ75ȳ31 + ȳ36ȳ81 + ȳ37ȳ82 + ȳ38ȳ83 + ȳ74ȳ84 + ȳ39ȳ85 + ȳ46;
R3 := ȳ86ȳ87 + ȳ88ȳ89 + ȳ90ȳ22 + ȳ91ȳ23 + ȳ92ȳ24 + ȳ93ȳ25 + ȳ94ȳ95 + ȳ96ȳ26 + ȳ47;
R4 := ȳ97ȳ98+ȳ99ȳ100+ȳ95ȳ22+ȳ27ȳ101+ȳ28ȳ102+ȳ29ȳ103+ȳ94ȳ104+ȳ30ȳ105+ȳ48;
R5 := ȳ55ȳ56 + ȳ57ȳ58 + ȳ59ȳ40 + ȳ60ȳ41 + ȳ61ȳ42 + ȳ62ȳ43 + ȳ63ȳ64 + ȳ65ȳ44 + ȳ49;
S1 := R2R4 + R3R5 + ȳ50 = x̄50;
S2 := R1R3 + R4R5 + ȳ51 = x̄51;
S3 := R1R4 + R2R5 + ȳ52 = x̄52;
S4 := R1R5 + R2R3 + ȳ53 = x̄53;
S5 := R1R2 + R3R4 + ȳ54 = x̄54;
G0 := S2S4 + S3S5 = x̄51x̄53 + x̄52x̄54;
G1 := S1S3 + S4S5 = x̄50x̄52 + x̄53x̄54;
G2 := S1S4 + S2S5 = x̄50x̄53 + x̄51x̄54;
G3 := S1S5 + S2S3 = x̄50x̄54 + x̄51x̄52;
G4 := S1S2 + S3S4 = x̄50x̄51 + x̄52x̄53;
G5 := R1S1 +R2S2 +R3S3 +R4S4 +R5S5 = x̄50x̄45 + x̄51x̄46 + x̄52x̄47 + x̄53x̄48 +
x̄54x̄49;
G6 := R1S2 +R2S3 +R3S4 +R4S5 +R5S1 = x̄51x̄45 + x̄52x̄46 + x̄53x̄47 + x̄54x̄48 +
x̄50x̄49.

φ3 is defined as:

φ3(ȳ0, · · · , ȳ109) = (ȳ0 + G0(ȳ0, · · · , ȳ109), · · · ,
ȳ6 + G6(ȳ0, · · · , ȳ109), ȳ7, · · · , ȳ109).
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Note that φ3 is of degree 8 in terms of ȳi. Then

φ32(x̄0, · · · , x̄54) = φ3 ◦ φ2(x̄0, · · · , x̄54) = (ȳ0 + G0(x̄0, · · · , x̄54), · · · ,
ȳ6 + G6(x̄0, · · · , x̄54), ȳ7, · · · , ȳ109).

Note in the two formulas above, the functions Gi are seen differently, while in
the first one they are functions of ȳi with degree 8, in the second formula they are
functions of x̄i with degree 2. Denote by φi,j the j-th component function of φi.
Similar notations φ32,j , φ−1

1,j ,φ
−1
4,j , and Fj are denoted for φ32, φ−1

1 , φ−1
4 , and F ,

respectively. Obviously, each Fj is a quadratic polynomial, and F (x0, ..., x54) =
φ4 ◦ φ32 ◦ φ1(x0, ..., x54).

3 Cryptanalysis on New TTM Instance

Our attack is a ciphertext-only attack. We start from first finding all second
order linearization equations. For any given ciphertext, we use them to trivialize
the lock polynomials. Then, we derive the corresponding plaintext through the
iteration of the process of first searching for linear relations in equations derived
from the public key and the ciphertext and then substituting them into these
equations.

3.1 Second Order Linearization Equations

We first observe that all the Ri (1 ≤ i ≤ 5) are linear on x̄0, · · · , and x̄54. By a
direct computation, we find that R1 = x̄45, R2 = x̄46, R3 = x̄47, R4 = x̄48, and
R5 = x̄49, namely,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̄45 + ȳ66ȳ67 + ȳ68ȳ69 + ȳ70ȳ31 + ȳ71ȳ32 + ȳ72ȳ33 + ȳ73ȳ34 + ȳ74ȳ75 + ȳ76ȳ35 + ȳ45 = 0;
x̄46 + ȳ77ȳ78 + ȳ79ȳ80 + ȳ75ȳ31 + ȳ36ȳ81 + ȳ37ȳ82 + ȳ38ȳ83 + ȳ74ȳ84 + ȳ39ȳ85 + ȳ46 = 0;
x̄47 + ȳ86ȳ87 + ȳ88ȳ89 + ȳ90ȳ22 + ȳ91ȳ23 + ȳ92ȳ24 + ȳ93ȳ25 + ȳ94ȳ95 + ȳ96ȳ26 + ȳ47 = 0;
x̄48 + ȳ97ȳ98 + ȳ99ȳ100 + ȳ95ȳ22 + ȳ27ȳ101 + ȳ28ȳ102 + ȳ29ȳ103 + ȳ94ȳ104 + ȳ30ȳ105 + ȳ48 = 0;

Since F is derived from φ32 by composing from the inner and outer sides
by invertible linear maps φ1 and φ4, i.e., x̄i = φ1,i(x0, · · · , x54) and ȳj =
φ−1

4,j(F0, · · · , F109) for j > 21, and ȳ0, · · · , ȳ21 do not appear in equations (3.1),
each of these equations can be changed into an identical equation of the form:

54∑

i=0

aixi +
∑

0≤j≤k≤109

bjkFjFk +
109∑

j=0

cjFj + d = 0, (3.2)

which is satisfied by any (x0, · · · , x54) ∈ K
55. Note that the coefficients ai (0 ≤

i ≤ 54) are not all zero. Furthermore, there exist at least five equations of the
above form such that their corresponding coefficient vectors (a0, · · · , a54) are
linearly independent since as linear combinations of x0, · · · , x54, the coefficient

x̄49 + ȳ55ȳ56 + ȳ57ȳ58 + ȳ59ȳ40 + ȳ60ȳ41 + ȳ61ȳ42 + ȳ62ȳ43 + ȳ63ȳ64 + ȳ65ȳ44 + ȳ49 = 0;

(3.1)
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vectors of x̄45, · · · , x̄49 are linearly independent. Let V denote the K-linear space
composing of all second order linearization equations of the form (3.2), and let
D be its dimension.

To find all equations in V is equivalent to find a basis of V . The equation
(3.2) is equivalent to a system of equations on the coefficients ai, bjk, cj , and
d. It is well known that the number of monomials in n variables of degree ≤ D
is

(
n+D

D

)
([CP03]), so the number of unknown coefficients in these equations is

equal to (
55
1

)
+

(
110 + 2

2

)
= 6271.

To find a basis of V , we can randomly select slightly more than 6271, say
7000, plaintexts (x0, · · · , x54) and substitute them in (3.2) to get a system of
7000 linear equations and then solve it. Let {(a(ρ)

i , b
(ρ)
jk , c

(ρ)
j , d(ρ)), 1 ≤ ρ ≤ D}

be the coefficient vectors corresponding to a basis of V , where i, (j, k), and j
stand for i = 0, · · · , 54, 0 ≤ j ≤ k ≤ 109, and j = 0, · · · , 109, respectively.

Let V ′ be linear subspace which is consisting of the zero equation and all
second order linearization equations with (a0, · · · , a54) �= (0, · · · , 0), and let
l = dimV ′ ≥ 5. Without loss of generality, we assume (a(1)

0 , · · · , a
(1)
54 ), · · · ,

(a(l)
0 , · · · , a

(l)
54 ) are linearly independent and (a(ρ)

0 , · · · , a
(ρ)
54 ) = (0, · · · , 0) for l +

1 ≤ ρ ≤ D. Let Eρ(1 ≤ ρ ≤ D) denote the equation

54∑

i=0

a
(ρ)
i xi +

∑

0≤j≤k≤109

b
(ρ)
jk FjFk +

109∑

j=0

c
(ρ)
j Fj + d(ρ) = 0. (3.3)

The work above depends only on any given public key, and it can be solved
once for all cryptanalysis under that public key.

3.2 Deriving Linear Equations Satisfied by Plaintext

Let’s assume we have a valid ciphertext y′ = (y′
0, · · · , y′

109). Our goal is to find
its corresponding plaintext x′ = (x′

0, · · · , x′
54).

Substituting (F0, · · · , F109) = (y′
0, · · · , y′

109) into equations E1, · · · , El, we
derive l linearly independent linear equations in x0, · · · , x54, which are denoted
by E′

1, · · · , E′
l . These l equations are also satisfied by x′. Doing a simple Gaussian

elimination, from these l equations we can represent l variables of x0, · · · , x54 by
linear combinations of other 55 − l. That is, we can find two disjoint subsets of
{0, · · · , 54}, A′

1 = {v′1, · · · , v′l} and A1 = {v1, · · · , v55−l}, and linear expressions

xv′
j

= hj(xv1 , · · · , xv55−l
), 1 ≤ j ≤ l (3.4)

such that E′
1, · · · , E′

l holds when (3.4) are substituted into them.
To put some calculations in one-time precomputation and make our attack

more efficient, we can further refine the analysis about hj . Clearly, only the
constant term in hj relies on y′, the coefficients of the linear monomials in hj rely
on only the public key of the TTM scheme. Let W denote a (55− l)-dimensional
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affine subspace of K
55, the component xv′

j
of any vector (x0, · · · , x54) in W is

hj(xv1 , · · · , xv55−l
). Each vector x = (x0, · · · , x54) in W satisfies

54∑
i=0

a
(ρ)
i xi = tρ,

0 ≤ ρ ≤ l, where

tρ =
∑

0≤j≤k≤109

b
(ρ)
jk y′

jy
′
k +

109∑

j=0

c
(ρ)
j y′

j + d(ρ) (3.5)

is a constant independent of (x0, · · · , x54).
Since each equation in (3.1) is an element of V and hence a linear combination

of E1, · · · , ED, the linear part (i.e., excluding the constant term part of an affine

function) of each x̄i (45 ≤ i ≤ 49) at x ∈ W is a linear combination of
54∑

i=0
a
(ρ)
i xi

(1 ≤ ρ ≤ l), that is, it is a linear combination of constants t1, · · · , tl. Hence, as
functions in xv1 , · · · , xv55−l

, all Ri = x̄44+i (1 ≤ i ≤ 5) are constants on W . Let
they be r1, · · · , r5, respectively.

Now substitute (3.4) into Fj(x0, · · · , x54) and derive 110 new quadratic func-
tions F̂j(xv1 , · · · , xv55−l

) (0 ≤ j ≤ 109). The quadratic monomials of F̂j rely on
only the public key since so do the coefficients of the linear monomials of hj .

3.3 Trivializing the Lock Polynomials

To continue the attack, we utilize the following equations stemming from the
definition of the lock polynomials:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ȳ50 + x̄46x̄48 + x̄47x̄49 + x̄50 = ȳ50 + R2R4 + R3R5 + x̄50 = 0;
ȳ51 + x̄45x̄47 + x̄48x̄49 + x̄51 = ȳ51 + R1R3 + R4R5 + x̄51 = 0;
ȳ52 + x̄45x̄48 + x̄46x̄49 + x̄52 = ȳ52 + R1R4 + R2R5 + x̄52 = 0;
ȳ53 + x̄45x̄49 + x̄46x̄47 + x̄53 = ȳ53 + R1R5 + R2R3 + x̄53 = 0;
ȳ54 + x̄45x̄46 + x̄47x̄48 + x̄54 = ȳ54 + R1R2 + R3R4 + x̄54 = 0.

(3.6)

On W , (3.6) is ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ȳ50 + x̄50 + s1 = 0;
ȳ51 + x̄51 + s2 = 0;
ȳ52 + x̄52 + s3 = 0;
ȳ53 + x̄53 + s4 = 0;
ȳ54 + x̄54 + s5 = 0,

(3.7)

where s1, · · · , s5 are constants defined by s1 = r2r4 + r3r5, s2 = r1r3 + r4r5,
s3 = r1r4 + r2r5, s4 = r1r5 + r2r3, and s5 = r1r2 + r3r4. Through linear
transformation φ1 and φ−1

4 , equation (3.7) implies that there exist quadratic
equations in xv1 , · · · , xv55−l

of the form

55−l∑

i=1

âixvi +
109∑

j=0

b̂jF̂j + d̂ = 0, (3.8)

where (b̂0, · · · , b̂109) �= (0, · · · , 0).
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To find all equations of the form (3.8), we can use the same method as the
one used for equations (3.2). But the case is simpler and easier since far fewer
unknowns are involved here.

To again improve efficiency by utilizing one-time precomputation, we use an-
other alternative method, that is, we expand each F̂j and compare the coefficients
of quadratic monomials in xv1 , · · · , xv55−l

in the two sides of (3.8), we derive a
system of linear equations in b̂0, · · · , b̂109. Since quadratic monomials are of the
form x2

i or xixj for i �= j, this system has
(

55 − l

1

)
+

(
55 − l

2

)
= (56 − l)(55 − l)/2

equations. It also depends on only the public key. Let D̂ and {(b̂(ρ)
0 , · · · , b̂

(ρ)
109):1 ≤

ρ ≤ D̂} be the dimension and a basis of the solution space of this system,
respectively.

Substituting (b̂(ρ)
0 , · · · , b̂

(ρ)
109) into (3.8) and comparing constant terms and co-

efficients of linear monomials in xv1 , · · · , xv55−l
in the two sides, we uniquely

determine the other coefficients in (3.8), â
(ρ)
1 , · · · , â

(ρ)
55−l and d̂(ρ), because they

are determined by the b̂
(ρ)
j (0 ≤ j ≤ 109) and the linear and constant terms of

the F̂j (0 ≤ j ≤ 109). These coefficients depend on specific values of the cipher-
text y′, since the linear and constant terms of the F̂j depend on the constant
terms of the hj .

Let
{(â(ρ)

1 , · · · , â
(ρ)
55−l, b̂

(ρ)
0 , · · · , b̂

(ρ)
109, d

(ρ)), 1 ≤ ρ ≤ D̂}
be a basis of the space of the coefficient vectors of the equations of the form
(3.8). Rearranging these basis vectors, we assume that (â(1)

1 , · · · , â
(1)
55−l), · · · ,

(â(k)
1 , · · · , â

(k)
55−l) are linearly independent and the other vectors (â(i)

1 , · · · , â
(i)
55−l)

(k + 1 ≤ i ≤ D̂) are their linear combinations. Let Êρ denote the equation

55−l∑

i=1

â
(ρ)
i xvi +

109∑

j=0

b̂
(ρ)
j F̂j + d̂(ρ) = 0, (3.9)

1 ≤ ρ ≤ k. These k equations are satisfied by all (xv1 , · · · , xv55−l
) ∈ K55−l.

Substituting (F̂0, · · · , F̂109) by y′ into (3.9), we derive the equation Ê′
ρ:

55−l∑

i=1

â
(ρ)
i xvi + r̂ρ = 0, (3.10)

where r̂ρ =
109∑
j=0

b̂
(ρ)
j y′

j + d̂(ρ), 1 ≤ ρ ≤ k. Doing a Gaussian elimination on Ê′
ρ(1 ≤

ρ ≤ k), we will find two disjoint subsets of {v1, · · · , v55−l}: A′
2 = {w′

1, · · · , w′
k}

and A2 = {w1, · · · , w55−l−k}, and linear functions in xw1 , · · · , xw55−l−k
,

xw′
i
= ĥi(xw1 , · · · , xw55−l−k

), 1 ≤ i ≤ k (3.11)
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such that (3.10) holds when (3.11) are substituted into it. We substitute (3.11)
into F̂j(xv1 , · · · , xv55−l

) to derive F̃j(xw1 , · · · , xw55−l−k
), 0 ≤ j ≤ 109.

Let Ŵ denote a (55− l− k)-dimensional affine subspace of W , where for each
vector (x0, · · · , x54) in Ŵ , xw′

i
is substituted by (3.11) for any 1 ≤ i ≤ k. Thus,

every vector (x0, · · · , x54) in Ŵ satisfies (3.10).
Restricting on Ŵ , each equation in (3.6) is a linear combination of Ê1, · · · , ÊD̂,

and hence, the linear part of x̄i (50 ≤ i ≤ 54) is a linear combination of
55−l∑
i=1

â
(ρ)
i xvi , (1 ≤ ρ ≤ k), i.e., a linear combination of r̂1, · · · , r̂k, which is a

constant independent of x ∈ Ŵ . Therefore, x̄50, x̄51, x̄52, x̄53, and x̄54 are all
constant on Ŵ .

By the definitions of Ri, Si, and Gi, they are all constants on Ŵ as functions
in x0, · · · , x54. Let Gi be gi, gi ∈ K, i = 0, · · · , 6.

3.4 Finding the Plaintext

The analysis mentioned in the previous subsection is a step of trivializing lock
polynomials. Although we do not know the concrete values of gi, we know all Gi

are constant on Ŵ . This fact is used below to complete the remaining steps
of our attack. We also use the fact that ȳ0 := φ2,0(x̄0, · · · , x̄54) = x̄0 and
ȳ1 := φ2,1(x̄0, · · · , x̄54) = f1(x̄0) + x̄1 for some quadratic f1; please refer to
the appendix.

Because φ32 is a tame triangular transformation on φ1(Ŵ ), set φ321 = φ32◦φ1.
Since

φ321,0(x0, · · · , x54) = φ32,0(x̄0, · · · , x̄54) = (ȳ0 + G0(x̄0, · · · , x̄54)),

for (x0, · · · , x54) ∈ Ŵ , we have

φ−1
4,0(F̃ ) = φ321,0(x0, · · · , x54) = φ1,0(x0, · · · , x54) + g0.

So there must exist identical equations of the form

55−l−k∑

i=0

ãixwi +
109∑

j=0

b̃jF̃j + d̃ = 0, (3.12)

which are satisfied by all (xw1 , · · · , xw55−l−k
) ∈ K55−l−k and the coefficients

(b̃0, · · · , b̃109) �= (0, · · · , 0).
Similarly to (3.8), we can derive a basis of linear space of all coefficient vec-

tors (ã1, · · · , ã55−l−k, b̃0, · · · , b̃109, d̃) satisfying (3.12). Write these basis vectors
as row vectors to get a matrix and change it into a top triangular matrix by
row transformations. Substitute F̃i by y′

i in the equations (3.12) corresponding
to each row of the matrix with (ã1, · · · , ã55−l−k) �= (0, · · · , 0), then we derive
some, say p, linearly independent linear equations in xw1 , · · · , xw55−l−k

. There-
fore we can represent p variables of xw1 , · · · , xw55−l−k

as linear expressions of the
remaining variables. We also derive a (55− l−k−p)-dimensional affine subspace
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W̃ of Ŵ . Let xu1 , · · · , xu55−l−k−p
be the remaining variables. For the same rea-

son as mentioned above, φ1,0(x0, · · · , x54), and hence f1(φ1,0(x0, · · · , x54)), are
constant on W̃ .

Let ˜̃Fi(xu1 , · · · , xu55−l−k−p
) denote the p-variable-eliminated function F̃i(xw1 ,

· · · , xw55−l−k
). Let g′1 = g1 + f1(φ1,0(x0, · · · , x54)). Again, we have

φ−1
4,1(

˜̃F ) = φ321,1(x0, · · · , x54) = φ1,1(x0, · · · , x54) + g′1,

(x0, · · · , x54) ∈ W̃ , and we know there exist identical equations in (xu1 , · · · ,
xu55−l−k−p

) of the form

55−l−k−p∑

i=0

˜̃aixwi +
109∑

j=0

˜̃bj
˜̃Fj + ˜̃d = 0 (3.13)

with (˜̃b0, · · · , ˜̃b109) �= (0, · · · , 0).
Repeating similar steps of eliminating and substituting variables, we derive in

turn smaller and smaller affine subspaces of W̃ . On these subspaces, we have in
turn φ1,1(x0, · · · , x54), f2(φ1,0, φ1,1), · · · , φ1,20(x0, · · · , x54), f21(φ1,0, · · · , φ1,20),
φ1,21(x0, · · · , x54), · · · , and φ1,54(x0, · · · , x54) are constant. Since φ1,0
(x0, · · · , x54), · · · , and φ1,54(x0, · · · , x54) are constants on the last subspace and
φ1 is an invertible map, (x0, · · · , x54) is a constant vector on that subspace. This
means that this affine subspace is a point (i.e., the 0-dimensional subspace). This
point is exactly the plaintext.

Collecting all linear expressions between variables, we get the plaintext. Now
the attack is accomplished.

3.5 A Practical Attack Procedure and Its Complexity

The attack in the previous subsections can be further divided into the following
six steps. The first three steps are independent of the value of the ciphertext y′

and can be done once for a given public key.

Step 1 of the attack. Find a basis of the linear space of the coefficient vectors
(ai, bjk, cj , d) of the identical equations

54∑

i=0

aixi +
∑

0≤j≤k≤109

bjkFjFk +
109∑

j=0

cjFj + d = 0.

As mentioned in subsection 3.1, we randomly select 7000 plaintexts (x0,· · ·, x54)
and substitute them into equation (3.2) to get a linear system of 7000 equations on
6271 unknowns. The computational complexity to solve it is 62712 · 7000 ≤ 238

operations on the finite field K = F28 . Reorder the resulting basis vectors such
that (a(ρ)

0 , · · · , a
(ρ)
54 ) = (0, · · · , 0) for l + 1 ≤ ρ ≤ D, and that for the l × 55 matrix

with (a(ρ)
0 , · · · , a

(ρ)
54 ) as its ρ-th row and its v′1-,v′2-, · · · , v′l-columns form an identity

matrix of order l. (Let the columns are indexed by 0, 1, · · · , and 54.)
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Step 2 of the attack. Let {v1, · · · , v55−l} = {0, · · · , 54} \ {v′1, · · · , v′l}. Repre-
sent the variables xv′

1
, xv′

2
, · · · , and xv′

l
as linear expressions of the form

hj(xv1 , · · · , xv55−l
) =

55−l∑

i=1

hj,ixvi + tj ,

respectively, 1 ≤ j ≤ l, according to the system of l linear equations

54∑

i=0

a
(ρ)
i xi = tρ, 1 ≤ ρ ≤ l.

Substitute xv′
j

by hj(xv1 , · · · , xv55−l
) (1 ≤ j ≤ l) into the expressions

Fi(x0, · · · , x54) (0 ≤ i ≤ 109) for the public key, and derive 110 new quadratic
polynomials F̂i(xv1 , · · · , xv55−l

), 0 ≤ i ≤ 109. The coefficients of quadratic terms
in F̂i are independent of t1, · · · , tl.

The first part of this step costs no computation. The second substitution part
is of computational complexity about

55l(l + 3)(55 − l)(56 − l) < 223.

Step 3 of the attack. Comparing the coefficients of quadratic terms in the two
sides of the equation

109∑

j=0

b̂jF̂j(xv1 , · · · , xv55−l
) = 0

to derive a system of (55− l)(56− l)/2 linear equations on b̂0, · · · , b̂109. Then use
Gaussian elimination to find a basis of its solution space, {(b̂(ρ)

0 , · · · , b̂
(ρ)
109), 1 ≤

ρ ≤ k}.
The computational complexity of this step is

1102 · (55 − l)(56 − l)/2 < 213(56 − l)2 < 224.

The above three steps can be precomputed for any given public key. The total
complexity is less than 238. In what follows, we go to break the corresponding
plaintext of a specific valid ciphertext y′ = (y′

0, · · · , y′
109).

Step 4 of the attack. First, substitute y′ = (y′
0, · · · , y′

109) into (3.5) to obtain
t1, · · · , tl and substitute t1, · · · , tl into F̂i to get simplified F̂i. Then for each
(b̂(ρ)

0 , · · · , b̂
(ρ)
109), compare the coefficients of the linear and constant terms in the

two sides of (3.9) to determine â
(ρ)
0 , · · · , â

(ρ)
54−l and d(ρ).

The computational complexity of substitution is

(2 × (
(

110
1

)
+

(
110
2

)
) +

(
110
1

)
) × l ≈ 214l < 217.

The complexity of calculating â
(ρ)
0 , · · · , â

(ρ)
54−l and d(ρ) is (56 − l)2D̂ < 215.
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Step 5 of the attack. Do primary transformations (similar as primary row
transformations on matrices) on the vectors

(â(ρ)
1 , · · · , â

(ρ)
55−l, b̂

(ρ)
0 , · · · , b̂

(ρ)
109, d̂

(ρ)), 1 ≤ ρ ≤ D̂

obtained in Step 4 to make (â(ρ)
1 , · · · , â

(ρ)
55−l) (1 ≤ ρ ≤ k) are linearly independent

and (â(ρ)
1 , · · · , â

(ρ)
55−l) = (0, · · · , 0) for k + 1 ≤ ρ ≤ D̂. Calculate

r̂ρ =
109∑

j=0

b̂
(ρ)
j y′

j + d̂(ρ),

1 ≤ ρ ≤ k, and do a Gaussian elimination on the system of linear equations

55−l∑

i=1

â
(ρ)
i xvi + r̂ρ = 0, 1 ≤ ρ ≤ k

to eliminate k variables by expressing them as linear expressions in the remaining
variables, xw′

j
= ĥj(xw1 , · · · , xw55−l−k

), where 1 ≤ j ≤ k and {w′
1, · · · , w′

k} and
{w1, · · · , w55−l−k} are two disjoint subsets of {v1, · · · , v55−l}. Substitute xw′

j

by ĥj(xw1 , · · · , xw55−l−k
) (1 ≤ j ≤ k) into F̂i(xv1 , · · · , xv55−l) to derive 110

polynomials F̃i(xw1 , · · · , xw55−l−k
), 0 ≤ i ≤ 109.

The computational complexity of primary transformations on the vectors is

(55 − l + 110 + 1)2D̂ = (166 − l)2D̂ < 218.

To calculate r̂ρ, the complexity is 110k < 28k < 211, while the complexity of
solving the system of linear equations (3.10) is (55 − l)2k < 214. Finally, the
computational complexity of substituting xw′

j
= ĥj(xw1) into F̃i(xv1 , · · · , x54)

(0 ≤ i ≤ 109) is

55(k(k + 3)(55 − l − k)(56 − l − k)) < 223.

The total complexity of this step is less than 218 + 211 + 214 + 223 < 224.

Step 6 of the attack. Compare the coefficients of all terms in the two sides of
the equation

55−l−k∑

i=0

ãixwi +
109∑

j=0

b̃jF̃j + d̃ = 0

to derive a system of linear equations in (ã1, · · · , ã55−l−k, b̃0, · · · , b̃109, d̃). Solve
it to find a basis of its solution space, (ã(ρ)

1 , · · · , ã
(ρ)
55−l−k, b̃

(ρ)
0 , · · · , b̃

(ρ)
109, d̃

(ρ)), 1 ≤
ρ ≤ p̂, where p̂ is its dimension. Among these vectors, select a set of vectors
with maximal number, say p, such that for these p vectors,(ã(ρ)

1 , · · · , ã
(ρ)
55−l−k)

are linearly independent. Let F̃i = y′
i (0 ≤ i ≤ 109) in(3.12) and solve the

resulting system of linear equations on xw1 , · · · , xw55−l−k
. Again we will eliminate
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p variables by expressing them as linear functions of remaining variables. We
substitute these linear functions into F̃i (0 ≤ i ≤ 109) to derive 110 quadratic
functions with smaller variables. Iterate the above process till all variables are
eliminated. Then we collect all linear expressions between the variables and derive
the plaintext x′ = (x′

0, · · · , x′
54).

The number of iterations is less than 55−l−k and the computation complexity
of each iteration is less than 224 + 216 + 224 < 225. Hence the total complexity
of this step is less than 225(55 − l − k) < 231.

The largest computational complexity occurs in the first step with complexity
less then 238; the complexity of other steps is minor in comparison. Hence, the
total computation is less than 239

F28 -operations.

3.6 Experimental Results

We implement our attack on a Pentium IV 2.4Ghz PC with 256M memory, and
we code the attack using VC++. We choose 100 different public keys, for each of
whichwe give a ciphertext and try to find its corresponding plaintext. InTTM, each
public key is a composition ofφ1,φ32, andφ4, andφ32 is determinedby 25 randomly
taken quadratic polynomials fi(x0, · · · , xi−1) (i = 1, · · · , 21) and fi(x0, · · · , x54)
(i = 106, · · · , 109).We choose 10 different sets of the fi, for each ofwhich we choose
10 different pairs of φ1 and φ4 for experiments. The results are as follows:

1. For all 100 chosen ciphertexts, the attack successively finds their corresponding
plaintexts. To find each plaintext, less than 1 hour and 37 minutes in total cost
on the PC mentioned above, where 95 minutes cost on the execution of the
step 1 in subsection (3.5), while about 1 minute and 20 seconds cost to execute
the all remaining steps. Hence, the attack is very efficient. This timing data
coincides with the analysis in the previous subsection: the remaining steps of
the attack is about 238/231 = 128 times faster than the first.

2. For each chosen public key, the experiment finds D = l = 5 in step 1 and
D̂ = k = 5 in step 3 and step 5. This means that we can eliminate 5 variables
in step 2 and 5 variables in step 5. The experiment shows that if φ1 is the
identical map, we will find directly the values of x′

45, · · · , x′
49 of the plaintext

in step 1 and of x′
50, · · · , x′

54 in step 5.
3. If we derive the systems of equations (3.8), (3.12) and (3.13) by taking suffi-

ciently many (concretely, 200) plaintext/ciphertext pairs in the experiment,
that is, not by comparing coefficients of monomials, then for each given φ32,
the number of total iterations of steps 4-6 and the numbers of the variables
eliminated in each iteration in step 6 are respectively the same for the 10
chosen different pairs of φ1 and φ4. This can easily analyzed theoretically.

4 Conclusion and Discussion

In this paper, we present a very efficient attack on a new instance of TTM
in [MCY04]. We need to do first precomputation, which takes 95 minutes on
a PC with a 2.4Ghz Pentium IV processor. Our attack then can recover the



Breaking a New Instance of TTM Cryptosystems 223

corresponding plaintext of any valid ciphertext in less than 2 minutes. The compu-
tational complexity of the precomputation is 238

F28 -operations and the complex-
ity for deriving a plaintext from a ciphertext is 231. Therefore the total complexity
is less than 239 and this new TTM instance is totally insecure. We think everyone
should take our attack method into consideration when designing new MPKC.

The key point of the attack is finding the existence of certain quadratic relation
(not linearization equations) on plaintexts and ciphertexts, which is used to
trivialize the lock polynomials defined in TTM.

Like the previous ones, this instance of TTM has a very rigid structure and is
not scalable, thus it is not possible to give a toy example to illustrate our attack
and give the computation complexity in terms of a function of the dimensions of
the plaintext and ciphertext space. We can only present the concrete complexity
value for this instance.

Although the new instance of TTM is broken, TTM is still a very interesting
idea, which could have great potential due to its high efficiency, if it can be
made secure. We think, to make the TTM work, one must develop a systematic
method to establish lock polynomials, which seems to require some deep insight
from algebraic geometry.

References

[CM01] J.Chen and T.Moh. On the Goubin-Courtois attack on TTM. Cryptology
ePrint Archive, 72, 2001. http://eprint.iacr.org/2001/072.

[CP03] N.Courtois and J.Patarin. About the XL algorithm over GF (2). CT-
RSA’2003,pages 141-157,2003.

[DH03] J.Ding and T.Hodges. Cryptanalysis of an Implementation Scheme of TTM.
J. Algebra Appl., pages 273-282, 2004. http://eprint.iacr.org/2003/084.

[DS03] J.Ding and D.Schmidt. The new TTM implementation is not secure. In
H.Niederreiter K.Q.Feng and C.P. Xing, editors, Proceedings of International
Workshop on Coding, Cryptography and Combinatorics (CCC 2003), pages
106–121, 2003.

[GC00] L.Goubin and N.Courtois. Cryptanalysis of the TTM cryptosystem. LNCS,
Springer Verlag, 1976:44–57, 2000.

[Moh99] T.Moh. A fast public key system with signature and master key func-
tions. Lecture Notes at EE department of Stanford University., May 1999.
http://www.usdsi.com/ttm.html.

[MI88] T.Matsumoto and H.Imai. Public quadratic polynomial-tuples for efficient
signature verification and message encryption. In C. G. Guenther, editor,
Advances in cryptology –EUROCRYPT’88, LNCS, volume 330, pages 419–
453. Springer, 1988.

[MCY04] T.Moh and J.Chen and B.Yang. Building Instances of TTM Immune to
the Goubin-Courtois Attack andthe Ding-Schmidt Attack. IACR eprint
2004/168, http://eprint.iacr.org.

[Pat95] J.Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme
of Eurocrypt’88. In D.Coppersmith, editor, Advances in Cryptology –
Crypto’95, LNCS, volume 963, pages 248–261, 1995.

[Sho97] P.Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing, 26(5):1484-
1509, October 1997.



224 X. Nie et al.

Appendix: The Description of φ2

The expressions of (ȳ0, · · · , ȳ109) = φ2(x̄0, · · · , x̄54) are listed as follows, where
fi(x̄0, · · · , x̄i−1) (1 ≤ i ≤ 21) and fi(x̄0, · · · , x̄54) (106 ≤ i ≤ 109) are randomly
chosen quadratic polynomials.

ȳ0 := x̄0; ȳ1 := f1 + x̄1;
ȳ2 := f2 + x̄2; ȳ3 := f3 + x̄3;
ȳ4 := f4 + x̄4; ȳ5 := f5 + x̄5;
ȳ6 := f6 + x̄6; ȳ7 := f7 + x̄7;
ȳ8 := f8 + x̄8; ȳ9 := f9 + x̄9;
ȳ10 := f10 + x̄10; ȳ11 := f11 + x̄11;
ȳ12 := f12 + x̄12; ȳ13 := f13 + x̄13;
ȳ14 := f14 + x̄14; ȳ15 := f15 + x̄15;
ȳ16 := f16 + x̄16; ȳ17 := f17 + x̄17;
ȳ18 := f18 + x̄18; ȳ19 := f19 + x̄19;
ȳ20 := f20 + x̄20; ȳ21 := f21 + x̄21;
ȳ22 := x̄0x̄5 + x̄1x̄4 + x̄8 + x̄22; ȳ23 := x̄0x̄6 + x̄2x̄4 + x̄23;
ȳ24 := x̄1x̄6 + x̄2x̄5 + x̄24; ȳ25 := x̄3x̄5 + x̄1x̄7 + x̄25;
ȳ26 := x̄3x̄4 + x̄0x̄7 + x̄26; ȳ27 := x̄2x̄9 + x̄22x̄3 + x̄27;
ȳ28 := x̄6x̄9 + x̄22x̄7 + x̄28; ȳ29 := x̄10x̄7 + x̄8x̄6 + x̄29;
ȳ30 := x̄10x̄3 + x̄2x̄8 + x̄30; ȳ31 := x̄11x̄16 + x̄12x̄15 + x̄19 + x̄31;
ȳ32 := x̄11x̄17 + x̄13x̄15 + x̄32; ȳ33 := x̄12x̄17 + x̄13x̄16 + x̄33;
ȳ34 := x̄14x̄16 + x̄12x̄18 + x̄34; ȳ35 := x̄14x̄15 + x̄11x̄18 + x̄35;
ȳ36 := x̄13x̄20 + x̄31x̄14 + x̄36; ȳ37 := x̄17x̄20 + x̄31x̄18 + x̄37;
ȳ38 := x̄21x̄18 + x̄19x̄17 + x̄38; ȳ39 := x̄21x̄14 + x̄13x̄19 + x̄39;
ȳ40 := x̄11x̄12 + x̄1x̄0 + x̄39 + x̄40; ȳ41 := x̄11x̄2 + x̄13x̄0 + x̄41;
ȳ42 := x̄1x̄2 + x̄13x̄12 + x̄42; ȳ43 := x̄3x̄12 + x̄1x̄14 + x̄43;
ȳ44 := x̄3x̄0 + x̄11x̄14 + x̄44; ȳ45 := x̄32x̄18 + x̄14x̄33 + x̄13x̄34 + x̄17x̄35 + x̄45;
ȳ46 := x̄37x̄13 + x̄39x̄18 + x̄36x̄17 + x̄38x̄14 + x̄46; ȳ47 := x̄23x̄7 + x̄3x24 + x̄2x̄25 + x̄6x̄26 + x̄47;
ȳ48 := x̄28x̄2 + x̄30x̄7 + x̄27x̄6 + x̄29x̄3 + x̄48; ȳ49 := x̄14x̄41 + x̄3x̄42 + x̄13x̄43 + x̄2x̄44 + x̄49;
ȳ50 = x̄46x̄48 + x̄47x̄49 + x̄50; ȳ51 := x̄45x̄47 + x̄48x̄49 + x̄51;
ȳ52 := x̄45x̄48 + x̄46x̄49 + x̄52; ȳ53 := x̄45x̄49 + x̄46x̄47 + x̄53;
ȳ54 := x̄45x̄46 + x̄47x̄48 + x̄54; ȳ55 := x̄11x̄42 + x̄1x̄41 + x̄13x̄39 + x̄3x̄30;
ȳ56 := x̄0x̄43 + x̄12x̄44 + x̄2x̄29 + x̄14x̄40; ȳ57 := x̄0x̄42 + x̄12x̄41 + x̄2x̄39 + x̄14x̄30 :
ȳ58 := x̄11x̄43 + x̄1x̄44 + x̄13x̄29 + x̄3x̄40; ȳ59 := x̄42x̄44 + x̄41x̄43;
ȳ60 := x̄42x̄29 + x̄39x̄43 + x̄14; ȳ61 := x̄41x̄29 + x̄39x̄44 + x̄3;
ȳ62 := x̄30x̄44 + x̄41x̄40 + x̄13; ȳ63 := x̄30x̄29 + x̄39x̄40 + x̄1 + x̄0;
ȳ64 := x̄3x̄2 + x̄13x̄14; ȳ65 := x̄30x̄43 + x̄42x̄40 + x̄2;
ȳ66 := x̄11x̄33 + x̄12x̄32 + x̄13x̄19 + x̄14x̄21; ȳ67 := x̄15x̄34 + x̄16x̄35 + x̄17x̄20 + x̄18x̄31;
ȳ68 := x̄15x̄33 + x̄16x̄32 + x̄17x̄19 + x̄18x̄21; ȳ69 := x̄11x̄34 + x̄12x̄35 + x̄13x̄20 + x̄14x̄31;
ȳ70 := x̄33x̄35 + x̄32x̄34; ȳ71 := x̄33x̄20 + x̄19x̄34 + x̄18;
ȳ72 := x̄32x̄20 + x̄19x̄35 + x̄14; ȳ73 := x̄21x̄35 + x̄32x̄31 + x̄13;
ȳ74 := x̄21x̄20 + x̄19x̄31 + x̄12 + x̄15; ȳ75 := x̄14x̄17 + x̄13x̄18;
ȳ76 := x̄21x̄34 + x̄33x̄31 + x̄17; ȳ77 := x̄11x̄13 + x̄15x̄17 + x̄38x̄31 + x̄37x̄21;
ȳ78 := x̄12x̄14 + x̄16x̄18 + x̄39x̄20 + x̄36x̄19; ȳ79 := x̄12x̄13 + x̄16x̄17 + x̄39x̄31 + x̄36x̄21;
ȳ80 := x̄11x̄14 + x̄15x̄18 + x̄38x̄20 + x̄37x̄19; ȳ81 := x̄11x̄39 + x̄38x̄12 + x̄17;
ȳ82 := x̄15x̄39 + x̄38x̄16 + x̄13; ȳ83 := x̄37x̄16 + x̄15x̄36 + x̄14;
ȳ84 := x̄37x̄39 + x̄38x̄36; ȳ85 := x̄37x̄12 + x̄11x̄36 + x̄18;
ȳ86 := x̄0x̄24 + x̄1x̄23 + x̄2x̄8 + x̄3x̄10; ȳ87 := x̄4x̄25 + x̄5x̄26 + x̄6x̄9 + x̄7x̄22;
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ȳ88 := x̄4x̄24 + x̄5x̄23 + x̄6x̄8 + x̄7x̄10; ¯y89 := x̄0x̄25 + x̄1x̄26 + x̄2x̄9 + x̄3x̄22;
ȳ90 := x̄24x̄26 + x̄23x̄25; ¯y91 := x̄24x̄9 + x̄8x̄25 + x̄7;
ȳ92 := x̄23x̄9 + x̄8x̄26 + x̄3; ¯y93 := x̄10x̄26 + x̄23x̄22 + x̄2;
ȳ94 := x̄10x̄9 + x̄8x̄22 + x̄1 + x̄4; ¯y95 := x̄3x̄6 + x̄2x̄7;
ȳ96 := x̄10x̄25 + x̄24x̄22 + x̄6; ¯y97 := x̄0x̄2 + x̄4x̄6 + x̄29x̄22 + x̄28x̄10;
ȳ98 := x̄1x̄3 + x̄5x̄7 + x̄30x̄9 + x̄27x̄8; ¯y99 := x̄1x̄2 + x̄5x̄6 + x̄30x̄22 + x̄27x̄10;
ȳ100 := x̄0x̄3 + x̄4x̄7 + x̄29x̄9 + x̄28x̄8; ¯y101 := x̄0x̄30 + x̄29x̄1 + x̄6;
ȳ102 := x̄4x̄30 + x̄29x̄5 + x̄2; ¯y103 := x̄28x̄5 + x̄4x̄27 + x̄3;
ȳ104 := x̄28x̄30 + x̄29x̄27; ¯y105 := x̄28x̄1 + x̄0x̄27 + x̄7;
ȳ106 := f106; ¯y107 := f107;
ȳ108 := f108; ¯y109 := f109.
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