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Abstract. In this paper, we present the rainbow attack on stream ci-
phers filtered by Maiorana-McFarland functions. This can be considered
as a generalization of the time-memory-data trade-off attack of Mihal-
jevic and Imai on Toyocrypt. First, we substitute the filter function
in Toyocrypt (which has the same size as the LFSR) with a general
Maiorana-McFarland function. This allows us to apply the attack to a
wider class of stream ciphers. Moreover, our description replaces the
time-memory-data trade-off attack with the rainbow attack of Oeshlin,
which offers better performance and implementation advantages. Second,
we highlight how the choice of different Maiorana-McFarland functions
can affect the effectiveness of our attack. Third, we show that the at-
tack can be modified to apply on filter functions which are smaller than
the LFSR or on filter-combiner stream ciphers. This allows us to crypt-
analyze other configurations commonly found in practice. Finally, filter
functions with vector output are sometimes used in stream ciphers to im-
prove the throughput. Therefore the case when the Maiorana-McFarland
functions have vector output is investigated. We found that the extra
speed comes at the price of additional weaknesses which make the at-
tacks easier.

Keywords: Time-memory-data trade-off attack, Rainbow attack,
Maiorana-McFarland functions.

1 Introduction

The construction of Boolean functions with good cryptographic properties has
been a well studied area of research. Some of these properties include bal-
ance, high nonlinearity, high order of resiliency, high algebraic degree and high
order of propagation criteria. These properties ensure the Boolean functions
are resistant against various correlation attacks when used in stream ciphers
[3, 17].

A well-known class of Boolean functions with good cryptographic properties
are the Maiorana-McFarland class which ensures many of the above mentioned
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properties. For example, when n is odd, we can construct t-resilient n-bit func-
tions with nonlinearity achieving the quadratic bound 2n−1 − 2(n−1)/2. By con-
catenating such a function with its complement, we construct (t + 1)-resilient
m-bit functions with nonlinearity satisfying the quadratic bound 2m−1 − 2m/2

for even m = n + 1. These nonlinearities are called the quadratic bounds be-
cause they are the maximum nonlinearities attainable for quadratic Boolean
functions. When n is even, the Maiorana-McFarland also allows us to construct
a large family of bent functions, i.e. Boolean functions with the highest non-
linearity 2n−1 − 2n/2−1. Finally, the saturated functions which achieve optimal
order of resiliency t = n − 1 − d and optimal nonlinearity 2n−1 − 2t+1 when the
algebraic degree is d can be constructed by this method.

The Maiorana-McFarland class can be viewed as constructions based on con-
catenating linear functions. This is both an advantage and a weakness. It is
an advantage because we can easily manipulate the distance between Maiorana-
McFarland functions and linear functions to obtain resiliency and high nonlinear-
ity. This helps to protect against correlation and fast correlation attacks [3, 17].
However, it also means the function becomes linear when we fix certain input
bits. Mihaljevic and Imai were able to exploit this property to launch a search
space reduction attack on Toyocrypt. Toyocrypt is a 128-bit stream cipher where
a 128-bit modular linear feedback shift register (MLFSR) is filtered by a 128-bit
Maiorana McFarland function. They were able to reduce the key space from 2128

to 296 when 32 consecutive output bits are known. The attack works because for
each guess on 96 bits of the 128-bit MLFSR, they were able to form 32 linear
equations based on 32 consecutive output bits. This linear system can be solved
to determine the remaining 32 bits in the MLFSR. Using the time-memory-data
trade-off attack of Biryukov and Shamir, they further reduced the attack com-
plexity to 232 with 280 pre-computation and 264 memory based on 248 keystream
bits.

In Section 3, we generalize the time-memory-data trade-off attack on Toy-
ocrypt by Mihaljevic and Imai [9] as follows:

1. We show that the search space reduction attack on Toyocrypt can be applied
to a general Maiorana-McFarland function. Because linear feedback shift
registers (LFSR’s) are more commonly used in stream ciphers, we replace
the MLFSR in Toyocrypt by an LFSR.

2. In [9], Mihaljevic and Imai describes how we can improve the search space
reduction attack on Toyocrypt by applying the time-memory-data trade-off
attack of Biryukov and Shamir [2, 7]. In this paper, we describe how we can
improve the search space reduction attack on Maiorana-McFarland functions
by applying the rainbow attack of Oeschlin [11]. The rainbow attack is twice
as fast as the time-memory-data trade-off attack and offers various imple-
mentation advantages. We also incorporate an improvement of the rainbow
attack by Mukhopadyay and Sarkar [10] in our attack.

3. We simplify the description of the time-memory-data trade-off attack of [9]
by introducing a search function F (c)(x).
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Based on our study, we characterize the performance of the attack for dif-
ferent Maiorana-McFarland functions. For n-bit Maiorana McFarland functions
formed by concatenating 2n/2 linear functions of size n/2-bit, the search space
is reduced from 2n to 23n/4. When we apply the rainbow attack, the search
space is further reduced to 2n/4−1 with 23n/8 consecutive keystream bits, 25n/8

pre-computation and 2n/2 memory. This case correspond to the filter function
in Toyocrypt with n = 128, k = 64 [9], the bent functions and the resilient
functions whose nonlinearity satisfies the quadratic bound [4, 16].

For Maiorana-McFarland functions formed by concatenating a few large linear
functions, we get a very effective reduction of the search space of an n-bit filter
function generator from 2n to 2n/2. In this case, the equivalent key length is only
half of what is claimed. As shown by Gong and Khoo [6], this case corresponds
to the degree-resiliency-nonlinearity optimized saturated functions introduced by
Sarkar and Maitra at Crypto 2000 [14]. Thus although this class of functions has
the best trade-off among important cryptographic properties like nonlinearity,
resiliency and algebraic degree, they are weak against the search space reduction
attack. When we apply the rainbow attack, the search space is further reduced
to 2n/4−1 with 2n/2 consecutive keystream bits, 2n/2 pre-computation and 23n/8

memory.
In Section 5, we extend our attack to the case where the Maiorana-McFarland

function is of smaller size than the LFSR. This is a very common construction
when the filtering function is implemented as a look-up-table (LUT). The LFSR
may be 128-bit long and it is not possible to fit a LUT of size 2128 into the
memory of the cipher. Thus a smaller filter function has to be used. In that
case, the complexity of the search space reduction and rainbow attack depends
on the width of the LFSR bits which are tapped to certain input bits of the
filter function. These input bits have the property that when they are known,
the Maiorana-McFarland function becomes linear.

In Section 6, we extend the attack to the filter combiner model. At each clock
cycle, the Boolean function will extract several bits from each of s linear feedback
shift registers LFSRi, i = 0, 1, . . . , s − 1, as input to produce a keystream bit.
As analyzed by Sarkar [13], the filter combiner offers various advantages over
the filter function and combinatorial generators. We show that in this case, the
search space reduction and rainbow attack can also be applied effectively.

In Section 7, we extend the attack to the case where the filter function is a
vectorial Maiorana-McFarland function. Vector output filter function generator
has higher throughput for faster communication speed but it has an additional
weakness. There is an exponential decrease in the complexity of search space
reduction when compared to the single output case. This gives a very efficient
attack even by a direct exhaustive search. This complexity can be further reduced
by applying the rainbow attack.

In Sections 3 to 7, we simplified the attack scenarios to give a clearer expla-
nation of the attack methods. In Section 8, we describe how these attacks can
be easily adapted to apply to stream ciphers that use more general linear finite
state machines, tap points and filter functions.
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2 Preliminaries on Maiorana McFarland Functions

The Hadamard Transform of a Boolean function f : GF (2)n → GF (2) is

f̂(w) =
∑

x∈GF (2)n

(−1)w·x+f(x).

The nonlinearity of a function f : GF (2)n → GF (2) is defined as

Nf = 2n−1 − 1
2

max
w

|f̂(w)|.

A high nonlinearity is desirable as it ensures linear approximation of f is inef-
fective. This offers protection against linear approximation based attacks [8, 17].

A Boolean function f : GF (2)n → GF (2) is t-th order correlation immune,
denoted CI(t), if f̂(w) = 0 for all 1 ≤ wt(w) ≤ t where wt(w) is the number
of ones in the binary representation of w. Correlation immunity ensure that f
cannot be approximated by linear functions with too few terms, which offers
protection against correlation attack [17]. Furthermore, if f is balanced and
CI(t), we say f is resilient of order t.

The Maiorana-McFarland functions is defined by the equation:

f(x0, . . . , xn−1) = g(x0, . . . , xk−1) + (xk, . . . , xn−1) · φ(x0, . . . , xk−1). (1)

where f : GF (2)n → GF (2), g : GF (2)k → GF (2) and φ : GF (2)k → GF (2)n−k.
φ is usually an injection or 2-to-1 map which would require k ≤ n/2 or k ≤ n/2+1
respectively.

The Maiorana-McFarland functions had been used extensively to construct
Boolean functions with good cryptographic properties in the past decade (see
[4] for a summary). Some notable examples are listed in the following two
Propositions.

Proposition 1. (extracted from [4, 16])

1. Let f : GF (2)n → GF (2) be defined by equation (1). Let n be odd, k =
(n − 1)/2 and φ : GF (2)(n−1)/2 → GF (2)(n+1)/2 be an injection such that

wt(φ(x0, . . . , xk−1)) ≥ t + 1 and |{z ∈ GF (2)(n+1)/2|wt(z) ≥ t + 1}| ≥ 2(n−1)/2.

Then f is a t-resilient function with nonlinearity 2n−1 − 2(n−1)/2.
2. Let f(x0, . . . , xn−1), n odd, be a t-resilient function constructed as in part 1.

Then
g(x0, . . . , xn−1, xn) = f(x0, . . . , xn−1) + xn,

is t+1-resilient and has nonlinearity 2m−1 − 2m/2 where m = n+1 is even.
3. Let n be even, k = n/2 and φ(x0, . . . , xk−1) be a permutation in equation

(1), then f(x) is a bent function, i.e. it has the highest possible nonlinearity
2n−1 − 2n/2−1.



198 K. Khoo, G. Gong, and H.-K. Lee

The first construction is quite useful because a nonlinearity of 2n−1 −2(n−1)/2 is
considered high for functions with odd number of input bits. Furthermore, when
n ≡ 1 (mod 4), we can also obtain resiliency of order (n − 1)/4 [4, page 555].
The second construction derives highly nonlinear resilient function with even
number of input bits from the first construction. The third construction on bent
functions are widely used in cryptography because of their high nonlinearity.
Some examples include the ciphers CAST and Toyocrypt [1, 9]. The functions
presented in Proposition 1 has the common property that k ≈ n/2.

The saturated functions are functions which attain optimal trade-off between
algebraic degree d, order of resiliency t = n−d−1 and nonlinearity 2n−1 −2t+1.
Such functions were constructed by Sarkar and Maitra in [14]. It was shown by
Gong and Khoo in [6] that the saturated functions correspond to n-bit Maiorana-
McFarland functions as follows.

Proposition 2. (Sarkar, Maitra [14, 6]) Fix d ≥ 2 and let n = 2d−1+d−2. De-
fine f : GF (2)n → GF (2) by equation (1) where k = d − 1. Let φ : GF (2)d−1 →
GF (2)2

d−1−1 be an injection such that wt(φ(x0 , . . . , xk−1)) ≥ 2d−1 − 2. Then
deg(f) = d, f is t-resilient having nonlinearity 2n−1 − 2t+1 where t = n − 1 − d.
In that case, the order of resiliency is optimal by Siegenthaler’s inequality [17]
and nonlinearity is optimal by Sarkar-Maitra inequality [14].

The function in Proposition 2 has the property that k ≈ log2(n) << n. Proposi-
tions 1 and 2 construct Boolean functions with optimal cryptographic properties
by concatenating linear functions. But we shall show that their linear structures
can be exploited to give efficient attacks on stream ciphers in Section 3.

3 The Rainbow Attack on Maiorana-McFarland
Functions

In [9], Mihaljevic and Imai presented a time-memory-data trade-off attack on
the stream cipher Toyocrypt. Toyocrypt is a filter function generator where we
have an MLFSR of length 128 bit filtered by a 128-bit Boolean function of the
form:

f(x0, . . . , x127) = g(x0, . . . , x63) + (x64, . . . , x127) · π(x0, . . . , x63),

where g has 3 terms in its algebraic normal form (ANF) of degree 4, 17, 63 and
π permutes the bit positions of (x0, . . . , x63). Mihaljevic and Imai showed that
the effective key diversity of such a generator can be reduced from 128 bits to
96 bits when 32 consecutive output bits are known. Based on this observation,
they modified the Biryukov-Shamir [2] time-memory-data tradeoff attack for
improved cryptanalysis.

It is easy see that the filter function in Toyocrypt is a Maiorana-McFarland
function with parameters n = 128, k = 64. Due to the wide usage of the
Maiorana-McFarland construction, it will be useful to generalize the Mihaljevic-
Imai attack to a general Maiorana-McFarland filter function generator. In this
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attack, we look at a stream cipher where an n-stage LFSR is filtered by a n-bit
Maiorana-McFarland function defined by equation (1). We assume bit i of the
LFSR is the i-th input of f(x).

Suppose we know l consecutive output bits y0,. . ., yl−1 and let (xi,. . ., xi+n−1)
be the LFSR state corresponding to yi. Based on equation (1), we have:

yi = g(xi, . . . , xi+k−1) + (xi+k, . . . , xi+n−1) · φ(xi, . . . , xi+k−1), i = 0, . . . , l − 1.
(2)

Suppose we guess k + l consecutive input bits x0, . . . , xk+l−1.
Then g(xi, . . . , xi+k−1) and φ(xi, . . . , xi+k−1) will be known for i = 0, . . . , l − 1.
In that case, the l equations in (2) will be linear and they will contain n− (k+ l)
unknown variables xk+l, . . . , xn−1. The variables xn, . . . , xn+l−2 in equation (2)
can be linearly expressed in terms of x0, . . . , xn−1 using the LFSR feedback
relation.

Thus we have l linear equations in n− (k + l) variables. For this linear system
to be solvable, we need:

l ≥ n − (k + l) =⇒ l ≥ n − k

2
.

Therefore, suppose we know l = �(n−k)/2	 consecutive output bits y0,. . ., yl−1
and we guess the k+l = n−l = 
(n+k)/2� consecutive input bits x0, . . . , xk+l−1.
Then we can solve for the remaining l input bits xk+l, . . . , xn−1 in equation
(2) and counter check whether our guess is correct, by back-substitution and
comparing with a sufficiently long keystream, e.g. of length 2n bits. Thus we
have proven that:

Theorem 1. Consider an n-bit LFSR filtered by equation (1) where bit i of the
LFSR is the ith input of f(x). The key space is reduced from 2n to 2�(n+k)/2�

bits when �(n − k)/2	 consecutive output bits are known.

Remark 1. For ease of notation, we assume that (n+k)/2, (n−k)/2 are integers
from now on. The case when they are not integers can be handled by adding the
appropriate ceiling � 	 and floor 
 � operations as in Theorem 1.

Next we improve the attack complexity of Theorem 1 by applying the rainbow
attack [11]. The rainbow attack can be seen as an improvement of the time-
memory-data trade-off attack [2, 7, 9] which is twice as fast and has various
implementation advantages.

Let f : GF (2)n → GF (2) be the filter function of an n-bit LFSR. Define
f̃ : GF (2)n → GF (2)n as:

f̃(x̃) = n-bit output of filter function generator,

when the LFSR is initialized by x̃ ∈ GF (2)n.
Let c ∈ GF (2)(n−k)/2 be a fixed string. Given x ∈ GF (2)(n+k)/2, we can use

the proof of Theorem 1 to find s ∈ GF (2)(n−k)/2 such that:

f̃(x||s) restricted to first (n − k)/2 bits = c,

i.e. f̃(x||s) = (c||y).
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where ‘||’ is concatenation of bit strings. Based on this computation, we introduce
a search function F (c) : GF (2)(n+k)/2 → GF (2)(n+k)/2 for the description of our
attack. We define F (c)(x) to be the right most (n + k)/2 bits of f̃(x||s), i.e.,

F (c)(x) = y

The function F (c) will be the search function used in our description of the
rainbow attack on Maiorana McFarland functions. We note that this function
can also simplify the description of the attack in [9].

Setup:

1. Randomly choose a binary string c ∈ GF (2)(n−k)/2 and define the function
F (c)(x) as described above.

2. Define a chain of t−1 distinct functions F1(x), F2(x), . . . , Ft−1(x) which are
slight variations of the search function F (c)(x) as follows. Randomly seed
an (n + k)/2-bit LFSR (with maximum period) and generate a sequence of
(n + k)/2-bit vectors X1, X2, . . . , Xt−1. Let the variant functions be defined
as Fj(x) = F (c)(x) ⊕ Xj (Please see Remark 4 for further explanation on
this step).

3. Let p and t be integers defined by pt2 = 2(n+k)/2. Form a p × t by 2 array
as follows:
For i = 1 . . . p× t, randomly choose a start point yi,0 and compute the chain
of values yi,1 = F1(yi,0), yi,2 = F2(yi,1), . . . , yi,t = Ft−1(yi,t−1). Store the
start and end points (SPi, EPi) = (yi,0, yi,t).

Attack:

1. We look among the keystream to find a n-bit string whose first (n − k)/2
bits matches the pattern c. Let the last (n + k)/2 bits of this string be y.

2. For j = 2 . . . t, search among the endpoints EPi in our table to check if

EPi = Ft−1(. . . (Ft−j+1(y) . . .).

If there is a match, then (x||s) is the secret initial state of the LFSR where

x = Ft−j(. . . F1(SPi) . . .),

and s is the (n − k)/2-bit string computed such that the leftmost (n − k)/2
bits of f̃(x||s) is c. The string s can be found by solving linear equations as
in the proof of Theorem 1.

Based on [2] and [11], the parameters in the attack satisfy the following
constraint:

To look up the rainbow table, we need to compute Ft−1(y), Ft−1(Ft−2(y)),
Ft−1(Ft−2(Ft−3(y))), . . . . The time taken is T =

∑t−1
i=1 i = t(t − 1)/2 function

computations. Let the amount of data collected be D. By [2], our table only
need to cover 1/D of the whole search space N = 2(n+k)/2 = pt2 because we just
need one string out of D possible strings in the available keystream. Since we
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are only storing the end points, the memory M needed is pt/D. Thus we derive
the relation:

TM2D2 = t(t − 1)/2 × (pt/D)2 × D2

≈ p2t4/2 = N2/2 =⇒ T = N2/(2M2D2).

Let the memory be M = 2mem and the number of strings of the form (c||x)
(where c ∈ GF (2)(n−k)/2 is fixed) in the collected data be D = 2d. This means we
need to sample 2(n−k)/2+d consecutive keystream bits to collect this data. Thus
the processing time is N2/(2M2D2) = 2n+k−2(d+mem)−1. The pre-processing
time is N/D = 2(n+k)/2−d. We state the result formally as:

Theorem 2. Consider an n-bit LFSR filtered by equation (1) where bit i of the
LFSR is the ith input of f(x). The LFSR initial state can be found with com-
plexity 2n+k−2(d+mem)−1 by using 2(n+k)/2−d pre-processing and 2mem memory
when 2(n−k)/2+d consecutive output bits are known.

Remark 2. We note that in the time-memory-data trade-off attack of [9], the
function chains in a table are derived from a constant function F (c)(x), thus
they have a high chance of collision because the table (which have to cover the
search space) is large. An alternative is suggested in [9] which uses multiple
tables where the function for each table is a variant of F (c)(x). In that case, we
let N = 2(n+k)/2 = pt2 and construct t table of size p × t. This set-up gives
optimal performance by the ”matrix stopping rule” [7]. Let the amount of data
be D. Then the amount of memory needed is M = pt/D because we are storing
p end points in each of t tables and we only need to cover 1/D of the search
space. The time to look up a table is t and the processing complexity which is
the time to look up t table is T = t2. We deduce that:

TM2D2 = t2 × (pt/D)2 × D2

= p2t4 = N2.

Thus the processing complexity is T = N2/(M2D2) which is twice as slow as in
the rainbow attack.

Remark 3. The rainbow attack, besides being twice as fast as the time-memory-
data trade-off attack, also has the following implementation advantages [11]. The
number of table look up in the rainbow attack is reduced by a factor of t when
compared to the time-memory-data trade-off (which uses t tables). Rainbow
tables have no loops because each reduction function Fj is only used once. So
we do not need to spend time to detect and reject loops when constructing
the table. Merging chains in rainbow tables have identical endpoints. So it can
be used to determine merging chains, just like distinguished points. In time-
memory-data trade-off, distinguished points are used to detect merging chains
and loops. However, the chains have variable lengths. In comparison, rainbow
chains avoid merging chains and loops by using distinct reduction functions.
Thus the rainbow chains have constant lengths. As explained in [11], this is
more efficient and effective.
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Remark 4. The method we use to generate the functions Fj(x) from an LFSR is
by Mukhopadyay and Sarkar [10]. The method suggested in [2, 9] (and originally
by Hellman in [7]) is to generate Fj(x) by permuting the output bits of F (c)(x).
But it was shown by Fiat and Noar that there exist search functions which
are polynomial time indistinguishable from a random function but for which the
time-memory trade-off attack fails [5], when permutation of output bits are used.
The advantage of the approach of [10] is that it is not possible to construct a
Fiat-Noar type example for the LFSR-based rainbow method. Moreover, LFSR
sequences are very efficient to compute.

Example 1. We apply Theorem 2 to Toyocrypt with the parameters n = 128,
k = 64, d = 16 and mem = 64. The complexity of the time-memory-data trade-
off attack is 280 for pre-processing and 231 for processing when we know 248

consecutive output bits. This attack is twice as fast as the attack in [9].

Remark 5. To obtain 216 128-bit ciphertext blocks where the first 32 bits is
a fixed pattern c in Example 1, we need to scan through 248 keystream bits.
This scanning complexity is not taken into account in the processing complexity
231, which only covers the search of the rainbow table. Part of the reason for
not mixing the two complexities is that searching the rainbow table involves
computing the function F (c) (by solving a linear system) which is more complex
than scanning for a fixed pattern from the keystream. The same remark applies
to Example 2 and 3 later in the paper.

4 On the Security of Different Maiorana-McFarland
Functions against the Rainbow Attack

In general, the parameter k in the Maiorana-McFarland construction (equation
1) is in the range 1 ≤ k ≤ n/2.

4.1 The Case When k Is Approximately n/2

Consider the extreme case k ≈ n/2. There are many optimal functions belonging
to this class as summarized in Proposition 1. In this case, (n − k)/2 ≈ n/4 and
the key diversity is reduced to (n + k)/2 ≈ 3n/4 bits when ≈ n/4 consecutive
keystream bits are known. Suppose we collect 2d = 2n/8 ciphertexts correspond-
ing to a pre-computed n/4-bit pattern, i.e. 23n/8 consecutive keystream bits.
Then in a rainbow attack with 2mem memory, the complexity is 25n/8 for pre-
processing and 25n/4−2mem−1 for the actual attack by Theorem 2. If n is not too
big, it is reasonable to use 2mem = 2n/2 memory which means the attack com-
plexity is 2n/4−1. If we can obtain more keystream bits, then the pre-computation
and attack complexity can be reduced further.

4.2 The Case When k Is Much Smaller Than n

The other extreme is when k << n. This scenario may occur when we use a
saturated function from Proposition 2. In this case, (n + k)/2 ≈ n/2 and the
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key diversity is reduced to ≈ n/2 bits when ≈ n/2 consecutive output bits are
known. Suppose we collect 2d = 1 (where d = 0) ciphertext corresponding to a
pre-computed n/2-bit pattern, i.e. we need 2n/2 consecutive keystream bits. Then
in a time-memory-data trade-off attack using 2mem memory, the complexity is
2n/2 for pre-processing and 2n−2mem−1 for processing. Unlike the case k ≈ n/2,
we can use less memory here because the search space is smaller. If we use
2mem = 23n/8 memory, then the attack complexity is 2n/4−1.

From the above discussion, we see that as k decreases, the memory, pre-
computation and attack complexity decreases but the number of consecutive
keystream bits needed increases. Sometimes it is not possible to obtain so many
keystream bits for time-memory-data trade-off attack on equation 2. It may be
more feasible to use Theorem 1 directly and perform an exhaustive search with
complexity 2(n+k)/2 based on (n − k)/2 consecutive output bits.

5 When the LFSR and Boolean Functions Have Different
Sizes

As a generalization, we consider the above attack when an n-bit LFSR is filtered
by a m-bit Maiorana McFarland function f(x) where m < n. Let the function
be of the form

f(x0, . . . , xm−1) = g(x0, . . . , xr−1) + (xr, . . . , xm−1) · φ(x0, . . . , xr−1). (3)

where f : GF (2)m → GF (2), g : GF (2)r → GF (2) and φ : GF (2)r →
GF (2)m−r.

Therefore the function f(x) becomes linear when the first r input bits are
fixed. Let these r input bits be tapped from the leftmost k bits of the LFSR,
and the remaining m − r input bits of f(x) be tapped from the rightmost n − k
LFSR bits.

As before, assume l consecutive output bits of f(x) are known and we guess
k + l leftmost LFSR bits. Then we can form l linear equations with n − (k + l)
unknown variables of the LFSR initial state. This system of equations can be
solved when l = �(n−k)/2	. So knowing �(n−k)/2	 consecutive output bits will
reduce the initial state space from n bits to k + l = 
(n + k)/2� bits. It is easy
to see that we can apply the rainbow attack as in Section 3 by using the same
search function F (c)(x). The attack complexity for direct exhaustive search and
rainbow attack is the same as before but now, the parameter k depends not just
on f(x) but also on the tap points from the LFSR. We summarize our discussion
as a theorem:

Theorem 3. Consider an n-bit LFSR which is filtered by a m-bit Maiorana-
McFarland function defined by equation (3). Suppose the first r bits of f(x)
is tapped from the leftmost k bits of the LFSR, and the remaining m − r in-
put bits of f(x) is tapped from the rightmost n − k LFSR bits. Then the key
space is reduced from 2n to 2(n+k)/2 when (n − k)/2 consecutive output bits are
known.
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Furthermore, the LFSR initial state can be found with 2n+k−2(d+mem)−1 pro-
cessing, 2(n+k)/2−d pre-processing and 2mem memory when 2(n−k)/2+d consecu-
tive output bits are known.

6 Extending the Attack to Filter Combiner Model

In this section, we extend the search space reduction and rainbow attack on the
filter combiner model. For ease of explanation, we consider the case of two linear
feedback shift registers LFSR1 and LFSR2. The attacks on more LFSR’s are
similar. At each clock cycle, a Boolean function will take as input several state
bits from each of LFSR1 and LFSR2 to output a keystream bit.

Let the length of LFSR1 be n1 and that of LFSR2 be n2. Let f : GF (2)m →
GF (2) be defined by:

f(x0, . . . , xm−1) = (xr, . . . , xm−1) · φ(x0, . . . , xr−1) + g(x0, . . . , xr−1). (4)

Therefore when we fix the first r input bits, f(x) becomes linear.
Let the first r input bits of f(x), i.e. (x0, x1, . . . , xr−1) be tapped from among

the leftmost k1 and k2 bits of LFSR1 and LFSR2. Let the rest of the n − r
input bits be tapped from the rightmost n1 − k1 and n2 − k2 bits of LFSR1 and
LFSR2.

Suppose we know l consecutive output bits y0, y1, . . . , yl−1. Let us guess
the leftmost k1 + l and k2 + l bits of LFSR1 and LFSR2. Then at time i,
φ(xi, . . . , xi+r−1), g(xi, . . . , xi+r−1) are known for all i = 0, 1, . . . , l − 1. This
means:

yi = f(xi, . . . , xi+m−1) = (xi+r, . . . , xi+m−1) · φ(xi, . . . , xi+r−1) + g(xi, . . . , xi+r−1).

is a linear equation for i = 0, 1, . . . , l − 1.
We have l equations in n1 − (k1 + l) + n2 − (k2 + l) variables. For this linear

system to be solvable, we need

n1 − (k1 + l) + n2 − (k2 + l) ≤ l

=⇒ l ≥ �((n1 − k1) + (n2 − k2))/3	.

We take l = �((n1 − k1) + (n2 − k2))/3	. Thus the search space is reduced from
2n1+n2 to:

2(k1+l)+(k2+l) ≈ 2(2(n1+n2)+(k1+k2))/3.

The rainbow attack can may be applied for our scenario as follows. Let l =
�((n1 − k1) + (n2 − k2))/3	, we define a function f̃ : GF (2)n1 × GF (2)n2 →
GF (2)k1+k2+3l to be:

f̃(x̃1, x̃2) = the (k1 + k2 + 3l)-bit output keystream,

when (LFSR1, LFSR2) are initialized by (x̃1, x̃2). For a fixed string c ∈ GF (2)l

and xi ∈ GF (2)ki+l, we can find si ∈ GF (2)ni−(ki+l) such that f̃(x1||s1, x2||s2)=
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(c||y) by the method described above. Based on this computation, we define
a search function F (c) : GF (2)k1+l × GF (2)k2+l → GF (2)k1+k2+2l to be the
rightmost k1 + k2 + 2l bits of f̃(x̃1, x̃2), i.e.

F (c)(x1, x2) = y

By using this search function, we can perform a rainbow attack as in Section
3. The search space is N = 2k1+k2+2l. Assuming we have M = 2mem mem-
ory and we have 2l+d consecutive keystream bits from which we can sample
D = 2d ciphertext whose first l bits correspond to c. Then the preprocessing
complexity is N/D = 2k1+k2+2l−d and processing complexity is N2/(2M2D2) =
22(k1+k2+2l−(d+mem))−1.

Example 2. Let us consider a filter combiner generator where LFSR1 and
LFSR2 have lengths n1 = 64 = n2. Let f(x) be defined by equation (4) where
m = 64 and r = 32. Let the first r bits of f(x) be tapped from the leftmost
k1, k2 bits of LFSR1 and LFSR2 where k1 = 16 = k2.

The complexity of direct search without applying rainbow attack is

2k1+k2+2l = 216+16+2×32 = 296.

where l = �((64 − 16) + (64 − 16))/3	 = 32. The complexity is less than the
intended security of 2n1+n2 = 2128.

Assuming we have 2mem = 264 memory and 2l+d = 248 consecutive keystream
bits where d = 16. The initial LFSR state can be recovered with 280 pre-
processing and 231 processing. Thus the attack complexities are similar to Toy-
ocrypt.

In a similar way, the search space reduction and rainbow attack of a filter com-
biner with s LFSR can be computed. We state this formally as:

Theorem 4. Consider a filter combiner where equation (4) filters the content
of LFSR1, LFSR2, . . . , LFSRs of size n1, n2, . . . , ns respectively. Let the first
r bits of equation (4) be tapped from the leftmost ki bits of LFSRi. And let
the remaining m − r bits be tapped from the rightmost ni − ki bits of LFSRi,
i = 0, 1, . . . , s − 1.

Let l = ((n1 − k1) + . . . + (ns − ks))/(s + 1). Then the key space of the
filter combiner is reduced from 2n1+...+ns to 2k1+...+ks+s×l when l consecutive
output bits are known. Furthermore, the LFSR initial states can be found with
22(k1+...+ks+s×l−(d+mem))−1 processing, 2k1+...+ks+s×l−d pre-processing and
2mem memory when 2l+d consecutive keystream bits are known.

7 Extending the Attack to Vectorial Maiorana-McFarland
Functions

In this section, we consider the case where an n-bit LFSR is filtered by a vectorial
Maiorana-McFarland functions F : GF (2)n → GF (2)m defined by:

F (x0, . . . , xn−1) = (f0(x0, . . . , xn−1), . . . , fm−1(x0, . . . , xn−1)) (5)
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where each function fj : GF (2)n → GF (2) is defined by:

fj(x0, . . . , xn−1) = (xk, . . . , xn−1) · φj(x0, . . . , xk−1) + gj(x0, . . . , xk−1).

for j = 0, 1, . . . , m − 1. This case may occur in practice because the encryption
speed of a vector output generator is m times faster than a single bit filter
function generator.

For good security, we want any linear combination of fj(x) to correspond
to a t-resilient Maiorana-McFarland function with high nonlinearity. The usual
method to construct F (x) is to ensure that linear combinations of fj(x) cor-
respond to concatenation of linear functions which are distinct and each linear
function in the concatenation is an expression in t + 1 or more variables. This
can be achieved by using linear codes as shown in [12].

We assume bit i of the LFSR is the i-th input of F (x). Suppose we know l
consecutive output words, i.e. l × m consecutive output bits.

word 1: y0,0, y0,1, . . . , y0,m−1

word 2: y1,0, y1,1, . . . , y1,m−1

. . .

word l: yl−1,0, yl−1,1, . . . , yl−1,m−1

Let us guess the k + l leftmost bits of the LFSR, i.e. (x0, x1, . . . , xk+l−1).
Then (xi, xi+1, . . . , xi+k−1) is known at time i = 0, 1, , . . . , l−1 and the following
equations are linear.

yi,0 = g0(xi, . . . , xi+k−1) + (xi+k, . . . , xi+n−1) · φ0(xi, . . . , xi+k−1)
yi,1 = g1(xi, . . . , xi+k−1) + (xi+k, . . . , xi+n−1) · φ1(xi, . . . , xi+k−1)

. . .

yi,m−1 = gm−1(xi, . . . , xi+k−1) + (xi+k, . . . , xi+n−1) · φm−1(xi, . . . , xi+k−1)

We have l × m equations in n − (k + l) unknowns. For this linear system to
be solvable, we need:

n − (k + l) ≤ l × m

=⇒ l ≥ �(n − k)/(m + 1)	.

We take l = �(n − k)/(m + 1)	. Thus the search space is reduced from 2n to
2k+l = 2k+�(n−k)/(m+1)�.

The rainbow attack can may be applied for our scenario as follows. Let l =
�(n − k)/(m + 1)	, we define a search function F̃ : GF (2)n → GF (2)k+(m+1)l to
be

F̃ (x̃) = the (k + (m + 1)l)-bit output keystream,

when the LFSR is initialized by x̃ ∈ GF (2)n. For a fixed string c ∈ GF (2)ml

and x ∈ GF (2)k+l, we can find s ∈ GF (2)n−(k+l) such that F̃ (x||s) = (c||y)
by the method described above. Based on this computation, we define a search
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function F (c) : GF (2)k+l → GF (2)k+l to be the rightmost k + l bits of
F̃ (x||s), i.e.,

F (c)(x) = y

By using this search function, we can perform a rainbow attack as in Section
3. The search space is N = 2k+l. Assume we have M = 2mem memory and
2ml+d consecutive keystream bits (from which we can sample D = 2d ciphertext
whose first l m-bit words correspond to c). Then the preprocessing complexity is
N/D = 2k+l−d and processing complexity is N2/(2M2D2) = 22(k+l−(d+mem))−1.

Theorem 5. Let l = �(n − k)/(m + 1)	. Consider an n-bit LFSR filtered by
equation (5) where bit i of the LFSR is the i-th input of F (x). The key space is
reduced from 2n to 2k+l when ml consecutive output bits are known.

Furthermore, the LFSR initial states can be found with 22(k+l−(d+mem))−1

processing, 2k+l−d pre-processing and 2mem memory when 2ml+d consecutive
keystream bits are known.

Remark 6. We may also consider the case where the vector Maiorana-McFarland
function has different size as the LFSR as in Section 5.

Another extension is when the filter function in the filter combiner model is a
vectorial Maiorana McFarland function. In that case, the result is a combination
of Theorem 4 and 5.

Example 3. Consider the parameters in Toyocrypt where we have a 128-bit
stream cipher filtered by a 128-bit vector Maiorana-McFarland function F (x)
with parameter k = 64 and m output bits. F (x) may correspond to the vector
function in Corollary 1 of [12] which is 1-resilient and has nonlinearity 2127−264.

Then by Theorem 5, l = �64/(m + 1)	 and the search space reduction is
264+l. Suppose we apply rainbow attack with 2d ciphertext whose first m× l bits
correspond to a fixed string c. Then we need a keystream of length 2ml+d. If we
have 2mem memory, the pre-processing complexity is 264+l−d and the processing
complexity is 22(64+l−(d+mem))−1. These values are tabulated for different output
size m in Table 1, 2.

In Table 1, we list the size of the reduced search space for different output size.
In Table 2, we list the pre-processing and processing complexities of rainbow

attack for different amount of memory and keystream. Here we fix the attack
complexity as 231, which is considered sufficiently fast in practice.

In this example, we see that as the number of output bits increases, the search
space, memory, pre-processing and processing complexities decrease while the
amount of consecutive keystream bits needed increases.

Table 1. Reduced Search Space for n = 128, k = 64 and Different Output Size m

Output Size m 1 2 3 4 5 6 8 16
Reduced Search Space 296 286 280 277 275 274 272 268
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Table 2. Complexities of Rainbow Attack for n = 128, k = 64 and Different Output
Size m where Attack Complexity is fixed as 231, this gives lower Memory and Keystream
Requirements

Output Size m 1 2 3 4 5 6 8 16
Consecutive Keystream 248 252 256 258 261 268 272 268

Memory 264 262 256 255 253 252 251 248

Pre-processing Complexity 280 278 272 271 269 268 267 264

Processing Complexity 231 231 231 231 231 231 231 231

Number of Ciphertext 216 28 28 26 26 26 25 24

8 Further Generalizations

Some ways in which our attacks can be further generalized are as follows:

1. In Theorem 2 and 5, we have adopted the convention that the first k input
bits of f(x) are always tapped from the leftmost k bits of the LFSR. It is
easy to see that the attacks have the same complexities if we tap any k
consecutive bits of the LFSR.

2. Similarly, in Theorem 3, we can tap the first r input bits of f(x) from any
consecutive k bits of the LFSR. In Theorem 4, we can tap the r bits from
any consecutive k1, . . . , ks bits of LFSR1, . . . , LFSRs respectively.

3. In our attacks, we have presented the rainbow attack on Maiorana McFar-
land functions because it is a well-known and common construction in the
Boolean function literature. In that case, the function becomes linear when
the leftmost k bits are known. To make the attack more general, we can look
at any n-bit Boolean function which becomes linear when k (not necessarily
consecutive) input bits are known.

4. In our attacks, we can replace the LFSR by any linear finite state machine
like a modular linear feedback shift register (MLFSR), Galois linear feed-
back shift register (GLFSR) or linear cellular automata. This is because the
attacks only make use of the property that any LFSR state bits at time i is
a linear function of the initial state.
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