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Abstract. We explore authenticated group key agreement in data-
sharing Peer-to-Peer networks. We first propose a novel password-based
authenticated group key agreement protocol with key confirmation. We
present a formal statement of its security in a variant of the Bresson et
al. security model adapted for the password-based setting. A discussion
of the limitations of our protocol in the case where the group size be-
comes large is then presented. We conclude the paper with an enhanced
version of the protocol, using a CAPTCHA technique, designed to make
it more robust against online password guessing attacks.
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1 Introduction

Data-sharing Peer-to-Peer (P2P) systems such as Napsterﬁ and GnutelleE7 are
becoming increasingly popular for sharing large amounts of data, in particular
music files. Because of the increasing popularity and the potential future appli-
cations of such systems, they have attracted much attention from the research
community. We can broadly classify data-sharing P2P systems into two cate-
gories based on their system architecture. In the first category, the system has
a central server that requires a one-time off registration by users prior to using
the data-sharing service. However, all subsequent data transfers are conducted
among the users without the involvement of the server. One typical example of
a data-sharing P2P system in this category is Napster. In the second category,
there is no central server and all operations are conducted in a self-organised
manner. In such a framework, the precise specifications are dependent on the
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individual system, and an example of such a system is Gnutella. Systems in the
first category are more easily monitored and controlled but not easily scalable
whilst systems in the second category are scalable at the expense of manage-
ment and security.. We refer the interested reader to recent work of Daswani,
Garcia-Molina, and Yang [8] for a more comprehensive treatment of the open
issues faced by existing data-sharing P2P systems.

In this paper, we primarily focus on the group key agreement issue in first
category systems. Our results can be extended to second category systems if a
trusted authentication server is added for the purpose of key establishment (i.e.,
authenticated key agreement) at the expense of the self-organised nature that
defines category 2. However, authenticated key agreement allows the participants
to authenticate each other when establishing a shared session key, and addresses
some of the open issues in data-sharing P2P systems.

We first propose a novel password-based authenticated group key agreement
protocol which provides key confirmation. This protocol is proven secure in an
adapted version of the Bresson et al. model [4]. Like other password-based pro-
tocols in the literature, our protocol is vulnerable to online password guessing
attacks when the group size becomes very large. As a counter-measure, we en-
hance our proposed protocol using a Completely Automated Public Turing Test
to Tell Computers and Humans Apart (CAPTCHA) technique [2] and federated
signature verification (both services are provided by the trusted authentication
server).

The rest of this paper is organised as follows. We present our proposed
password-based authenticated group key agreement protocol in Section Pl We
then describe the security model in which we work in and present the security
proof for our proposed protocol in Section Bl In Section @ we describe the en-
hanced protocol and demonstrate its security against online password guessing
attacks. We conclude this paper in Section 5.

2 A Novel Password-Based Group Key Agreement
Protocol

2.1 Review of Password-Based Group Key Agreement

Since the seminal paper of Lomas, Gong, Saltzer, and Needham [12], many
password-based key establishment schemes have been proposed. Some of the
more recent password-based proposals include the group key agreement protocol
of Bresson, Chevassut, and Pointcheval [4] derived from an earlier protocol [5];
the two-round key agreement protocol without key confirmation of Lee, Hwang,
and Lee [IT] and the group key agreement of Dutta and Barua ﬂQIE; and the Diffie-
Hellman key exchange protocols of Byun and Lee [HE However, to the best of our
knowledge, much less attention has been devoted to password-based protocols

3 Both protocols have recently been broken by Abdalla et al. [I].
* Tang and Chen [I5] demonstrate that both protocols are vulnerable to several secu-
rity problems.
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in a group setting. In the next section, we present our proposed password-based
authenticated group key agreement protocol.

2.2 Our Proposed Protocol

Let U; (1 <i<n,3 <n) denote a set of participants sharing a secret password,
7, selected from a password set, PW. Each participant, U;, possesses an asso-
ciated identity, 1D;. We let £ be the security parameter. In our protocol, the
following system parameters are public.

1. Two large prime numbers p and ¢, where p = 2¢q + 1.
2. Three collision-resistant one-way hash functions, Hg, H1, and Hs, where
0:{0,1}* — Z,, H1 : {0,1}* — {0,1}, Ha : {0,1}* — {0, 1}".

We throughout assume that U; is the protocol initiator. Prior to the protocol
execution, U; (1 < i < n) computes g = Ho(n||IDy||x) mod p, where ID,, =
ID{||IDg)|- - ||ID,, and x > 0 is the smallest integer that makes g a generator
of a multiplicative subgroup G of order ¢ in GF(p)*.

In the protocol execution, the indices of the user names and the values ex-
changed between users are taken modulo n; and U; (1 < i < n) performs the
following steps.

Stage 1: Message transfer and authentication.

1. U; chooses a random s; (0 < s; < g — 1), and broadcasts Z; = g%.

2. After receiving every Z; (1 < j < n,j # i), U; verifies that none of them
equals 1. If the check succeeds, U; computes and broadcasts A;; 1 and
Ajjiv1, where Z = Z4||Zs|| -+ || 2, Aiioy = Ha(illi = 1] Z][g™ =% ||g||I Du),
and A1 = Ha(illi + 1|21l |gl[1D.).

3. After receiving every A; ;1 and A; 41 (1 < j < n,j # i), U; verifies the
received values of A;_1,; and A;1, by recomputing them using s;, Z, and
the stored values of Z;_1 and Z;; 1. If the checks succeed, then U; continues
with the next stage. Otherwise, the protocol execution is terminated and a
notification of failure broadcasted.

Stage 2: Key agreement and key confirmation.

1. U; computes and broadcasts X; = (gii )i

2. After receiving every X; (1 < j <n,j # i), U; computes the keying material
M; as:

n—2 1 gsz+jsi+j+1 1
J— . ns; n—1-j _ ms;_18; n—1—j
M; = (Zia)™ ] (X)) =g || gortimisiss)
7=0 7=0

n
I | SjSj+1 —g Fo1 858541
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U; then broadcasts its key confirmation message C;, where
Ci = Hu(l|1D,]|Z]| Al X ||Mi]|g), X = Xu]|Xal] -] X, and

A= Ai||Aag|| - [[Ana|[Arnl[ A2 ][ As 2] - - |[Ann—1-

3. After receiving C; (1 < j < n,j # i), U; checks whether the following
equation holds:

? .
Cj =M1 (i1 Du|| Z|| Al X]|Mi]]g)-
If the check succeeds, U; computes its session key as:
K = Ha(IDy|| Z|| Al | X || M)

and concludes by computing a session identifier (SID). Note that the SID
is defined to be the concatenation of the identities of all intended partici-
pants and the messages broadcast in every round of the ongoing protocol
execution. Otherwise, U; terminates the protocol execution as a failure.

The above protocol is derived from the unauthenticated cyclic group key agree-
ment protocol due to Burmester and Desmedt [6], which has been proven secure
against a passive attacker under the Decisional diffie-Hellman (DDH) assump-
tion. In our proposed protocol, the password is used to achieve authentication
among participants. Note that U; authenticates Z;_1 and Z;;1 in the first stage
prior to computation and broadcasting of X;. Without this authentication re-
quirement, the protocol may be vulnerable to an offline dictionary attack.

3 Security Model and Security Analysis

We now describe the model in which we work, which is closely based on the
model of Bresson et al. [4,[5]. The proposed model assumes that every protocol
message will be broadcast to all the users. We then present a security proof for
our proposed protocol in this security model.

3.1 Description of the Security Model

In the model, we denote the participants by U; (1 < i < n), each associated with
a unique identity, I D;. For any participant U;, when the protocol is initiated,
we say that a protocol instance of U; is generated. In reality, when U; starts a
protocol execution, it knows some necessary information such as the identities
of all the involved participants, the communication details, and the instance
creation time. In this model, this necessary information is defined to be the
participant instance identifier, which uniquely identifies the participant instance.
If U; is involved in an instance possessing an identifier id;, we further define the
participant instance to be an oracle I1 fdi, which is a probabilistic Turing machine
processing the protocol messages on behalf of U;. At any time, an oracle is in
one of the following states:

5 The SID is made public upon protocol completion, and the security of the protocol
does not hinge on the difficulty of predicting a valid SID. In other words, anyone
(including the attacker, A) knows what a particular SID is.
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— Active: the oracle is still waiting for inputs from other oracles, and the key
agreement process has not finished.

— Accepted: the oracle has stopped and successfully generated the session key
and a SID.

— Aborted: the oracle has stopped as a failure and has output an error message.

In the model, there exist a passive attacker and an active attacker. A passive
attacker only eavesdrops on the communications, while an active attacker is
allowed to intercept, delete, delay, and/or fabricate any messages at will. The
security of a protocol is modelled by a series of games played between a challenger
and the attacker. The challenger simulates the view of the attacker and answers
all the queries of the following types asked by the attacker, A.

— A Create query allows the attacker to initiate a new protocol instance.

— Upon receiving a Send query, the oracle will compute a response according
to the protocol specification and a decision on whether to accept or reject,
and return them to A. If the oracle has either accepted with some session
key or terminated, then this will be made known to A.

— The Reveal query captures the notion of known key security. Upon receiving
such a query, an oracle that has accepted and holds some session key, will
return the session key to A.

— The Test query is the only oracle query that does not correspond to any of A’s
abilities. If the oracle has accepted with some session key and is being asked
a Test query, then, depending on a randomly chosen bit b, A is given either
the actual session key or a session key drawn randomly from the session key
distribution.

The definition of partnership is used in the definition of security to restrict the
attacker’s Reveal queries to accepted oracles that are not partners of the oracle
whose key the attacker is trying to guess. Definition [I] describes the partnership
definition.

Definition 1. Two oracles, H;di and H;dj, forany 1 <i,j <n andi#j, are
partners if and only if they accept and possess the same SID.

We define a function I, which, on the input of an accepted oracle H;di, returns
Iy = Dt i W (IT{%), where W;(IT}%) = 1 if II'" has a partner oracle
(H;dj), otherwise W;(IT!) = 0. Tt is easy to see that the output of I'(IT)%)
equals the total number of participants that have at least one oracle partnered
with 774

Freshness is used to identify those session keys about which A ought not to
know anything because .4 has not revealed any oracles that have accepted the
key and has not corrupted any principals knowing the key. Definition 2] describes
freshness, which depends on Definition [

Definition 2. An oracle, Hiidi, is said to be fresh if (1) Hiidi has accepted and
has not been sent a Reveal query, and (2) no partner oracle of II'% (if such a
partner exists) has been sent a Reveal query.
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3.1.1 Modelling Password Guessing Attacks

Without loss of generality, we assume that the password is chosen from the
set PW = {my,ma, -+, mm}, where m; possesses the selection probability p; and
p; < pjifi> j. It is easy to see that, after h tries and with no additional infor-
mation, an attacker’s advantage over the password (i.e. the largest probability
the attacker can guess the correct password) is Z?;l Dj.

Password-based authenticated group key agreement protocols are designed to
provide resilience against password guessing attacks, since passwords are usu-
ally of low entropy, and hence vulnerable to password guessing attacks. Password
guessing attacks can be broadly categorised into online password guessing at-
tacks and offline dictionary attacks. In an online password guessing attack, an
attacker tries a guessed password by manipulating the inputs of one or more
oracles. In an offline dictionary attack, an attacker exhaustively searches for the
password by manipulating the inputs of one or more oracles. We remark that an
offline dictionary attack presents a more subtle threat, as the adversary is able
impersonate a legitimate party to initiate transactions without detection.

During the protocol execution, every oracle communicates with n — 1 oracles.
Hence, an attacker may try n— 1 possible passwords by intervening in the inputs
of only one oracle. Therefore, we regard a protocol to be secure if the attacker’s
advantage in guessing the “right” password is negligibly larger than the evalu-
ation probability Zw(” D+1 p; if « oracles aborted at the end of the following

attack game. It should be noted that the ewvaluation probability zw(” D+1 Dj

can be replaced with any Zw(v Sty

a stricter security requlrement
The attack game for modelling both kinds of password guessing attacks is
carried out between the challenger and a polynomial-time attacker, A, as follows:

;i (1 <v <n-—1), where a smaller v means

Setup. The challenger generates a password, m € PW, and the public system
parameters, param.

Challenge. The challenger runs A on the input of param. At some point, A
terminates by outputting a guessed password 7’. During its execution, A can
make the following kinds of queries:

— Create(U), where U is any participant from the participant set.
— Send(II,m), where II is an active oracle and m is a message chosen by

A.

— Reveal(IT), where IT is an accepted oracle.

Suppose that there are x (x < ™) aborted oracles at the end of the game. The

attacker’s advantage over the password in the game is defined to be AdvA(7) =
F(x, Pr(m = «')), where the function F is defined as follows: on the input of an
integer a (¢ < n) and a value b (0 < b < 1), F(a,b) is computed as:

0, if b < S,
b— Za(" 1)+1pj, otherwise

F(a,b) = {
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3.1.2 Modelling Attacks Against Key Authentication

The attack game against U; (1 < ¢ < n) for key authentication is carried out
between the challenger and a two-stage polynomial-time attacker A = (A1, A2)
as follows:

Setup. The challenger generates a password m € PW and the public system
parameters param.
Phase 1. The attacker runs A; on the input of param. A; can make the fol-
lowing kinds of queries:
— Create(U), where U is any participant from the participant set.
— Send(I1,m), where IT is an active oracle and m is a message chosen by
A
— Reveal(IT), where IT is an accepted oracle.
A; terminates by making a Test(Htid*) query, where Htidt is a fresh oracle,
and outputting some state information state.
Challenge. The challenger returns the output of Test(I1I;%).
Phase 2. The attacker runs As on the input of state and the output of the
challenger. A can make the same kinds of query as those in Phase 1. But
As is not allowed to make a Reveal query on the input of Ht“i‘ or its partner
oracle. As terminates by outputting a guess bit b'.

Suppose that there are x aborted oracles at the end of the game where z < ™, .
The attacker’s advantage in this game is defined to be Adv*(U;) = F'(z, Pr(b =
b)), where the function F’ is defined as follows: on the input of an integer a
(a <n)and avalue b (0 <b < 1), F'(a,b) is computed as:

0, ifh<
- 1+Z;<:n1,—1)+1 p
2

a(n—1 1
1+Zj;1 o+ pj
F'(a,b) = 2

’, otherwise

3.1.3 Modelling Attacks Against Key Confirmation

The attack game against U; (1 < ¢t < n) for key confirmation is carried out
between the challenger and a two-stage polynomial-time attacker A = (A1, A2)
as follows:

Setup. The challenger generates a password m € PW and the public system
parameters param.
Phase 1. The attacker runs A; on the input of param. A; can make the fol-
lowing kinds of queries:
— Create(U), where U is any participant from the participant set.
— Send(II,m), where II is an active oracle and m is a message chosen by
A
— Reveal(IT), where IT is an accepted oracle.
A1 terminates by outputting an accepted oracle Hfd" and the state informa-
tion state.
Challenge. The attacker continues running As.
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Phase 2. The attacker runs Ay on the input of state. As can make the same
kinds of query as those in Phase 1. At some point, Ay terminates.

Suppose that, at the end of the game, there are x (x < ™, ) aborted oracles

and Htidt has y partner oracles. The attacker’s advantage in the game is defined
to be AdvA(U,) = F(z, Pr((y > n — 1) vV (I(IT}%) < n —1))).

Intuitively, if a protocol achieves key confirmation then it also guarantees mu-
tual authentication which informally means that any legitimate accepted oracle
confirms that the messages come from other legitimate oracles .

3.1.4 Security Definition
We first give a formal definition for negligible probability.

Definition 3. The probability P(£) is negligible if for any polynomial f(£),
where { is the security parameter, there exists an integer Ny such that P(() < f(le)
for all € > Ny.

Informally, a secure authenticated key agreement protocol with key confirmation
guarantees that only the legitimate oracle can possibly compute the session key.
Any oracle that accepts can confirm that it has n — 1 partner oracles which
compute the same session key. A formal statement is as follows.

Definition 4. A password-based authenticated group key agreement protocol
with key confirmation is secure, if it satisfies the following requirements:

1. When the protocol is Tun in the presence of a probabilistic, polynomial-time
(PPT) attacker, all partnered oracles compute the same session key.

2. An oracle computes a uniformly distributed session key regardless of the in-
puts from other oracles.

3. An active PPT attacker only has negligible advantage in the attack game
modelling password guessing attacks.

4. An active PPT attacker only has negligible advantage in the attack game
against Uy (1 <t < n) for key authentication.

5. An active PPT attacker only has negligible advantage in the attack game
against Uy (1 <t < n) for key confirmation.

3.2 Security Analysis

We assume that the DDH problem is hard, i.e. given a finite cyclic group G of
prime order, a generator a of G, and group elements a® and o, distinguish o
and af, where a¢ is a random element in G. In our proof, Hy, H1, and Hsy are
modelled as random oracles.

Theorem 1. The proposed authenticated password-based group key agreement
protocol is secure in the sense of Definition[f in the random oracle model under
the DDH assumption.
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Proof Sketch for Theorem[dl 1t is straightforward to verify that the proposed
protocol satisfies the first and second requirements of Definition 4l Next we prove
that the proposed protocol satisfies the remaining (three) requirements.

Claim. In the attack game modelling password guessing attacks, the attacker’s
advantage is negligible.

Proof. The attack game is simulated by the challenger as follows.

Setup. Given a security parameter, ¢, the challenger generates a password, m €
PW, and the public system parameters, param = {p, q, Ho, H1, H2, ID;(1 <
i <n)}. The attacker simulates Ho, H1, and Hs as follows.

— Ho queries: The challenger maintains a list of request message and hash
value pairs. When receiving the attacker’s request message, the chal-
lenger first checks its list to see whether the hash value for the request
message has been queried. If the check succeeds, the challenger sends the
stored value to the attacker. Otherwise, the challenger generates a ran-
dom value and sends it to the attacker. In the meantime, the challenger
stores the request message and hash value pair to the existing list.

— H; and Hs queries: These two kinds of queries are simulated in exactly
the same way as the Hj.

Challenge. The attacker runs A on the input of param. At some point, A
terminates by outputting a guessed password 7/. During its execution, A
can make the following kinds of queries:

— Create(U), , where U is any participant from the participant set.

— Send(I1,m), where IT is an active oracle and m is a message chosen by
As.

— Reveal(IT), where IT is an accepted oracle.

At the end of the game, suppose that there are  aborted oracles. We analyse
the following different cases in which the attacker may try a guessed password:

1. Suppose A acts passively without manipulating any oracle’s input. In this
case, A needs to compute some g**+1 or M; (1 < i < n), in order to test
a guess. Computing ¢**+! based on ¢g* and g®*! is equivalent to solving
the Computational Diffie-Hellman (CDH) problenfd and the probability of
computing M; is also negligible based on the DDH assumption [6]. Therefore,
in this case A can only succeed with a negligible probability.

2. Suppose A has not manipulated the input of any oracle in the first stage
during its execution. In this case, A can only succeed with a negligible prob-
ability for similar reasons as in the first case.

3. Suppose A has manipulated the input of an oracle in the first stage during
its execution. Without loss of generality, suppose A replaces Z; 41 sent to
% (1 < i < n) with Ziq, where Zi, | = (¢')%, ¢’ is computed based
on a guessed password, and s is randomly chosen by A. Then A postpones

5 1t is well known that CDH implies DDH.
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forging A;y1, until it obtains A; ;41. With A; 41, A can test the guessed
password by checking whether A; ;1 < R(illi + 1| Z'||(Z:)*|1¢’||I D) holds,
where Z' = Z1||Zs|| - - - |1 Zi|| Zi 1 || Zigal| - - || 2

If ©’ # 7, we can prove the following claims.

Claim. With the given information, A can only succeed in trying a different
password with a negligible probability.

Proof. If A wishes to test another possible password, say «”/, when its first
guess is wrong (7’ # 7), then it must compute (Z;,,)", where x = log,. (Z;)
and ¢” is computed based on 7”. The computation can be abstracted as
follows: Given Z; = (¢)** and Z;,, = (¢9")"?, where 2, and 3 are unknown,
A computes (¢”)***2. Based on the CDH assumption, A can only succeed

with a negligible probability. O
Claim. Hiid"' accepts with a negligible probability.

Proof. To forge a key authentication message for Hfdi, the attacker needs
to compute the value, (Z],,)%, where Z; | = (¢')°, Z; = g*, and ¢’ # g.
The computation can be abstracted as follows: Given Z; = (¢9)** and Z; | =
(9)*2, where x1 and x2 are unknown, .4 computes g*'*2. Based on the CDH
assumption, A can only succeed in forging an authentication message with
a negligible probability. O
4. In order to exhaustively search for the password, A may also try to compute
some M; (1 < i < n), which is computed by some oracle, say Hiid"'7 and
then re-computes Hiidi ’s key confirmation message C;. Suppose Hiidi receives
the messages X1, Xo, -+, X;-1, X5, -+, Xn_1, Xp, where X; is computed by
itself. Based on the discussions in the third case, it is easy to see that the
probability, that any of these messages is computed by a legitimate oracle
using at least one forged message (note that X, (1 < j < n) is computed
using two messages: Z;_1 and Z;q1), is Z;”ill pj. As a result, the attacker

can compute M; with the probability Z;};rll p; based on the results in [6].

Suppose that all the x aborted oracles resulting from the password guessing

attacks, the attacker’s advantage over the password is Z;”Ll p; + Py, where Py is

negligible. As a result, in this game A’s advantage AdvA (1) = F(z, Zf;l pj+P1)

is also negligible and we have proved this claim. O

Claim. In the attack game against U; (1 < t < n) for key confirmation, the
attacker’s advantage is negligible.

Proof. The attack game is simulated by the challenger as follows.

Setup. Given a security parameter, ¢, the challenger generates a password, 7 €
PW, and the public system parameters, param = {p, q, Ho, H1, H2, ID;(1 <
i <n)}. The attacker simulates Ho, H1, and Hs as follows.
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— Ho queries: The challenger maintains a list of request message and hash
value pairs. When receiving the attacker’s request message, the chal-
lenger first checks its list to see whether the hash value for the request
message has been queried. If the check succeeds, the challenger sends the
stored value to the attacker. Otherwise, the challenger generates a ran-
dom value and sends it to the attacker. In the meantime, the challenger
stores the request message and hash value pair to the existing list.

— H; and Hs queries: These two kinds of queries are simulated in exactly
the same way as the Hj.

Phase 1. The attacker runs A; on the input of param. A; can make the fol-
lowing kinds of queries:

— Create(U), , where U is any participant from the participant set.

— Send(II,m), where II is an active oracle and m is a message chosen by
A

— Reveal(IT), where IT is an accepted oracle.

A1 terminates by outputting an accepted oracle Htidt and some state infor-
mation state.

Challenge. The attacker continues running As.

Phase 2. The attacker runs Ay on the input of state. As can make the same
kinds of query as those in Phase 1. At some point, Ay terminates.

At the end of the game, suppose that Htidt has y partner oracles and there
are z aborted oracles. Next, we compute the probability of y > n — 1 and
T(IT/") < n — 1, respectively.

— In the proposed protocol, every participant U; (1 < i < n) generates and
broadcasts Z; = ¢°*, where s; is a random number, outlined in the first stage.
Hence, the probability that y > n — 1 happens is negligible because Z; is
part of the SID.

— As required by the protocol, Hfd" should have succeeded in verifying n — 1
key confirmation messages (which is computed based on SID and g (or 7))
before it accepts in Phase 1. Suppose that I’ (sz‘) < n—1, then the attacker
has forged at least one of the confirmation messages received by Htid‘, which
equivalently means the attacker has guessed the correct password. However,
it is straightforward to verify that F(x, Pr(I'(II}*) < n — 1)) is negligible
based on the first claim.

Combining the above two possibilities, in this game the attacker’s advantage
F(x, Pr(I(IT\") < n—1) 4+ Pr(y > n — 1)) is negligible. As a result, we have
proved this claim. O

Claim. In the attack game against U; (1 < t < n) for key authentication, the
attacker’s advantage is negligible.

Proof. The attack game is simulated by the challenger as follows.

Setup. Given a security parameter, ¢, the challenger generates a password, m €
PW, and the public system parameters, param = {p, q, Ho, H1, H2, ID;(1 <
i <n)}. The attacker simulates Ho, H1, and Hs as follows.
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— Ho queries: The challenger maintains a list of request message and hash
value pairs. When receiving the attacker’s request message, the chal-
lenger first checks its list to see whether the hash value for the request
message has been queried. If the check succeeds, the challenger sends the
stored value to the attacker. Otherwise, the challenger generates a ran-
dom value and sends it to the attacker. In the meantime, the challenger
stores the request message and hash value pair to the existing list.

— H; and Hs queries: These two kinds of queries are simulated in exactly
the same way as the Hj.

Phase 1. The attacker runs A; on the input of param. A; can make the fol-
lowing kinds of queries:

— Create(U), , where U is any participant from the participant set.

— Send(II,m), where II is an active oracle and m is a message chosen by
Aj.

— Reveal(IT), where IT is an accepted oracle.

A; terminates by making a Test(II!%) query, where II{% is a fresh oracle,
and outputting some state information state.

Challenge. The challenger returns the output of Test(1I;%).

Phase 2. The attacker runs As on the input of state and the output of the
challenger. A5 can make the same queries as those in Phase 1. But Az is not
allowed to make a Reveal query on the input of Hfd" or its partner oracle.
A terminates by outputting a guess bit b'.

At the end of the game, suppose that there are x aborted oracles. We have
the following observations:

— Let As, Np, and Np represent the events A succeeds, F(Htidt) =n-—1,and
I(IT%) # n — 1, the following equation holds:

Pr(As) = Pr(b=0V|Np)Pr(Np) + Pr(b="V'|Np)Pr(Np)
< PT(b = b/‘Np)PT(Np) + PT(NP)

— The attacker’s advantage is computed as follows:

14y,
2

0, if PT(.As) <

IED DA .
Pr(Ag) — 27*12 ? otherwise

AdvA(Uy) =

~ Based on the second claim, we know that either Pr(Np) < S32n=D+1,

j=1 J
holds or Pr(Np) — Z;gfl)ﬂ p; is negligible.

Suppose that the attacker’s advantage Adv- (U;) in this game is non-negligible.
Based on the above observations it is easy to see that |[Pr(b = b/|Np) — | is
non-negligible, in contradiction of the security results in [6]. As a result, we have
proved the claim. O

As a result, we have proved that the proposed protocol satisfies all the five
security requirements so that it is secure under our definition. a
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Conclusion of Proof for Theorem[dl. As we have seen in the security proof,
if n participants take part in the protocol execution A can try 2n possible pass-
words by simultaneously manipulating the messages sent to every participant.
Moreover, A can mount the online password guessing attacks automatically by
running a program. Consequently, an attacker can leverage this vulnerability,
e.g., launches a successful online dictionary attack against the protocol when the
group size n becomes very large. We remark that other password-based group
key agreement protocols [BL[7,[IT] also suffer from this security vulnerability.

4 Revisiting Online Password Guessing Attacks

As we have shown in the previous section, our proposed protocol suffers from
automated online password guessing attacks (similar weaknesses can be found in
other published password-based group key agreement protocols). In this section,
we enhance the proposed protocol to make it more robust by using a CAPTCHA
technique and federated verification provided by the server S.

4.1 CAPTCHA

Recent research on CAPTCHA techniques [2] suggests that CAPTCHA has
many practical applications, e.g., sites such as Yahoo Mail and Hotmail use dis-
torted image recognition to prevent automated account registration; online polls;
search engine bots. CAPTCHA technique has also been deployed in combating
spam and worms and preventing dictionary attacks [I3]. Although distorted im-
age recognition is most widely used, CAPTCHA means more than this — it is
a test (any test) that can be automatically generated. Such tests generated are
trivial to human but computationally hard for computer programs. Ahn et al. [2]
studied two kinds of artificial intelligence (AI) problems and proposed several
methods to construct CAPTCHA. However, we should note that the security
of these AI problems, the foundation of the CAPTCHA, is based on the state
of the art in pattern recognisation, and thus, heuristic. Several researchers have
recently developed efficient methods to defeat some specific CAPTCHA. Despite
this setback, CAPTCHA is still very popular.

4.2 Description of the Enhanced Protocol

In this enhanced protocol, we assume that S possesses a signature key pair (pg, k)
generated by a signature scheme (Gen, Sign, Vrfy) which is unforgeable under an
adaptive chosen message attack (defined in [3]), and a public-key encryption key
pair (p},s)) generated by a IND-CCA2 secure public-key encryption
scheme (K, £, D) [14]. We also suppose that S can generate and verify CAPTCHA.
Other parameters are generated in the same way as in the original protocol.

In a protocol execution, S and U; (1 <1i < n) perform as follows.

Stage 0: Execution of CAPTCHA

1. U; sends a random number, r; € {0,1}%, to S.
2. S sends a new CAPTCHA, pz, to U;.
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3. U; solves the CAPTCHA, pz, and sends the solution, sz, to S.

4. S checks whether sz is the correct solution of pz. If the check succeeds, S
selects a random s;q € {0,1}, and then broadcasts s;q, R = r1||ra||- - ||rn,
and a signature Sig, (0[[IDy||R||siq).

5. After receiving the messages, U; first verifies the signature. If the verification
succeeds, U; continues; otherwise, U; aborts the protocol execution.

Stage 1: Message transfer and authentication

1. U; chooses a random s; (0 <'s; < ¢ — 1), and broadcasts Z; = g°.

2. After receiving every Z; (1 < j < n,j # 1), U; verifies that none of them
equals 1. If the check succeeds, U; selects two random number 74, 7 € {0, 1},
and sends

E; = Ency (ID;|[Aiji—1]|Aiital|Ai—1,il] Aigr,i

[rillril|sia)

to S, where Z and A; ;—1, Aiit1, Aii—1, Aiit1 (1 <i < n) are defined in the
same way as in the original protocol.

3. After receiving every E; (1 < i <n), S first decrypts them to check whether
Siq is in its memory, and then checks whether A; ;11 (provided by U; and
Uit1) and A;;—1 (provided by U;_; and U;) are correct, for all 1 < i < n. If
the checks succeed, S broadcasts a signature Sig,, (1|1 Dy||R||R'||s:a), where
R’ = ri||rh|] - - - ||r},- Otherwise S broadcasts a failure message. Simultane-
ously, S deletes s;4q and the related data.

4. If receiving a failure message, U; aborts the protocol execution. Otherwise,
after receiving R’ and the signature from S, U; verifies whether the signature
is correct. If the verification succeeds, U; continues the steps in next stage;
otherwise it aborts the protocol execution.

Stage 2: Key agreement and key confirmation

This stage is similar to the original protocol presented in Section [2.2] except that
the parameter A, used in the computation of key confirmation message and the
session key, is substituted by R||R’||s;4-

4.3 Security Analysis of the Enhanced Protocol

Differences between our enhanced and our original versions include the following:
(1) an additional stage 0 is added in our enhanced version, and (2) all the
authentication messages in the first stage of our enhanced version are verified
by the server, S. We now argue that these two features are effective counter-
measures for online password guessing attacks, without compromising the overall
security of our original protocol.

1. Assuming the hardness of the CAPTCHA, the possibilities of automated on-
line password guessing attacks is now significantly reduced, since we assume
that only a human being is intelligent enough to pass the CAPTCHA. In
other words, we are assured that the initiator involved in every initialisation
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of the protocol execution, is actually a human being and not some com-
puter programs. Moreover, assuming the security of the underlying signature
scheme, we can now verify that U; has successfully solved a CAPTCHA if|
and only if, we receive a valid signature. Therefore, an automated program
is prevening from mounting automated online password guessing attacks if
the underlying CAPTCHA used is sufficiently strong.

Another alternative (without using the CAPTCHA) is to require the

initiator to solve a computational puzzle [I0] prior to the protocol execu-
tion with each individual protocol participant. However, such an approach
is computationally intensive and it is difficult to adjust the hardness of the
puzzles if the participants have very different computing power.
The federated verification ensures that A can only test at most one password
in any single protocol execution. Assuming the security of the underlying
public encryption scheme, A cannot simultaneously mount the attack by
intervening in the protocol execution because A is unable to recover the en-
crypted messages or try its guess with the encrypted messages. Therefore, to
test the guess, A must submit the forged messages to .S for verification. How-
ever, S will definitely fail the verification and provide no other information
about the failure if A attempts more than one guess at any one time.

The participants can indirectly verify the authentication messages by ver-
ifying the signature from S because of the presence of 7s in the signature
but they cannot identify which authentication message goes wrong in the
event that the verification fails.

Conclusions

We have proposed a password-based authenticated group key agreement proto-

col,

and proved it secure in a variant of the model by Bresson et al. [4]. We then

discussed the limitations of our protocol, followed by an enhanced version of the
protocol using CAPTCHA. Consequently, our enhanced version is more robust
against online password guessing attacks.
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