
E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 399 – 413, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Why Software Engineers Do Not Keep to the Principle
of Separating Business Logic from Display: A Method

Rationale Analysis∗

Malin Häggmark and Pär J. Ågerfalk

Dept of Computer Science and Information Systems, University of Limerick,
Limerick Ireland; and Dept of Informatics (ESI), Örebro University,

SE-701 82 Örebro, Sweden
malin.haggmark@ul.ie, par.agerfalk@ul.ie

Abstract. This paper presents an investigation into why software engineers do
not keep to the principle of separating business logic from display. The concept
of method rationale is used to establish what is supposed to be achieved by
following the principle. The resulting model is then contrasted with results from
in-depth interviews with practicing engineers about what they want to achieve.
The difference between what the principle advocates and what engineers
consider beneficial holds the answer to why the principle of separating business
logic from display is not maintained. The results suggest that many espoused
benefits of the principle do not appeal to engineers in practice and the principle
is tailored to make it more useful in particular contexts. Tailoring the principle
also brought about other benefits, not explicated by the principle, thus
reinforcing the idea that method tailoring is crucial to the successful enactment
of information systems engineering methods.

1 Introduction

The mantra of most experienced software engineers is the same: thou shalt separate
business logic from display [19]. Theory maintains that by separating business logic
from display, systems will be easier to scale, extend, update and maintain. Also,
engineers with different skill sets can work on different parts of a system
independently, thus optimizing tasks for each competence. This way of structuring
systems, typically with business logic and display structured in different tiers, also
facilitates new types of clients to be added with little extra effort [9, 14, 16, 19, 23].

The principle of separating business logic from display can be found in a wide
range of information systems engineering (ISE) methods. In general, methods are
used in ISE as a means of expressing and communicating knowledge about good
(effective and efficient) ISE practice. This way methods encapsulate knowledge of
good engineering practice, and by utilizing this, engineers can be more effective,
efficient and confident in their work [2]. Basically, a method is a proposed pattern of

∗ This work has been financially supported by the Science Foundation Ireland Principal

Investigator projects B4-STEP and Lero, and the EU FP6 Project COSPA.

400 M. Häggmark and P.J. Ågerfalk

activities, expressed as a set of prescriptions for action – a.k.a. method prescriptions
[3]. When the principle of separating business logic from display is part of an ISE
method, keeping to this principle involves following a set of such prescriptions, i.e.
following a method. Of course, this principle alone does not provide sufficient
support for successful ISE. The point is rather that we can choose to view it as a
method fragment [4] – as a set of method prescriptions – in order to draw on previous
research on method use in ISE practice. Specifically, this research suggests that if
engineers are to follow a method, the method must first and foremost be useful [22],
that is, enable them to be more productive and achieve higher levels of performance
in their job. For someone to regard a method as useful the knowledge must be
possible to rationalize, i.e. the person needs to be able to make sense of it and
incorporate it into their own view of the world [2]. It has been stressed that departure
from methods is conscious and inevitable in the real world, and that rigorous use of a
method does not pay back [6, 25]. Engineers tailor methods to suit their needs in
particular situations with awareness of the benefits and drawbacks this causes [6].

By entangling business-logic with display the development time may be shortened,
but may disadvantageously result in a harder and more tedious maintenance-process.
This suggests that engineers emphasize short-term benefits [19]. Research has shown
that students have difficulties learning how to structure applications [5], suggesting that
engineers do not keep to the principle because they have not fully understood how to
use it. A possible solution would be to enforce the principle of separation in, for
example, the template-engine; leaving no possibility to entangle business logic with
display [19]. It can be questioned whether enforcement is appropriate, and hence a more
thorough investigation of why engineers do not keep to the principle is necessary.

To summarize: A method (or any of its parts) has to be useful for engineers to keep
to it [22]. Furthermore, engineers must be given the freedom to tailor the method to
make it useful in their particular situation [6, 25]. Engineers may not tailor methods in
a way that is beneficial for the software produced, but rather to ease and speed up the
process of software-development, thus, deteriorating the quality of the product (the
software) in favour of the personal process goals [19]. Their rationale is rarely
explained; they make design decisions with no clear statement of why they do things
the way they do [18]. The principle of separating business logic from display does not
seem to be an exception from the rule that methods need to be tailored. The principle
is espoused as ideal in theory, but practice seems to be a different story altogether
[19]. This paper is an empirical enquiry into why engineers do not keep to the
principle of separating business-logic from display. Answering this question also
increases our understanding of the more fundamental question of how and why
engineers choose to tailor ISE methods in general.

The contribution of this paper is thus threefold. First, the essence of the principle of
separating business logic from display is captured and expressed as a set of method
prescriptions. Second, why software engineers do not keep to this principle is
investigated. Finally, the usefulness of method rationale as an analytic tool to
understand method tailoring is explored.

The paper proceeds as follows. Section 2 covers rationality of methods, and how
this can be used to analyse methods. It sets the foundation for the research method,
outlined in Section 3. The result of the investigation is presented and analysed in
Section 4, preceded by conclusions in Section 5.

 Why Software Engineers Do Not Keep to the Principle 401

2 Methods and Their Rationale

A method is always grounded in a way of thinking [7, 10, 12], which constitutes the
foundation for the reasons and arguments behind it. These reasons and arguments can
be referred to as method rationale [1, 2, 24]. Using method rationale to understand the
enactment of ISE methods can be facilitated by discussing it in terms of public and
private rationality [26].

Public rationality is about creating an inter-subjective understanding (about the
reasons and arguments) of the method. This is a sort of knowledge that is shared by
several people as part of their inter-subjective beliefs. Public rationality can be
externalized and communicated through written method-descriptions (e.g. a method
handbook). Public rationality is expressed in an ideal typical method [2] or method-in-
concept [15]. Private rationality, on the other hand, is personal and cannot be
externalized in every respect. Private rationality can be found in a person’s ‘skills and
professional ethical and aesthetic judgements’ [26]. Private rationality is expressed in
a method-in-action [2, 15]. In an ideal situation, public and private rationality fully
overlap [13]. If so, the method prescription can be carried out to a tee since the
engineer fully understands and agrees with everything suggested by the method. This
overlap, referred to as rationality resonance [26], is depicted in Fig. 1.

Public
rationality

Private
rationality

Rationality
resonance

Fig. 1. Rationality resonance [13]

The non-overlap gives rise to a method usage tension [15] – a tension between
what ought to be done (according to the method creator) and what is actually done.
Analysing rationality-resonance requires that both private and public rationality are
made as explicit as possible to enable comparison [13]. Fig. 2 provides a visual
overview of method rationale by showing how its constituent concepts relate.

Divides into

Together form

Method rationale =
reasons and arguments

behind the method

Private rationality
(method-in-action)

Public rationality
(method-in-concept)

Rationality resonance +
method usage tension

Fig. 2. The constituents of method rationale

402 M. Häggmark and P.J. Ågerfalk

2.1 Public Rationality Analysis Through Goals and Values

A methods’ public rationality can be analysed with respect to the goals and values it
implements. The reasons behind a method-prescription can be understood in terms of
the goals the prescription is supposed to realize. This way, each method prescription
can be related to one or more goals, even though these are not always well articulated
in the method descriptions. A goal can be defined as a result, towards which
behaviour is consciously or unconsciously directed [3].

Ultimately, public rationality lies in the heads of the people who have developed a
method [24]. Accordingly, goals are manifestations of the method-creator’s value
base – all goals are anchored in values. A value can be understood as an ethical
judgement like an expression of feeling and attitude and can therefore not be judged
as true or false. Goals can be related to each other in goal hierarchies; for example,
when a goal is as a means to achieve another (higher) goal. Similarly, values can be
anchored in other values. These two properties of method rationale are referred to as
goal-achievement and value anchoring, respectively. In addition to goal achievement,
there is a possibility that goals contradict rather than complement each other – hence
there is an additional goal-contradiction relation defined over the set of goals.
Similarly there is a value-contradiction relation defined over the set of values. Fig. 3
depicts how every method prescription is related to at least one goal, and each goal is
related to at least one value. [3] See Section 4.1 for concrete examples.

*

*

*

*

*

1..*

1..**

*

Value anchoring

*

*

*

Value contradictionGoal contradiction

Goal achievement

Goal Value

Method
prescription

Fig. 3. Method-rationale as constituted by goals, values and their relationships [3]

How an engineer chooses to use a particular method-prescription depends on the
goals this prescription helps to achieve. Whether or not a goal appeals to an engineer
depends on whether or not they subscribe to the value in which the goal is anchored;
i.e. whether or not rationality-resonance can be achieved [3].

2.2 Modelling Public Rationality

The directed graph in Fig. 4 gives a visual representation of how method prescriptions,
goals and value are related. It shows that Goal 1 is achieved by following the Method
Prescription. Goal 2 is a goal on a higher level, which Goal 1 is a means to achieve
[11]. Goal 1 is anchored in Value 1 and Value 2, which in turn are anchored in Value
3 and Value 4. Goal 2 is anchored in Value 5.

 Why Software Engineers Do Not Keep to the Principle 403

Value 1

Value 3 Value 4

Value 2

Method
prescription

Method
prescription

Value 5

Goal 1Goal 1 Goal 2Goal 2

Fig. 4. Visual representation of public rationality through goals and values

3 Research Method

A qualitative research approach with structured interviews [20] was used in this
research. A visual presentation of the adopted research approach is shown in Fig. 5
and explored in the remainder of this section.

Model of public
rationality
(graph with

goals and values)
Section 3.1

Model of public
rationality
(graph with

goals and values)
Section 3.1

Questionnaire
used for

interviews with
engineers

Section 3.2

Questionnaire
used for

interviews with
engineers

Section 3.2

Method prescriptions
expressing public

rationality
Section 3.1

Method prescriptions
expressing public

rationality
Section 3.1

Private rationality
explicated
Section 3.2

Private rationality
explicated
Section 3.2

Basis
for

Why don’t developers
(strictly) keep to the

principle of separating
logic from display?

Section 3.3

Why don’t developers
(strictly) keep to the

principle of separating
logic from display?

Section 3.3

Initial questionnaire
used for interviews with

senior engineers
Section 3.2

Initial questionnaire
used for interviews with

senior engineers
Section 3.2

Interviews
lead to

Iteration

Iteration

Basis
for

Interviews lead toComparison of public and
private rationality answers

Fig. 5. Research design

3.1 Capturing Public Rationality

As described above, expressed method-prescriptions are the foundation for the ideal
typical method-in-concept and as such are expressions of public rationality. By
analysing these, the goals1 and values that underpin them can be explicated. The
analysis results in a graph, such as the one in Fig. 4. The method-in-concept is in our

1 These are the goals of the method creator(s), which they aim to communicate through method

prescriptions [2].

 engineers

404 M. Häggmark and P.J. Ågerfalk

case rather generic since the principle of separating business-logic from display does
appear, as mentioned above, in many methods. Hence, we need to capture the essence
of the principle by arriving at a synthesis from sources that represents frameworks
widely used (see Section 4.1). This synthesis constitutes the foundation for
elaborating prescriptions, goals, values and their interrelationships, arriving at a
model depicting the public rationality (visualized in Fig. 6 and Fig. 7).

3.2 Capturing Private Rationality

The next step is then to test which of the ‘public rationality values’ that are in
accordance with the engineers’ values, thus elaborating the private rationality by
identifying how they use the method prescriptions. Asking questions that capture
those values illuminate the engineers’ value base. As explained above, this value base
is the foundation for their goals, so focusing the values during interviews will
implicitly extend to the goals.

The goal-value-model is the input for designing a questionnaire used in the
interviews. One or several questions capture each value in the model. For example,
the value ‘It is easier to locate and determine problems/bugs in applications composed
of well demarcated parts’, is captured by the question: ‘Do you consider it easier or
harder to track down problems/bugs when the application separates logic from
display?’ Repeating this step to cover each value results in a questionnaire suitable for
structuring the interviews. To clarify which question(s) captures which value(s), a
table, such as Table 1, is used2. The actual values identified are presented in Fig. 6
and Fig. 7 in Section 4.1.

Table 1. Values and the corresponding questions

Value Question
V1 Q1-Q4 Q10
V2 Q5 Q8
V3 Q3-Q6
… …

The private rationality was explicated by performing (and recording) semi-
structured open-ended interviews [20, 28]. This approach gives the opportunity to get
a focused, thorough, insightful understanding of the engineers’ perspective on tier-
based development3, enabling the engineers to speak freely about their work. The
selection of respondents was inspired by the ethnographic principle of selecting a
representative individual for initial enquiry who then suggests further respondents.
The number of respondents is then increased until saturation is achieved – that is,
until the marginal utility of further interviews are deemed insignificant. Such an
approach avoids researcher bias and allows for more objective results. Initially a
group interview was carried out with two highly experienced senior engineers/project
managers. The questionnaire was here used as a guide, but the aim of this interview
was primarily to find weaknesses and improve it for further interviews. This interview

2 For the complete questionnaire and value-question-table used in this research see http://

www.csis.ul.ie/staff/paragerfalk/CAiSE2006-Q-V.pdf
3 Separating business logic from is typically implemented by structuring the software into tiers.

 Why Software Engineers Do Not Keep to the Principle 405

resulted in a questionnaire with more sub-questions and less ambiguity. The improved
questionnaire was then used to interview a total of five engineers individually. All
respondents were notified of the study in advance, but did not get the questions
beforehand. The interviews lasted for 30–50 minutes each.

3.3 Analysing Rationality Resonance

The differences in values (i.e. the method-creators’ values versus the engineers’ values)
lead to an understanding of why these engineers do not keep to the principle, thus
revealing information about the method usage tension in terms of rationality-resonance.
Comparing each ‘public rationality value’ from the model with the ‘private rationality
values’ from the interviews shows which values differ, thus answering the question why
engineers do not follow the principle of separating business-logic from display.

3.4 Organizational Context for the Interviews

The interviews took place in the IT department of Statistics Sweden – the Swedish
public authority responsible for all official statistics. The IT department provides the
organization with applications for gathering and processing data. Typically, data is
gathered via web-based clients, which is later processed in windows-based clients.

The organization has previously mainly developed small systems. An application
with 1–10 users (method statisticians) has been the most common application.
Increasing demands for larger applications, and for integration of various systems, has
led the-organization to leave their regular Visual Basic environment in favour of the
object oriented (OO) multi-tier based .NET-framework. The respondents were all
experienced engineers with good knowledge of both environments.

4 Results and Analysis

This section gives a theoretical presentation of the principle of separating business
logic from display, explicating the reasons behind the method prescriptions. The goals
and values of the method prescriptions are then analysed and presented in Fig. 6 and
Fig. 7, followed by the result from the interviews. All references to specific method
prescriptions (P), goals (G) and values (V) in this section refer to those figures.

4.1 The Pros and Cons of Separating Business Logic from Display

A most straightforward way to develop a system could be to interweave the display
with the business logic. This is probably not a bad idea if the application is relatively
small, supports a single type of client, and is not expected to be considerably extended
or updated. Dividing an application into different tiers will increase its complexity
since extra classes will be required to handle the separation of display and business
logic [14, 19, 23, 27].

The idea behind structuring a system in tiers is to achieve separation of concerns
(G3, G6, G7, V3–V5, V7, V13); it is much more difficult to change the display if it
depends on and is built into the business logic, and vice versa [8, 16, 21]. Separation
of these areas of concern generally results in more flexible systems, with the ability to

406 M. Häggmark and P.J. Ågerfalk

support multiple types of clients (G1–G2, V1–V2) [16, 17]. From this reasoning, the
method prescriptions P1 and P2 become apparent.

Dividing the application into separate parts is a kind of encapsulation that enhances
the manageability and maintenance [8, 9, 17]. Because each task is contained within
its own object, it is easy to locate and determine where a problem exists (G3, V5)
[14, 19]. Designers can develop/update the display without the need to contact
programmers (V6–V10) [14, 19]. Thus, labour is divided according to different skill
sets (G4), as recommended by P4. This encapsulation and breaking down of large
tasks into smaller ones also provide for component reuse (G5, V2, V11–V13), either
within the project, or in other similar projects, giving rise to P3.

In general, the benefits of tier-separation arise when [14, 19, 27]:

1. The application will support multiple types of clients. Since the display is separated,
all that is needed is to create a new type of client, and let it access the business logic.

2. The business logic is likely to be updated or extended throughout its lifecycle.
3. The display is likely to be updated or extended throughout its lifecycle, for

example with new ‘skins’, to improve the looks.
4. The development team develops/maintains more than one application; components

can be reused between (but also within) projects.
5. The development team is composed of individuals with different skill sets.

Fig. 6 and Fig. 7 depict a graph representation of the goals and values of the
principle of separating business logic from display and how they are related, i.e. it
depicts an explicit model of the public rationality.

P1
Construct

applications that
are able to support
multiple types of

clients

P1
Construct

applications that
are able to support
multiple types of

clients

V3
Applications

do get
extended/
updated

V1
It is worth the
extra effort to

prepare an
application for

extensions/updates

P2
Compose

applications of
well demarcated

parts

P2
Compose

applications of
well demarcated

parts

V4
Applications

composed of well-
demarcated parts
are easy to extend
(scale) and update

V5
It is easy to locate

and determine
problems/bugs in

applications
composed of well
demarcated parts

V2
Engineers think in

long-term

G1
Applications

support
multiple
types of
clients

G1
Applications

support
multiple
types of
clients

G2
Applications are
prepared to be
extended for

future support of
multiple types of

clients

G2
Applications are
prepared to be
extended for

future support of
multiple types of

clients

G3
Problems/bugs
are easy to find

G3
Problems/bugs
are easy to find

G6
Applications
are easy to

update/extend

G6
Applications
are easy to

update/extend

G7
Applications are

built with a
standardized

coherent
architecture

G7
Applications are

built with a
standardized

coherent
architecture

V13
Standardization is
good for common
understanding and

collaboration

V7
Demarcation

enhances
understanding

Fig. 6. Goals and values for the principle of separating business logic from display

 Why Software Engineers Do Not Keep to the Principle 407

P3
Reuse components

within and
between projects

P3
Reuse components

within and
between projects

V11
Reusing a
component

is less
work than
building a
new one

from
scratch

V12
Reusing components

leads to
standardization

V13
Standardization is
good for common
understanding and

collaboration

P4
Divide labour
according to

different skill sets.

P4
Divide labour
according to

different skill sets.

V9
Members of a

development team do
have different skills

V10
Members of a

development team
can’t accomplish
each others tasks

V6
Applications
composed by

demarcated parts
divides the

application into
different parts

suiting each skill set

V8
It is important to

demark
what is relevant

to each competence

V7
Demarcation

enhances
understanding

G4
Team members

divide labour
between them

G4
Team members

divide labour
between them

G5
Team members

Reuse components

G5
Team members

Reuse components

V2
Engineers think in

long-term

Fig. 7. Goals and values for the principle of separating business logic from display (continued)

4.2 Results from Interviews – Public Versus Private Rationality

This section is a synthesis of the result from the interviews. It is structured along the
four method prescriptions (see above) focusing differences and similarities (i.e. method
usage tension and rationality resonance) of what is found in the interviews (private
rationality) and what the theory/method-in-concept tells us (public rationality).

P1: Construct Applications that are Able to Support Multiple Types of Clients
The organization uses two-types of clients, windows clients and web clients in their
applications. It is always known beforehand if the application shall have windows
clients, web clients or both; a system has never been extended with a new type of
client afterwards. It is more common to build two applications instead of one
application with two types of clients. They do reuse components in the two different
applications. Their aim is to integrate applications, thus having different clients access
the same business logic, but so far this has not been achieved. The following goal
contradiction came up during the interviews:

‘Theoretically, it is possible just to add an extra client to an existing application. In
reality-though, you need to structure the application differently if it is a windows or
web application. With a windows application you can do a lot more, for example, you
can keep a big object with a lot of attributes in memory the whole time, there will
always be enough memory for this. In a-web application you need to be more careful
with the resources (like memory), since it is on a server (perhaps a web hotel), and
you don’t know how many will be using it simultaneously. If you choose-to adjust all
windows applications for web use, these applications will be a bit “handicapped”,
and not as advanced as they could be. The windows application functionality will then
not be fully utilized.’

408 M. Häggmark and P.J. Ågerfalk

Security issues-make it more complicated to add web clients to systems, since web
clients are not allowed direct access to the ‘inner’ servers. Data has to-be replicated
on special ‘outer’ servers in these-occasions.

As indicated above, the public rationality goals G1 (Applications support multiple
types of clients) and G2 (Applications are-prepared to be extended for future support
of multiple types of clients) were not really the goals of the organization. It was more
common to do a separate application for each client. This had partly to do with
security issues. The engineers also claimed that an application has to be structured
differently depending on what kind of client it will be used for; optimizing for one
type gives drawbacks for another, etc. G1 and G2 are not achieved in this
organization.

Value V1 (It is worth the extra effort to prepare an application for extensions/
updates), does not seem to hold the answer to why G1 and G2 is not fulfilled. The
answer lies in what is described above about structuring applications differently
depending on which types of clients it will have. The-engineers pretty-much say that
(this part of) the theory is too good to be true; it is impossible to put into practice. It
is-beyond this investigation to analyse this further, but there is a possibility that the
engineers had not fully understood the-method-in-concept. V2 (Engineers think in
long-term) is a succession of V1, and is therefore not possible to evaluate in this
context. However, it will be touched upon in the next section. The-value V3
(Applications do get extended/updated (in this case with additional types of clients)),
is not consistent with the values in the organization, since the systems were not to be
extended with new types of clients.

P2: Compose Applications of Well Demarcated Parts
P2 can be viewed at different granularities: on the higher granularity, there are the
different tiers, which constitute the well-demarcated parts. Within each tier (a lower
granularity), there is code, preferable well-demarcated pieces of code, for example
components. This is actually how the engineers structure their code; in predefined
tiers, and in each tier, different components.

The engineers found that the main gain of structuring applications in tiers is that
everyone will work and structure the application in a similar way. This results in
coherent, homogeneous and stable applications, leading to easier maintenance. The
biggest asset is the standardization benefit, namely that it is predefined where
different type of code is located, thus enhancing collaboration (like quickly get into
each others’ applications).

The statement ‘it is easier to program if some logic is put into the display tier’, from
one of the interviewees, may imply that full understanding of the benefits of tier
separation has not been achieved. It is difficult to say though, because other engineers
had a more conscious departure from the strict tier-separation, with clear arguments of
why they did what they did. They expressed that they would place input controls, such
as checking that correct values are filled out in a form, as well as event handling in the
display tier. This reduces transfer over the network and increases performance.
Sometimes they would do the input controls twice, both in the display and in the
business tier, to have all the logic gathered in the same place, and for extra security. A
third-part component demanded some logic to be put in the presentation tier; it was not
possible to solve it otherwise. This shows that they have done conscious adjustments of

 Why Software Engineers Do Not Keep to the Principle 409

the method prescription to achieve some articulated benefits. If there are drawbacks, and
whether the engineers are aware of these is beyond the scope of this investigation. For
example, if one starts to add logic into the display-tier, it will not be possible to use a
designer without programming experience any longer. Since there is no designer role
assigned, this drawback is probably not prominent in their situation.

The learning threshold appeared to be the main drawback with tier-based
development. The topic came up a few times in each interview when addressing issues
of understanding, updating and extending applications. The engineers experienced the
learning process as incremental, and in the beginning it was more difficult to understand
systems structured in tiers (a necessity for making updates and extensions). It took about
a year to achieve proficiency in extending and updating applications using the
separation principle. Most engineers thought it would take about the same amount of
time to create a tier-based application as one where display and business logic is
entangled. They found it a little difficult to compare though, since they had usually
developed smaller systems before. As one engineer expressed it ‘larger systems require
much more planning and structure, especially if they are being updated later on’. There
seems to be a common opinion that the benefits of tier separated applications mainly
appears when building larger systems.

The engineers found both advantages and disadvantages with regards to error
handling. If it was obvious in which tier the bug was, the tier structure was advantageous,
otherwise you have to run up and down in the tiers, actually taking more time, making it
a disadvantage.

The engineers apparently aim to fulfil the goals attached to this method prescription,
i.e. there is a foundation for rationality resonance. A closer look at the goals shows that
the engineers did aim for G3 (Problems/bugs are easy to find), but did not think tier
separation always helps achieving it. Tier separation did help achieving G6
(Applications are easy to update/extend). The main gain was G7 (Applications are built
with a standardised coherent architecture).

The underlying values also match: The fact that applications did get extended/updated
(V3) may have contributed to the engineers’ interest in building general reusable
components, and their positive attitude to the ones that had been developed so far. They
kept to the tier-separation in most cases, even though it took some extra work. This
indicates they do think it is worth the extra effort to prepare an application for
extensions/updates (V1) and that they do think in long-term (V2). The engineers were of
the opinion that applications composed of well-demarcated parts are easy to extend
(scale) and update (V4). The largest application developed in this organization so far has
a couple of hundred users. Scaling is therefore not relevant to talk about since the
applications are too small. When it comes to locating and determining problems/bugs
(V5), tier-based applications had both advantages and disadvantages. The main gain of
tier-based architecture was considered the standardization benefit, which underpinned
common understanding and collaboration (V13) and that demarcation enhances
understanding (V7).

P3: Reuse Components Within and Between Projects
This prescription is very closely coupled with the previous one, so the interview
findings from the above section contributes to the understanding of this section too.

410 M. Häggmark and P.J. Ågerfalk

The engineers experienced that updating the application often led to partly
rebuilding it. At this stage they often realized that things could be done in a more
general manner. Through this type of development, general reusable components
emerged, creating a library of components within the organization. This was a
conscious process led by a project group, with the aim to create their own standard.

The engineers definitely aim to reuse components (G5). They certainly also
believed that reusing a component is less work than building a new one from scratch
(V11). Developing a general component does take a little more time than developing
one for a particular application, but is paid back in the next application. It is clear that
reuse of components leads to standardization (V12), which is good for common
understanding and for collaboration (V13).

P4: Divide Labour According to Different Skill Sets
The engineers had general competence in the different types of skills needed for
developing applications. The demarcations into different skill sets appear on the
component level, not on the tier level (as in display-designer versus programmer) as the
method-in-concept advocates. Some engineers were slightly more specialized in
database programming, while others had a bit more feel for user interface programming.
There are no designers without programming experience within the organization, so the
benefit of being able to use them to create the display-tier could not be explored.

Goal G4 (team members divide labour between them according to different skill
sets) is not really a goal of this organization. The values associated with it do not
correspond to the engineers’ values either. Since the members of the development
team do not have different skills (V9), it is not important to demark what is relevant to
each competence (V8) and members of a development team actually can accomplish
each other’s tasks (V10). This is, of course, specific to this organization.

Value V6 (Applications composed by demarcated parts divides the application into
different parts, suiting each skill set) must (just as above) be discussed on the two
different granularity levels. On the component level, this is partly true, but on the tier
level there is no division into skill sets. The same reasoning applies to V7
(Demarcation enhances understanding).

4.3 Discussion

From the above we can see that the engineers in most cases did conscious departures
from the method, which is in line with previous research [6, 25]. The method
prescriptions did not make sense in their strict form and were therefore not useful,
which is a must for successful method tailoring [2, 22].

The statement ‘it is easier to program if some logic is put in the display-tier’ may
imply that there is a lack of understanding (as suggested in [5]), and also a sign of
short-term thinking [19]. This can be viewed as a goal contradiction – that the
personal process goal (easy to program) is favoured before the quality of the product
(software); aiming for one goal, gives negative results for another. This issue, to
actually put logic into the display-tier is a bit contradictive to the result that the main
gain of structuring applications this way is that you know where different type of code
is located. The actual rules about what should be put where were appreciated since it
made it easier to understand each other’s applications. Perhaps the idea about

 Why Software Engineers Do Not Keep to the Principle 411

enforcing separation [19] would increase this gain even further? The idea that
engineers think in short-term does not apply to the bigger picture of this study though.

The fact that the engineers had to balance different factors and prioritized, e.g.
security and performance above keeping to the principle is not surprising. The
existence of contradictory goals in ISE is well-known, and the trade-offs between the
goals and values brought to the fore in this study and other ISE goals and values
would be interesting to explore further. Although this is beyond the scope of this
study, the same analytic framework could likely be useful in such an endeavour.

5 Conclusion

Generally speaking, engineers do not keep to the principle of separating business
logic from display because in some respects it does not help achieving their goals. In
these cases, engineers make conscious departures from the method prescriptions, thus
tailoring the method to suit their needs.

This study also revealed more specific reasons for tailoring the principle: Business
logic was sometimes placed in the display-tier because ‘it made it easier to program’,
‘it improved performance’, and ‘a third part component demanded it’. All engineers
in the study had similar skill sets, so this caused no misunderstandings. Multiple types
of clients hardly ever occurred in the study. The engineers were confident that an
application could be efficiently optimized for one type of client; a benefit that is lost
in case of systems with multiple types of client. This issue is not mentioned in the
literature, thus indicating either that the drawbacks are not explicated, or that the
engineers have not understood the method-in-concept. If the drawbacks are
suppressed in the method-in-concept, this may be the first and foremost answer to
why engineers choose not to follow it.

The principle of separating business logic from display is used in a wide range of
software engineering efforts today. It is also well known that engineers are ‘cheating’
with it, thus potentially deteriorating the quality of the software [19]. This investigation
contributes to our understanding of why engineers do this, hence holds the key to how
this can be overcome. Non-strict use of the principle gave other benefits, not explicated
by the method-in-concept, showing that method tailoring is important. The study also
shows that the concept of method rationale is a useful tool for addressing these issues.

This qualitative study provides examples of why developers do not keep to the
principle of separating-business logic from display – and, in line with previous
research, suggests that departure from the principle is often conscious and well-
motivated. Given the small scale of the study, hard conclusions are obviously difficult
to draw. For more generalizable results, a larger study including several more
engineers would be required. It would also be interesting to explore to what extent the
same results would appear in a different development environment. Perhaps the
results from this study are particular for the .NET-environment, whereas other issues
could be connected to other development environments. For example, the principle
obviously relates to the Model View Controller (MVC) pattern which is widely used
(it can indeed be seen as subset of the MVC pattern). In order to understand the
influence of contradictions between higher level goals, the interplay between this
principle and other software engineering principles needs to be studied as well.

412 M. Häggmark and P.J. Ågerfalk

References

1. Ågerfalk, P. J., Åhlgren, K.: Modelling the Rationale of Methods. In: M. Khosrowpour,
(ed.): Proceedings of the 10th Information Resources Management Association
International Conference. (1999) 184-190

2. Ågerfalk, P. J., Fitzgerald, B.: Methods as Action Knowledge: Exploring the Concept of
Method Rationale in Method Construction, Tailoring and Use. In: T. Halpin, J. Krogstie,
and K. Siau, (eds.): Proceedings of EMMSAD'05. (2005) 413-426

3. Ågerfalk, P. J., Wistrand, K.: Systems Development Method Rationale: A Conceptual
Framework for Analysis. In: Proc. 5th International Conference on Enterprise Information
Systems (ICEIS 2003) 185–190

4. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-Modelling Based Assembly Techniques
for Situational Method Engineering. Information Systems 24 (1999) 209-228

5. Dewan, P.: Teaching Inter-Object Design Patterns to Freshmen. In: Proc. SIGCSE'05
(2005)

6. Fitzgerald, B.: The Use of Systems Development Methodologies in Practice: A Field
Study. Information Systems Journal 6 (1997) 201-212

7. Fitzgerald, B., Russo, N. L., Stolterman, E.: Information Systems Development: Methods
in Action. McGraw-Hill, Berkshire, UK (2002)

8. Forsberg, C., Sjöström, A.: Pocket PC Development in the Enterprise. Addison Wesley,
London, UK (2002)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

10. Goldkuhl, G.: Design Theories in Information Systems: A Need for Multi-Grounding.
Journal of Information Technology Theory and Application 6 (2004) 59-62

11. Goldkuhl, G., Röstlinger, A.: Joint Elicitation of Problems: An Important Aspect of
Change Analysis. In: D. E. Avison, J. E. Kendall, and J. I. DeGross, (eds.): IFIP WG8.2
on Human, Social, and Organizational Aspects of Information Systems Development.
(1993) 107–125

12. Jayaratna, N.: Understanding and Evaluating Methodologies. McGraw-Hill, London
(1994)

13. Karlsson, F.: Method Configuration, Method and Computerized Tool Support. Doctoral
Dissertation. University of Linköping (2005)

14. Levi, N.: Java 2 Web Developer Cerification Study Guide. SYBEX inc., Alameda,
California, USA (2003)

15. Lings, B., Lundell, B.: Method-in Action and Method-in-Tool: Some Implications for
CASE. In: Proc. 6th International Conference on Enterprise Information Systems (ICEIS
2004) 623-628

16. Nash, M.: Java Frameworks and Components: Accelerate Your Web Application
Development. Cambridge University Press, Cambridge, UK (2003)

17. Parnas, D. L.: On the Criteria to Be Used in Decomposing Systems into Modules.
Communications of the ACM 15 (1972) 1053-1058

18. Parnas, D. L., Clements, P. C.: A Rational Design Process: How and Why to Fake It. IEEE
Transactions on Software Engineering 12 (1986) 251-257

19. Parr, T.: Enforcing Strict Model-View Separation in Template Engines. In: Proc.
WWW2004, ACM (2004)

20. Patton, M. Q.: Qualitative Evaluation and Research Methods. SAGE Publications,
Newbury Park California, USA (1990)

 Why Software Engineers Do Not Keep to the Principle 413

21. Pree, W.: Design Patterns for Object-Oriented Software Development. Addison-Wesley
(1995)

22. Riemenschneider, C. K., Hardgrave, B. C., Davis, F. D.: Explaining Software
Development Acceptance of Methodologies: A Comparison of Five Theoretical Models.
IEEE Transactions on Software Engineering 28 (2002) 1135-1145

23. Rogue Wave Software, I.: Distributed MVC: An Architecture for Windows DNA
Applications. Boulder, Colorado USA (1999)

24. Rossi, M., Ramesh, B., Lyytinen, K., Tolvanen, J.-P.: Managing Evolutionary Method
Engineering by Method Rationale. Journal of the Association for Information Systems 5
(2004) 356-391

25. Russo, N. L., Stolterman, E.: Exploring the Assumptions Underlying Information Systems
Methodologies. Information Technology & People 13 (2000) 313-327

26. Stolterman, E., Russo, N. L.: The Paradox of Information Systems Methods: Public and
Private Rationality. In: Proc. The British Computer Society 5th Annual Conference on
Methodologies (1997)

27. Sun Microsystems, I. Java Blueprints: Model-View-Controller. Sun Microsystems, Inc
[Online]. Available: http://java.sun.com/blueprints/patterns/MVC-detailed.html

28. Yin, R. K.: Case Study Research, Design and Methods, 2nd Edition. SAGE, London
(1994)

	Introduction
	Methods and Their Rationale
	Public Rationality Analysis Through Goals and Values
	Modelling Public Rationality

	Research Method
	Capturing Public Rationality
	Capturing Private Rationality
	Analysing Rationality Resonance
	Organizational Context for the Interviews

	Results and Analysis
	The Pros and Cons of Separating Business Logic from Display
	Results from Interviews – Public Versus Private Rationality
	Discussion

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

