Beagle™: Semantically Enhanced Searching
and Ranking on the Desktop

Paul-Alexandru Chirita, Stefania Costache, Wolfgang Nejdl, and Raluca Paiu

L3S Research Center / University of Hanover
Deutscher Pavillon, Expo Plaza 1
30539 Hanover, Germany
{chirita, ghita, nejdl, paiu}@l3s.de

Abstract. Existing desktop search applications, trying to keep up with
the rapidly increasing storage capacities of our hard disks, offer an in-
complete solution for information retrieval. In this paper we describe our
Beagle™™ desktop search prototype, which enhances conventional full-
text search with semantics and ranking modules. This prototype extracts
and stores activity-based metadata explicitly as RDF annotations. Our
main contributions are extensions we integrate into the Beagle desktop
search infrastructure to exploit this additional contextual information for
searching and ranking the resources on the desktop. Contextual informa-
tion plus ranking brings desktop search much closer to the performance
of web search engines. Initially disconnected sets of resources on the
desktop are connected by our contextual metadata, PageRank derived
algorithms allow us to rank these resources appropriately. First experi-
ments investigating precision and recall quality of our search prototype
show encouraging improvements over standard search.

1 Introduction

The capacity of our hard-disk drives has increased tremendously over the past
decade, and so has the number of files we usually store on our computer. It is
no wonder that sometimes we cannot find a document any more, even when
we know we saved it somewhere. Ironically, in quite a few of these cases, the
document we are looking for can be found faster on the World Wide Web than
on our personal computer.

Web search has become more efficient than PC search due to the boom of web
search engines and to powerful ranking algorithms like the PageRank algorithm
introduced by Google [12]. The recent arrival of desktop search applications,
which index all data on a PC, promises to increase search efficiency on the desk-
top. However, even with these tools, searching through our (relatively small set
of) personal documents is currently inferior to searching the (rather vast set of)
documents on the web. This happens because these desktop search applications
cannot rely on PageRank-like ranking mechanisms, and they also fall short of
utilizing desktop specific characteristics, especially context information.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 348-362 2006.
© Springer-Verlag Berlin Heidelberg 2006

Beagle™™: Semantically Enhanced Searching 349

We therefore have to enhance simple indexing of data on our desktop by
more sophisticated ranking techniques, otherwise the user has no other choice
but to look at the entire result sets for her queries — usually a tedious task.
The main problem with ranking on the desktop comes from the lack of links
between documents, the foundation of current ranking algorithms (in addition
to TF/IDF numbers). A semantic desktop offers the missing ingredients: By
gathering semantic information from user activities, from the contexts the user
works inl!], we build the necessary links between documents.

We begin this paper by presenting related work in Section 2 continuing with
our proposed desktop system architecture described in detail in Section Bl In
this paper we enhance and contextualize desktop search based on both resource
specific and semantic metadata collected from different available contexts and
activities performed on a personal computer. We describe the semantics of these
different contexts by appropriate ontologies in Section B3] and then propose a
ranking algorithm for desktop documents in Section [3.4l For this latter aspect,
we focus on recent advances of PageRank-based ranking, showing how local
(i.e., context-based) and global ranking measures can be integrated in such an
environment. We are implementing our prototype on top of the open source
Beagle project [I0], which aims to provide basic desktop search in Linux. Section
@ gives a detailed description of our prototype, and shows how we extended
Beagle with additional modules for annotating and ranking resources. In Section
Bl we investigate the quality of our algorithms in a typical desktop search scenario,
and illustrate how our extended Beagle™™ search infrastructure improves the
retrieval of search results in terms of number (recall) and order (precision) of
results, using context and ranking based on this information.

2 Previous Work

The difficulty of accessing information on our computers has prompted several
first releases of desktop search applications recently. The most prominent exam-
ples include Google desktop search [I1] (proprietary, for Windows) and the Bea-
gle open source project for Linux [I0]. Yet they include no metadata whatsoever
in their system, but just a regular text-based index. Nor does their competitor
MSN Desktop Search [I4]. Finally, Apple Inc. promises to integrate an advanced
desktop search application (named Spotlight Search [2]) into their upcoming op-
erating system, Mac OS Tiger. Even though they also intend to add semantics
into their tool, only explicit information is used, such as file size, creator, or
metadata embedded into specific files (images taken with digital cameras for
example include many additional characteristics, such as exposure information).
While this is indeed an improvement over regular search, it still misses contextual
information often resulting or inferable from explicit user actions or additional
background knowledge, as discussed in the next sections.

! Studies have shown that people tend to associate things to certain contexts [I7], and
this information should be utilized during search. So far, however, neither has this
information been collected, nor have there been attempts to use it.

350 P.-A. Chirita et al.

Swoogle [7] is a search and retrieval system for finding semantic web docu-
ments on the web. The ranking scheme used in Swoogle uses weights for the
different types of relations between Semantic Web Documents (SWD) to model
their probability to be explored. However, this mainly serves for ranking between
ontologies or instances of ontologies. In our approach we have instances of a fixed
ontology and the weights for the links model the user’s preferences.

Facilitating search for information the user has already seen before is also the
main goal of the Stuff I've Seen (SIS) system, presented in [§]. Based on the fact
that the user has already seen the information, contextual cues such as time,
author, thumbnails and previews can be used to search for and present informa-
tion. [8] mainly focuses on experiments investigating the general usefulness of
this approach though, without presenting more technical details.

The importance of semantically capturing users’ interests is analyzed in [IJ.
The purpose of their research is to develop a ranking technique for the large
number of possible semantic associations between the entities of interest for a
specific query. They define an ontology for describing the user interest and use
this information to compute weights for the links among the semantic entities. In
our system, the user’s interest is a consequence of her activities, this information
is encapsulated in the properties of the entities defined, and the weights for the
links are manually defined.

An interesting technique for ranking the results for a query on the semantic
web takes into consideration the inferencing processes that led to each result
[16]. In this approach, the relevance of the returned results for a query is com-
puted based upon the specificity of the relations (links) used when extracting
information from the knowledge base. The calculation of the relevance is how-
ever a problem-sensitive decision, and therefore task oriented strategies should
be developed for this computation.

3 An Architecture for Searching the Semantic Desktop
3.1 Overview

This chapter will present our 3-layer architecture for generating and exploiting
the metadata enhancing desktop resources. At the bottom level, we have the
physical resources currently available on the PC desktop. Even though they can
all eventually be reduced to files, it is important to differentiate between them
based on content and usage context. Thus, we distinguish structured documents,
emails, offline web pages, general filedd and file hierarchies. Furthermore, while all
of them do provide a basis for desktop search, they also miss a lot of contextual
information, such as the author of an email or the browsing path followed on a
specific web site. We generate and store this additional search input using RDF
metadata, which is placed on the second conceptual layer of our architecture.
Finally, the uppermost layer implements a ranking mechanism over all resources
on the lower levels. An importance score is computed for each desktop item,

2 Text files or files whose textual content can be retrieved.

Beagle™™: Semantically Enhanced Searching 351

supporting an enhanced ordering of results within desktop search applications.
The architecture is depicted in Figure [Il In the next subsections we describe
each of its layers following a bottom-up approach.

Aggregated Ranking System

T 1
F o AN | Ranking from Recommendalions |
S';:ids%i(:‘:s TrZ?]gr!:?r%d | Ranking from WebiPa es, Arlicles, elc |
{Number of i 9 ges, . elo.
Accesses, Last - -
Access, etc.) Conlexts | Topic Based Clustering |
T

RDF Semantic Information Layer
Activity Based and Resource Specific Metadata

Existing Desktop Infrastructure
File System: Structured Documents, Emails, Off-line Web
Pages, Files and File Hierarchies, etc.

Fig. 1. Desktop Ranking System Architecture

3.2 Current Desktop Infrastructure and Its Limitations

Motivation and Overview. Today the number of files on our desktops can
easily reach 10,000, 100,000 or more. This large amount of data can no longer
be ordered with manual operations such as defining explicit file and directory
names. Automatic solutions are needed, preferably taking into account the ac-
tivity contexts under which each resource was stored/used. In our prototype we
focus on three main working contexts of email exchanges, file procedures (i.e.,
create, modify, etc.), and web surfing. Furthermore, we investigate an additional
extended context related to research and scientific publications. In the follow-
ing paragraphs, we discuss how the resources associated to these contexts are
currently encountered, and which (valuable) information is lost during their uti-
lization. Subsequent sections present solutions to represent this information and
exploit it for desktop search applications.

Email Context. One of the most flourishing communication medium is surely
email communication. International scientific collaboration has become almost
unthinkable without electronic mail: Outcomes of brainstorming sessions, inter-
mediate versions of reports, or articles represent just a few of the items exchanged
within this environment. Similarly, Internet purchasing or reservations are usu-
ally confirmed via email. Considering the continuous increase of email exchanges,
enhanced solutions are necessary to sort our correspondence. More, when stor-
ing emails, a lot of contextual information is lost. Most significant here is the
semantic connection between the attachments of an email, its sender and subject
information, as well as the valuable comments inside its body. This information
should be explicitly represented as RDF metadata, to enable both enhanced
search capabilities for our inbox, as well as the exploitation of the semantic links

352 P.-A. Chirita et al.

between desktop files (e.g., PDF articles stored from attachments), the person
that sent them to us and the comments he added in the email body.

Files and File Hierarchy Context and Web Cache Context. Similar to
the discussion above, various semantic relationships exist in other contexts such
as file and web cache context. Due to space limitations, we refer the reader to
[5], where we proposed several solutions to enrich the information associated to
file and directory names, as well as to previously visited resources on the Web.

Working with Scientific Publications. Research activities represent one of
the occupations where the need for contextual metadata is very high. The most
illustrative example is the document itself: Where did this file come from? Did
we download it from CiteSeer or did somebody send it to us by email? Which
other papers did we download or discuss via email at that time, and how good
are they (based on a ranking measure or on their number of citations)? We
might remember the general topic of a paper and the person with whom we dis-
cussed about it, but not its title. These situations arise rather often in a research
environment and have to be adressed by an appropriate search infrastructure.

3.3 RDF Semantic Information Layer

Motivation and Overview. People organize their lives according to prefer-
ences often based on their activities. Consequently, desktop resources are also
organized according to performed activities and personal profiles. Since, as de-
scribed above, most the information related to these activities is lost on our
current desktops, the goal of the RDF semantic information layer is to record
and represent this data and to store it in RDF annotations associated to each

Sz
e

“/‘, Pubilication }-’-"

Directory | DateOfCreation | | DateQfChanga]
5 " ¥ x

=,
T § .
peedneaRene_of e i - ot

- 1N _ -~ 1H__. F g
= areciuzumar ot arecducuzzar af ey

Fig. 2. Contextual Ontology for the Semantic Desktop

Beagle™™: Semantically Enhanced Searching 353

resource. Figure [2] depicts an overview image of the ontology that defines ap-
propriate annotation metadata for the context we are focusing on in this paper.
The following paragraphs will describe these metadata in more detail.

Email Metadata. Basic properties for the email context refer to the date when
an email was sent or accessed, as well as its subject and body text. The status of
an email can be described as seen/unseen or read/unread. A property “reply to”
represents email thread information, the “has attachment” property describes a
1:n relation between an email and its attachments. The “sender” property gives
information about the email sender, which can be associated to a social network-
ing trust scheme, thus providing valuable input for assessing the quality of the
email according to the reputation of its sender.

File and Web Cache Specific Metadata. For these, we again refer the reader
to our previous work [5] which describes the ontologies associated to these ac-
tivity contexts. An overview can be found in the lower half of Figure

Scientific Publications Metadata. The Publication class represents a spe-
cific type of file, with additional information associated to it. The most common
fields are “author”, “conference”, “year”, and “title”, which comprise the regu-
lar information describing a scientific article. Additionally, we store the paper’s
CiteSeer ID if we have it. The publication context is connected to the email
context, if we communicate with an author or if we save a publication from an
email attachment. Of course, since each publication is stored as a file, it is also
connected to the file context, and thus to the file specific information associated

to it (e.g., path, number of accesses, etc.).

3.4 Aggregated Ranking System

Motivation and Overview. As the amount of desktop items has been increas-
ing significantly over the past years, desktop search applications will return more
and more hits to our queries. Contextual metadata, which provide additional in-
formation about each resource, result in even more search results. A measure of
importance is therefore necessary, which enables us to rank these results. The
following paragraphs describe such a ranking mechanism, based on the Google
PageRank algorithm [12].

Basic Ranking. Given the fact that rank computation on the desktop would
not be possible without the contextual information, which provides semantic
links among resources, annotation ontologies should describe all aspects and re-
lationships among resources influencing the ranking. The identity of the authors
for example influences our opinion of documents, and thus “author” should be
represented explicitly as a class in our publication ontology.

Second, we have to specify how these aspects influence importance. Object-
Rank [4] has introduced the notion of authority transfer schema graphs, which
extend schemas similar to the ontologies previously described, by adding weights
and edges in order to express how importance propagates among the entities and
resources inside the ontology. These weights and edges represent authority trans-

354 P.-A. Chirita et al.

fer annotations, which extend our context ontologies with the information we need
to compute ranks for all instances of the classes defined in the context ontologies.

Figure Bl depicts our context ontology plus appropriate authority transfer an-
notations. For example, authority of an email is split among the sender of the
email, its attachment, the number of times that email was accessed, the date
when it was sent and the email to which it was replied. If an email is important,
the sender might be an important person, the attachment an important one
and/or the number of times the email was accessed is very high. Additionally,
the date when the email was sent and the previous email in the thread hierarchy
also become important. As suggested in [4], every edge from the schema graph is
split into two edges, one for each direction. This is motivated by the observation
that authority potentially flows in both directions and not only in the direction
that appears in the schema: if we know that a particular person is important,
we also want to have all emails we receive from this person ranked higher. The
final ObjectRank value for each resource is calculated based on the PageRank
formula (presented in Section 3.

Using External Sources. For the computation of authority transfer, we can
also include additional external ranking sources to connect global ranking com-
putation and personalized ranking of resources on our desktop. These external
ranking sources are used to provide the seed values for the calculation of the

Citefesr

Conference '—
FOAF trusts ~
e Author J s
‘ “u Tear oo

- Person o N o
=L, o - -
e - i Publication =
- o = =

predecESsor of 0 Tvee. - T i L
et - e F .,
',/ /\D.S R K Enown ot =
.
o o o Conference [== === .
ra Datelent NriOflccesses % R *
J w

.
G
-,

;
\ 2 0.3 .3
0.z |
r jo.5 F 0.3 0.3

1
1
1
H
1
s 1
i H i
Sender)1'—'—{. Author | | Enown Year D 1
‘ ¥ i
," T 0.z 0.3] %1 predecedsor_of |
- Y f !
o Y : !
Stored / i ‘
Publication K S
(== —me 37

o i
’/ departed to "\‘

\
/\0.3 Y

VizitedllehPage |

‘:’0.4

Ne A
Cites e

/
0.3 2 ‘i-\Direct.ory ‘ | DateQfCreation | predacessor_al]ﬁ;
v
\ -
‘nredecessor_of ¢ b 0.3 0.3 -
", e 2 o
T e E: containd™~e.. predecessor_of .=

Fig. 3. Contextual Authority Transfer Schema

Beagle™™: Semantically Enhanced Searching 355

personal ranking. Our prototype ontology includes three global ranking services,
one returning Google ranks, the second one ranks computed from the CiteSeer
database and the last one from the social network described with FOAF.

The ObjectRank value for each resource is calculated based on the PageRank
formula and the seed values for this computation integrate information from
external ranking systems and personalized information. We use the following
external ranking systems as the most relevant for our purpose:

— Ranking for articles. Co-citation analysis is used to compute a primary rank
for the article [15]. Because of the sparse article graph on each desktop this
rank should be retrieved from a server that stores the articles (in our case
all metadata from CiteSeer and DBLP).

— Recommendations. We may receive documents from other peers together
with their recommendations. These recommendations are weighted by a local
estimate of the sender’s expertise in the topic [9}6].

Personalization. Different authority transfer weights express different prefer-
ences of the user, translating into personalized ranking. The important require-
ment for doing this successfully is that we include in a users ontology all concepts,
which influence her ranking function. For example, if we consider a publication
important because it was written by an author important to us, we have to
represent that in our context ontology. Another example are digital photogra-
phies, whose importance is usually heavily influenced by the event or the location
where they were taken. In this case both event and location have to be included
as classes in our context ontology. The user activities that influence the ranking
computation have also to be taken into account, which translates to assigning
different weights to different contexts.

4 Beagle™ Prototype

Our current prototype is built on top of the open source Beagle desktop search
infrastructure, which we extended with additional modules: metadata generators,
which handle the creation of contextual information around the resources on the
desktop, and a ranking module, which computes the ratings of resources so that
search results are shown in the order of their importance. The advantage of our
system over existing desktop search applications consists in both the ability of
identifying resources based on an extended set of attributes — more results, and
of presenting the results according to their ranking — to enable the user to quickly
locate the most relevant resource.

4.1 Current Beagle Architecture

The main characteristic of our extended desktop search architecture is metadata
generation and indexing on-the-fly, triggered by modification events generated
upon occurrence of file system changes. This relies on notification functionalities
provided by the kernel. Events are generated whenever a new file is copied to

356 P.-A. Chirita et al.

hard disk or stored by the web browser, when a file is deleted or modified, when
a new email is read, etc. Much of this basic notification functionality is provided
on Linux by an inotify-enabled Linux kernel, which is used by Beagle.

Our Beagle™™ prototype keeps all the basic structure of Beagle and adds
additional modules that are responsible for generating and using the contextual
annotations enriching the resources on our desktop. The main components of
the extended Beagle prototype are Beagled™™ and Best™™, as seen in Figure
B "4+ being used to denote our extensions. Beagled™™ is the main module
that deals with indexing of resources on the desktop and also retrieving the
results from user queries. Best™™ is responsible for the graphical interface, and
communicates with Beagled™™ through sockets. When starting Beagle, the query
driver is started and waits for queries. The Best™™ interface is initialized, too,
and is responsible for transmitting queries to Beagled™ and visualization of
answers.

Beagled++ (%beagled) Best++ (%best [--I13s-ranking])
Socket

» Start a global scheduler thread " communication > ° Initialize the graphic interface

= Start the inotify thread » Send the queries to Beagle

+ Start the query driver * Receive the answers and

» Ready to accept queries display them

Fig. 4. Extended Beagle Desktop Search

4.2 Extending Beagle with Metadata Generators

Depending on the type and context of the file / event, metadata generation is
performed by appropriate metadata generators, as described in Figure Bl These
applications build upon an appropriate RDFS ontology as shown in [5], describ-
ing the RDF metadata to be used for that specific context. Generated metadata
are either extracted directly (e.g. email sender, subject, body) or are generated
using appropriate association rules plus possibly some additional background
knowledge. All of these metadata are exported in RDF format, and added to a
metadata index, which is used by the search application together with the usual
full-text index [13].

The architecture of our prototype environment includes four prototype meta-
data generators according to the types of contexts described in the previous
sections. We added a new subclass of the LuceneQueryable class, MetadataQue-
ryable, and, from this one, derived four additional subclasses, dealing with the
generation of metadata for the appropriate contexts (Files, Web Cache, Emails
and Publications). The annotations we create include the corresponding elements
depicted in the ontology graph Figure 2l They are described in detail in [5]. A
new one is the publication metadata generator, described in the next paragraph.

Publication Metadata Generator. For the experiments described in this
paper, we have implemented a metadata generator module which deals with
publications. For each identified paper, it extracts the title and tries to match

Beagle™™: Semantically Enhanced Searching 357

Fig. 5. Beagle Extensions for Metadata Support

it with an entry into the CiteSeer publications database. If it finds an entry, the
application builds up an RDF annotation file, containing information from the
database about the title of the paper, the authors, publication year, conference,
papers which cite this one and other CiteSeer references to publications. All an-
notation files corresponding to papers are merged in order to construct the RDF
graph of publications existing on one’s desktop.

4.3 Extending Beagle with a Ranking Module

Each user has his own contextual network / context metadata graph and for
each node in this network the appropriate ranking as computed by the algo-
rithm described in section [3.4l The computation of rankings is based on the link
structure of the resources as specified by the defined ontologies and the corre-
sponding metadata. We base our rank computation on the PageRank formula

r=d-A-r+(1-d)-e (1)

applying the random surfer model and including all nodes in the base set. The
random jump to an arbitrary resource from the data graph is modeled by the
vector e. [6] shows how, by appropriately modifying the e vector, we can take
the different trust values for the different peers sending information into account.
A is the adjacency matrix which connects all available instances of the existing
context ontology on one’s desktop. The weights of the links between the instances
correspond to the weights specified in the authority transfer annotation ontology
divide by the number of the links of the same type. When instantiating the
authority transfer annotation ontology for the resources existing on the users
desktop, the corresponding matrix A will have elements which can be either 0,
if there is no edge between the corresponding entities in the data graph, or they
have the value of the weight assigned to the edge determined by these entities, in
the authority transfer annotation ontology, divided by the number of outgoing
links of the same type.

358 P.-A. Chirita et al.

The original Beagle desktop search engine uses the facilities provided by
Lucene.NET for ranking the results, which means that Beagle’s hits are scored
only based on TF/IDF measures. Such a ranking scheme gives good results in
the case of documents explicitly containing the keywords in the query. Still,
as discussed above, TF/IDF alone is not sufficient, as it does not exploit any
additional hints about importance of information.

We have therefore implemented a new ranking scheme in Beagle™ ™, which
profits from the advantages offered by TF/IDF, but takes into account Object-
Rank scores as described in this paper. For all resources existing on the desktop
this scheme computes the ranks with our ObjectRank-based algorithm presented
above, and the resulting ranks are then combined with the TF/IDF scores pro-
vided by Lucene.NET using the following formula:

R'(a) = R(a) * TF x IDF(a), (2)

where:

a - represents the resource

R(a) - is the computed ObjectRank

TFxIDF(a) - is the TF/IDF score for resource a

This formula guaranties that the hits will have a high score if they both have
a high ObjectRank and a TF/IDF score.

The user is able to chose one of the two available ranking schemas: the one
provided by Beagle, based on TF/IDF measures, or the one we developed, based
on ObjectRank plus TF/IDF. The first scheme is implicit. For the second one,
users have to specify an additional parameter when starting the Best client:
%best —13s-ranking.

5 Experiments

5.1 Experimental Setup

We did a first evaluation of our algorithms by conducting a small scale user study.
Colleagues of ours provided a set of their locally indexed publications, some of
which they received as attachments to emails (thus containing rich contextual
metadata associated to them from the specific email fields). Then, each subject
defined her own queries, related to their activities, and performed search over
the above mentioned reduced images of their desktops. In total, 30 queries were
issued. The average query length was 2.17 keywords, which is slightly more than
the average of 1.7 keywords reported in other larger scale studies (see for example
[8]). Generally, the more specific the test queries are, the more difficult it is
to improve over basic textual information retrieval measures such as TExIDF.
Thus, having an average query length a bit higher than usual can only increase
the quality of our conclusions.

For comparison purposes, we sent each of these queries to three systems:
(1) the original Beagle system (with output selected and sorted using solely
TFxIDF), (2) an intermediate version of Beaglet™ enhanced only with activity

Beagle™™: Semantically Enhanced Searching 359

based metadata (using the same TFxIDF measure for ordering its output, but
giving more importance to metadata results than to regular desktop items), and
(3) the current Beagle™™, containing enhancements for both metadata support
and desktop ranking. For every query and every system, each user rated the top
5 output results using grades from 0 to 1, as follows: 0 for an irrelevant result,
0.5 for a relevant one, and 1 for highly relevant one.

5.2 Methodology

Even when semantic information (e.g., RDF annotations, etc.) is integrated as
part of a search system, the traditional measures from information retrieval
theory can and should still be applied when evaluating system performance. We
therefore used the ratings of our subjects to compute average precision and recall
values at each output rank [3]. In general, precision measures the ability of an
(information retrieval) system to return only relevant results. It is defined as:

. Number of Relevant Returned Results
Precision = (3)
Number of Returned Results
Recall is its complement: It measures the ability of a system to return all

relevant documents, and is computed using the formula below:

Recall — Number of Relevant Returned Results
~ Total Number of Relevant Results Available in the Entire System

(4)

Both measures can be calculated at any rank r, i.e., considering only the top
r results output by the application. For example, even if the system has returned
2000 hits for some user query, when calculating precision at the top-3 results, we
consider only these three as returned results. This is necessary for large scale envi-
ronments, such the World Wide Web, and more recently, the PC desktop, because
it impossible to check the relevance of all output results — even in the desktop en-
vironment, it is not uncommon to obtain several hundreds of search results to a
given query. Restricting the calculation of precision and recall to various ranks
is also useful in order to investigate the quality of the system at different levels.
Usually, in a healthy information retrieval system, as the rank level is increased,
recall is also increasing (the denominator remains the same, while the numerator
has the possibility to increase), whereas precision is decreasing (because most of
the relevant results should be at the very top of the list).

Another important aspect is calculating the total number of available relevant
results. For search engines, including desktop ones, an approximation must be
used, as the datasets they cope with are too large. In this paper, we consider
this amount to be equal to the total number of (unique) relevant results returned
by the three systems we investigated. For every query, each system returned 5
results, 15 in total. Thus, the minimum possible total number of relevant results
is 0 and the maximum is 15. Similarly, the maximum number of relevant results
a system can return is 5 (since it only outputs 5 results), indicating that the
recall will not necessarily be 1 when restricting the computation to rank 5. This
version of recall is called relative recall [3].

360 P.-A. Chirita et al.

= =
\

= E
=]
2 05
§ . i —&— Beagle
205 —8— Beagle+MD
g) & - —&— Beagle+MD+R
[‘___’__H— -
-
<0z

0.2

0.1

0 T T T T !
1 2 3 4 5
Rank

Fig. 6. Average Precision Results

5.3 Results and Discussion

As the main purpose of our experimental analysis was to produce a first estimate
of each system’s performance, we averaged the precision values at each rank from
one to five for all 30 queries submitted by our experts. The results we obtained
are depicted in Figure[6l We first notice that the current Beagle Desktop Search
is rather poor, containing more qualitative results towards rank 4 to 5, rather
than at the top of the result list. This is in fact explainable, since Beagle only uses
TFxIDF to rank its results, thus missing any kind of global importance measure
for the desktop resources. On the contrary, our first prototype, consisting of

049

(IR

07 e

- _/A/_F_,J
M —e— Beagle

05 —B— Beagle+MD

04 /‘// —&— Beagle+MD+R

03

02 _/-»0-”_/‘

0. - |

Average Relative Recall

Fig. 7. Average Relative Recall Results

Beagle™™: Semantically Enhanced Searching 361

Beagle enhanced with RDF metadata annotations, already performs very well.
An important reason for this high improvement is that metadata are mostly
generated for those resources with high importance to the user, whereas the other
automatically installed files (e.g., help files) are not associated with metadata,
and thus ranked lower. When we have metadata describing a desktop item,
more text is inherently available to search for, and thus this item is also easier
to find. Finally, the precision values are even higher for our second prototype,
which adds our desktop ranking algorithm to the metadata-extended version of
Beagle. Clearly, ranking pushes our resources of interest more towards the top
of the list, yielding even higher desktop search output quality.

In the second part of the evaluation, we drew similar conclusions with re-
spect to the average recall values (depicted in Figure [7): The recall of Beagle
is very low, whereas that of our prototypes is almost three times better (owing
to the additional information available as metadata, especially comments to the
paper included in the emails). The difference between our prototypes is rela-
tively small, which is correct, since recall analyzes the amount of good results
returned, and both our systems yield relevant results. We thus conclude that
enhancing Beagle with RDF metadata annotations significantly increases its re-
call (as metadata usually represents additional, highly relevant text associated
to each desktop file), whereas adding desktop ranking further contributes with
a visible improvement in terms of precision.

6 Conclusions and Future Work

We presented two main contributions that enhance traditional desktop search, fo-
cusing on how regular text-based desktop search can be enhanced with semantics
/ contextual information and ranking exploiting that information. Searching for
resources then will not only retrieve explicit results but also items inferred from
the users’ existing network of resources and contextual information. Maintaining
the provenance of information can help the search engine take into account the
recommendations from other users and thus provide more retrieved results. The
ranking module, by exploiting contextual information, improves retrieval preci-
sion and presentation of search results, providing more functionality to desktop
search.

There are quite a few interesting additional contexts, that are worth inves-
tigating in the future: metadata embedded in multimedia files, the relations
between objects embedded within each other (a presentation including pictures,
tables, charts, etc.), or chat history. A further interesting question we want to
investigate in the future is how to learn contextual authority transfer weights
from user feedback on ranked search results. Additionally we are experimenting
with extended INEX datasetd] to evaluate the performance of our system on
larger data sets.

3 http://inex.is.informatik.uni-duisburg.de/2005/

362 P.-A. Chirita et al.

Acknowledgements

This work was supported by the Nepomuk project funded by the FKuropean
Commission under the 6th Framework Programme (IST Contract No. 027705).

References

1. B. Aleman-Meza, C. Halaschek, I. B. Arpinar, and A. Sheth. Context-aware se-
mantic association ranking. In Semantic Web and Databases Workshop, 2003.

2. Apple spotlight search. http://developer.apple.com/macosx/tiger /spotlight.html.

3. R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval. ACM
Press / Addison-Wesley, 1999.

4. A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank: Authority-based
keyword search in databases. In VLDB, Toronto, Sept. 2004.

5. P. A. Chirita, R. Gavriloaie, S. Ghita, W. Nejdl, and R. Paiu. Activity based
metadata for semantic desktop search. In Proc. of the 2nd FEuropean Semantic
Web Conference, Heraklion, Greece, May 2005.

6. A. Damian, W. Nejdl, and R. Paiu. Peer-sensitive objectrank: Valuing contextual
information in social networks. In Proc. of the International Conference on Web
Information Systems Engineering, November 2005.

7. L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari, V. C. Doshi,
and J. Sachs. Swoogle: A search and metadata engine for the semantic web. In
Proc. of the 18th ACM Conf. on Information and Knowledge Management, 2004.

8. S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D. C. Robbins. Stuff i’ve
seen: A system for personal information retrieval and re-use. In SIGIR, 2003.

9. S. Ghita, W. Nejdl, and R. Paiu. Semantically rich recommendations in social
networks for sharing, exchanging and ranking semantic context. In Proc. of the 4th
International Semantic Web Conference, 2005.

10. Gnome beagle desktop search. http://www.gnome.org/projects/beagle/.

11. Google desktop search application. http://desktop.google.com/.

12. Google search engine. http://www.google.com.

13. T. Iofciu, C. Kohlschiitter, W. Nejdl, and R. Paiu. Keywords and rdf fragments:
Integrating metadata and full-text search in beagle++. In Proc. of the Semantic
Desktop Workshop held at the 4th International Semantic Web Conference, 2005.

14. Msn desktop search application. http://beta.toolbar.msn.com/.

15. A. Sidiropoulos and Y. Manolopoulos. A new perspective to automatically rank
scientific conferences using digital libraries. In Information Processing and Man-
agement 41 (2005) 289a712, 2005.

16. N. Stojanovic, R. Studer, and L. Stojanovic. An approach for the ranking of query
results in the semantic web. In ISWC, 2003.

17. J. Teevan, C. Alvarado, M. Ackerman, and D. Karger. The perfect search engine is
not enough: A study of orienteering behavior in directed search. In Proc. of CHI,
2004.

	Introduction
	Previous Work
	An Architecture for Searching the Semantic Desktop
	Overview
	Current Desktop Infrastructure and Its Limitations
	RDF Semantic Information Layer
	Aggregated Ranking System

	Beagle $^{++}$ Prototype
	Current Beagle Architecture
	Extending Beagle with Metadata Generators
	Extending Beagle with a Ranking Module

	Experiments
	Experimental Setup
	Methodology
	Results and Discussion

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

