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Abstract. We introduce and motivate the concept of unclonable group
identification, that provides maximal protection against sharing of iden-
tities while still protecting the anonymity of users. We prove that the
notion can be realized from any one-way function and suggest a more
efficient implementation based on specific assumptions.

1 Introduction

A large body of literature studies the problem of group identification, where one
wants to verify that a given user is a member of a certain group, while ensuring
that the user’s personal identity is not revealed. Particular instances of this
include group signatures [5, 3, 22] and identity escrow[16]. In some applications,
a dishonest user has an interest in giving away to another person the data that
allow him to identify himself as a member of the group - such as password and
secret keys. The security problems implied by such a scenario have not been
given much attention so far in the literature1.

In this paper we study this type of problem. As a motivating example, con-
sider the issue of software protection: it is well known that one of the strongest
motivating factors in getting people to register as software users is if this enables
some functionality that cannot be accessed without registration (and payment).
This works particularly well, if the functionality requires access to the vendor’s
website, since then reverse engineering the software is not sufficient to get unau-
thorized access to the functionality. In the case of games, for instance, the op-
portunity to play against others may be available to only registered users, and
only through the vendor’s website.

Verifying that a user is registered may be done in many different ways. In this
paper, we are interested in solutions that work under the following constraints:

– An honest user can connect an unlimited number of times using the same
private key material, or at least updates should only be necessary with long
time intervals.

– We want to protect users’ privacy, i.e., honest users have to identify them-
selves only as registered users and do not have to reveal their personal
identities.

1 Some earlier works suggest to discourage this by forcing users to either give away
all their information, or nothing, but here we are interested in cases where dishonest
users in fact have an interest in giving everything away.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 555–572, 2006.

The original version of this chapter was revised: The copyright line was incorrect. This has been

 

corrected. The Erratum to this chapter is available at DOI:

©c Springer-Verlag Berlin Heidelberg 2006

__10.1007/978-3-540-34547-3 36



556 I. Damg̊ard, K. Dupont, and M.Ø. Pedersen

– We want to do as much as possible to protect against attacks where a user
“clones” himself by handing a copy of his personal data (software, secret
key(s), etc.) to another person in order to get the benefits of two registrations
while only paying for one.

Note that the cloning attack may be easy or very hard to carry out physically,
depending on how the user’s personal keys are stored, but only in very few cases
can it be considered impossible.

Of course, we can only hope to detect cloning if the user and clone actually
connect to the vendor’s website. A further trivial observation is that if first
the user connects, then leaves the site and then the clone connects, we cannot
distinguish this from two connections made by an honest user, since he would
also use the same private key material in both cases. An event we can hope
to detect, however, is if both user and clone connect so that they are on the
site simultaneously, since this is exactly what cannot occur if the user has been
honest. In this case, we not only want to detect the attack, we also want to be
able to reveal the identity of the user who cloned himself. Note that, apart from
the fact that the above simultaneous scenario is the only one in which we can
hope to catch a cloning attack, the scenario is also of practical relevance. For
instance, the case of a user who buys one copy of a game and distributes it to
all his friends so they can play against each other online, is exactly a case where
a number of clones would want to be connected simultaneously.

Anunclonable identification scheme informally is an identification schemewhere
honest users can identify themselves anonymously as members of a group, but
where clones of users can be detected and have their identities revealed if they
identify themselves simultaneously. In this paper, we give a formal definition of this
primitive. We show that it can be realized assuming existence of one-way functions
(which is clearly a minimal assumption), and we give a more efficient implementa-
tionbasedon specific assumptions.On the technical side, ourmost efficient solution
is based on a new technique for proving in zero-knowledge, given gx in a group of
prime order, that x was chosen pseudorandomly from on a committed secret key.

Of course, before attempting a construction such as we have sketched, one
should verify if existing primitives already allow solving the problem. First, one
might consider using an anonymous E-cash scheme[17, 6], i.e., some number of
electronic coins are issued to each user, and users use them to “pay” for access
to the site. This would lead to a functionality that is incomparable to the one
we sketched above: Cloning in this case means sharing e-coins with others, and
so the cloning attack is exactly double spending and can therefore detected even
if the two spendings do not take place simultaneously. But on the other hand,
honest users can only use each coin once, and must therefore either possess a
very large secure memory, or come back for more coins throughout the life of the
system. This reveals information on how often a user connects, and is also not
consistent with our goal, namely a solution where you can join a group once and
then identify yourself an unlimited number of times using the same key material.

One may also consider using group signatures[5, 3, 22], and have users identify
themselves by signing a message chosen by the verifier (using his current system
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time, for instance). This achieves anonymity but does not protect against cloning.
To do this, one would need the property that if the same user signs the same
message twice, this would result in signatures that could be detected as coming
from the same user. This does not follow from the standard definition of group
signatures, and is actually false for known schemes, since these are probabilistic
and produce randomly varying signatures even if the message is fixed. A similar
comment applies to identity escrow schemes[16].

2 Definition

An unclonable identification scheme involves a Group Manager GM , a set of
Verifiers and some number of Users. The idea is that after some initialization,
there will be several events, where some set of users prove “at the same time” to
a verifier V that they are members of the group managed by GM . Since we want
to detect if V is talking to clones of the same user at the same time, every proof
should take as input some string α that represents in some sense the current
time or phase of the protocol we are in. However, this does not have to be linked
to real time. What is important is that whenever a set of users want to prove
themselves, they should agree with V on a value for α that has not been used
before. More precisely, the demands are

– An honest V must be able to ensure that all users he talks to at a given
point prove themselves using the same value of α.

– An honest user should be able to ensure that he never executes Prove with
the same value of α more than once.

One solution that works in the case where V runs a website that users would
like to be connected to for some length of time, is as follows: with regular in-
tervals, e.g., each hour each user who is connected must prove himself using the
current date and hour as α, as defined by the verifier’s system time. This works
if there is sufficient agreement on the time between users and V and if users
remember at which time they last did a proof. But many other solutions are
possible. Therefore, we have chosen to separate the way time is defined from
the definition as such by assuming that the entire system proceeds in consecu-
tive phases, with a unique number assigned to each phase. In each phase, some
subset of users decide to prove themselves to some verifier V , and the number
assigned to the current phase will be used as the string α. In the full version of
this paper, [10] we propose a way to realize such a scenario without relying on
synchronization, or requiring users to keep state.

The system is defined by probabilistic polynomial time algorithms KeyGen,
Detect and two-party protocols Join and Prove. These are used as follows:

– Initially, GM runs KeyGen on input 1k, to get output public key pk and
secret key sk. We assume for simplicity that the set of possible pk’s output
by KeyGen(1k) can be recognized in polynomial time.

– When a user U joins the system he runs Join with GM . Common input is
pk. Private input to GM is sk. The protocol outputs to GM either “reject”
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or a string id. Output to U is “reject” or a membership certificate certU .
We assume Join is executed on a secure channel so that no other entity will
have access to the data exchanged.

– To prove he is a member of the group, the user U executes protocol Prove
with a verifier V . Common input is the public key pk and the string α
assigned to the current phase, U uses certU as private input. At the end of
the protocol V accepts or rejects. Each user executes Prove at most once in
every phase.

– Algorithm Detect gets as input a number of transcripts of executions of
Prove, done with pk as input in the same phase. It outputs a (possibly
empty) list of strings. The intuition is that this algorithm should be able
to tell if the result of one or more cloning attacks are among a given set of
proofs, and if so, it will output the identities of the involved users.

Definition 1. The algorithms and protocols in a secure unclonable identification
scheme must satisfy the following:

Completeness. Assume GM , V and user U are honest. Execution of KeyGen,
followed by executions of Join and Prove always result in V accepting.

No Cloning. Consider an honest GM who executes (pk, sk) = KeyGen(1k).
Consider any probabilistic polynomial time algorithm Ũ who plays the follow-
ing game on input pk: in any phase, it can issue one or more of the following
requests:

1. It can ask that a set of honest users execute Join with GM (no data
returned to Ũ).

2. It can ask to execute Join itself with GM .
3. It can ask that some number of honest users who already joined the group

execute Prove with Ũ acting as verifier, using pk and the current value
of α as input.

Finally, Ũ executes Prove a number of times with an honest verifier V , on
input pk and the current value of α.
We now want to capture the idea that in the last step, Ũ can only have proofs
accepted by using user identities it got from GM , it must “know” which one
of them it is using in each case, and if it uses any of them more then once,
the Detect algorithm will catch this.
To this end, we demand that there exists a probabilistic algorithm Extract
which gets as input the complete view of Ũ2 and outputs a user identity, for
every instance of Prove that V accepted in the last step. The expected time
to run Ũ and then Extract must be polynomial.
We require that the following holds except with negligible probability:
All user identities output by Extract are among those that were generated in
the conversations between Ũ and GM . Furthermore, the Detect algorithm,
when given as input the conversation between Ũ and V , will output exactly
those user identities that occur more than once in the output of Extract.

2 This means that Extract can rewind Ũ to any state that occurred during the game.
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Note that this implies that if Ũ did not execute any Join’s, there are no
user identities Extract can legally output, so we are then in fact demanding
that all Ũ ’s proofs are rejected except with negligible probability. Thus we do
not need a separate soundness condition in the definition demanding that
non-members are rejected.

Anonymity. Consider any probabilistic polynomial time algorithm Ṽ , who will
act as both GM and verifier in an attempt to break the anonymity of honest
users. Ṽ gets 1k as input and outputs a valid pk (can be assumed without loss
of generality since we assumed that invalid pk’s can be easily recognized). It
then plays the following game: it interacts with a set of honest users, where
in each phase some users execute Join and other users execute Prove with
Ṽ . Of course, no honest user will attempt to do Prove unless he already
did Join successfully. At some point Ṽ stops and outputs a bit, and we let
preal,Ṽ (k) be the probability that 1 is output.
We now want to express the demand that Ṽ should only learn what is un-
avoidable, namely the number of honest users that interact with it in each
phase. So we compare the above game to a different one, where Ṽ interacts
with a simulator M . The simulator gets as input for each phase the num-
ber of users who want to execute Join and the number that want to execute
Prove in the current phase. These numbers are chosen with the same distri-
bution as in the first game. Let psim,Ṽ (k) be the probability that 1 is output
in this case.
We demand that there exists a simulator probabilistic polynomial time sim-
ulator M such that for any Ṽ , |preal,Ṽ (k) − psim,Ṽ (k)| is negligible in k.

We note that in this definition, we have for simplicity used the usual two-phase
structure of identification schemes to define soundness and non-cloning, where
first the adversary talks to the honest users and then tries to fool the honest
verifier. Thus we do not allow him to interact with an honest prover and and
honest verifier simultaneously. However, this is not a serious restriction, as there
are several techniques that allow handling even this concurrent case, such as the
so called designated verifier proofs[12, 7]. These techniques can be used with any
of the schemes we propose here.

As for the scheduling of the individual protocols in a single phase, we consider
two cases: one where in each phase the proofs given to an honest verifier are
composed sequentially, and one where the composition may be concurrent, with
a scheduling chosen by the adversary. We speak of sequential and concurrent
security, accordingly. On the other hand, we assume that honest users (provers)
may interact concurrently with an adversarial verifier.

3 A Theoretical Solution

3.1 Some Tools

We will need a secure string commitment scheme. Such a scheme follows from
any one-way function using for instance Naor’s construction[18], where there
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is a public key Pcom which is a random string (of length polynomial in the
security parameter k) that can be chosen once and for all by the receiver of
commitments. We let comPcom(str, rstr) denote a commitment to string str using
random coins rstr . Such a commitment determines str uniquely except for a
negligible fraction of the public keys, and commitments to different strings are
polynomially indistinguishable assuming the underlying one-way function is hard
to invert.

Based on such a commitment scheme and, for instance, Blum’s protocol for
Graph Hamiltonicity or the one from [14] for graph 3-colorability, we can build
generic proofs of knowledge for any binary relation R that can be checked in
polynomial time. The protocol in its basic form is a three move protocol where
the second message is a one-bit challenge from the verifier. When we work with
security parameter k, we may compose sequentially k instances of this protocol,
to obtain a zero-knowledge proof of knowledge for R with negligible soundness
error. We may also compose in parallel k instances of the protocol. This is also a
proof of knowledge for R, more precisely, on common input x, the prover proves
knowledge of w such that (x, w) ∈ R.

Protocols obtained by this parallel composition are special cases of so-called
Σ-protocols. By definition, such protocols have three properties: first, conversa-
tions are of form (a, e, z), where a = a(x, w, coinsP ) is a function of x, w and
the prover’s random coins, e is a k-bit challenge, and z = z(x, w, coinsP , e) is a
function of the prover’s private data and the challenge. Based on x, (a, e, z) the
verifier decides to accept or reject. Second, the protocol is honest-verifier (com-
putational) zero-knowledge (and is therefore witness indistinguishable). Third,
the protocol has the special soundness property, i.e., from x and accepting con-
versations (a, e, z), (a, e′, z′) with e �= e′, it is easy to compute w such that
(x, w) ∈ R.

Using a technique known as the OR-construction[8], one can combine Σ-
protocols for two relations R0, R1, to obtain a new Σ-protocol, where on in-
put x0, x1, the prover proves he knows w such that (x0, w) ∈ R0 or (x1, w) ∈
R1, without revealing which is the case, i.e., the protocol is witness
indistinguishable.

We will need a family of pseudorandom functions[13]. Such a family is indexed
by a key s (a random string of length k bits), and can be designed to have
any desired (polynomial in k) input and output length, assuming any one-way
function. We let fs() denote such a pseudorandom function. The basic property
is that even given oracle access to the function (and not the key), it cannot be
efficiently distinguished from a truly random function.

Finally, we will need a secure signature scheme, which can again be built from
any one-way function[21]. Such a scheme comes with probabilistic polynomial
time algorithms Gen, Sign, V erify for key generation, signing and verifying sig-
natures. Gen(1k) outputs a key pair Psign, Ssign. On input message m and the
private key, Sign produces a signature σ = Sign(Ssign, m). On input message,
signature and public key, V erify produces as output V erify(Psign, m, σ) which
is accept or reject.
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3.2 The Scheme

We first explain the intuition behind the solution: when joining the group, user
U will make a commitment cU to a random string rU and will obtain GM ’s
signature σU on the commitment. He then proves he is a member of the group
by proving that he knows a valid signature σU on some message cU , without
revealing either value. Moreover when giving this proof he uses some random
coins. These are not chosen at random but pseudorandomly as frU (α). That
is, he obtains the coins by applying the pseudorandom function to the current
α-value, using rU as key. He also proves that he has done exactly this. Note
that this will force a clone of the user to use the same coins if he gives a proof
for the same α-value, by security of the commitment and signature schemes.
This idea of choosing the randomness for a proof pseudorandomly is somewhat
similar to a technique from a completely different context, namely resetable zero-
knowledge [15].

The proof given is actually a Σ-protocol, so the transcripts of proofs given by
user and clone are of form (a, e, z) and (a′, e′, z′). But when all inputs and random
coins are the same in the two cases, we must have a = a′. Furthermore, e �= e′

with overwhelming probability, so if both proofs are accepted, special soundness
of the protocol means that one can easily compute the prover’s secret, which
will immediately identify the user in question.

We now describe the components of our scheme – throughout the descriptions,
it is understood that a party who detects an invalid proof or signature will
immediately stop and reject:

KeyGen. On input 1k, it generates keys (Psign, Ssign) for the signature scheme
and public key Pcom for the commitment scheme (with security parameter
k). Finally, it chooses a random k-bit string R. The public key is pk =
(Psign, Pcom, R) while the private key is sk = Ssign.

Join. The user U sends cU = commitPcom(rU , sU ) where ru is a random k-bit
string. GM assigns a unique identity idU to U , and sends to U a signature
σU = Sign(Ssign, (cU , idU )) on cU concatenated by idU . Also, GM proves
in zero-knowledge that he knows a signature (valid under Psign) on R.
This is easy given that GM knows Ssign. The output certificate for U is
rU , sU , σU , idU , while output for GM is idU .

Prove. Recall that pk and the string α is common input to the protocol. User
U first makes commitments CU , DU , EU to cu, idU , σU , respectively. He will
now give a proof of knowledge related to these commitments, the group
public key pk and the number α assigned to the current phase. This proof
consists of three ingredients. The first is a proof of knowledge, that U knows
how to open the commitments CU , DU , EU to strings cu, idU , σU such that
σU is GM ’s signature on (cU , idU ). While giving this proof, he uses frU (α) as
random coins. That is, the protocol transcript is (a1, e1, z1), where it should
be the case a1 = a1((pk, CU , DU , EU ), (cU , idU , σU ), frU (α)).
The second ingredient is a proof that U can open CU to reveal cU and he
knows sU , rU such that cU = commit(rU , sU ), and the message a1 from the
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previous protocol satisfies a1 = a1((pk, CU , DU , EU ), (cU , idU , σU ), frU (α)).
Also this proof is a three move protocol of form (a2, e2, z2), and we are going
to do the two proofs in parallel, so that the overall conversation will have
form (a1, a2, e1, e2, z1, z2). The final ingredient is a proof of knowledge of
GM ’s signature on the string R that is part of pk. This is combined with
the previous ingredients using the OR construction mentioned above, i.e.,
U is proving that he knows a signature on R, or strings cu, idU , σU , rU , sU

satisfying the conditions just described 3.
Detect. Looks at all the proofs given in a phase and finds all places where

two conversations include tuples of form (a1, a2, e1, e2, z1, z2), respectively
(a′

1a
′
2, e

′
1, e

′
2, z

′
1, z

′
2) and where a1 = a′

1 and e1 �= e′1. For any such case it will
use the special soundness property to extract the underlying cU , idU , σU , and
appends idU to its output list.

Theorem 1. Assuming one-way functions exist, the above scheme is a secure
unclonable identification scheme with sequential security.

We remark that concurrent security can be obtained under the same assumption
in the common reference string model, using a technique similar to the one used
in the more efficient protocol we describe later.

The key to the proof of the theorem is

Lemma 1. The proof of knowledge given by the user during the Prove protocol
is witness indistinguishable

Proof. Recall that the proof given by U is a combination using the OR con-
struction of first a proof of knowledge of a signature on R and second a proof of
knowledge of values cu, idU , σU , rU , sU satisfying a number of properties. Con-
versations in the latter protocol are of form (a1, a2, e1, e2, z1, z2). The OR con-
struction leads to a witness-indistinguishable protocol if both protocols used are
honest verifier zero-knowledge. This is true for the first protocol, which is just a
standard Σ-protocol and so is honest verifier zero-knowledge by construction.

It is therefore enough to show that the second protocol is honest verifier zero-
knowledge. Some notation for this: the part (a1, e1, z1) of a conversation will
be called proof 1. It has the commitments CU , DU , EU and public key pk as
public input, while the secret witness is cU , idU , σU . The rest of the conversation
(a2, e2, z2) is called proof 2. It has CU , DU , EU , pk, a1 as public input while the
secret witness is cU , idU , σU , rU , sU .

Both proof 1 and proof 2 are Σ-protocols constructed from generic zero-
knowledge techniques as explained above. They therefore have honest verifier
simulators M1, M2 respectively. However, note that in our context, proof 1 is
not done using the normal prover algorithm, we use pseudorandom coins for
the prover, and furthermore the key for this pseudorandomness is used as input
in proof 2. Hence a proof is required that we can still use M1, M2 to simulate.
We do this by defining a series of distributions where the first is that of real
3 Of course, the latter is normally the case, the other option is included for proof-

technical reasons.



Unclonable Group Identification 563

conversations and the last is the one output by the honest verifier simulator
we propose. The result will then follow from arguing that each distribution is
computationally indistinguishable from the previous one.

The sequence of distributions are produced as follows:

1. Run the honest prover U ’s algorithm (with known secret witnesses and ran-
dom challenges).

2. Same as above, but proof 2 is replaced by running the honest verifier sim-
ulator M2(CU , DU , EU , pk, a1) for proof 2. Note that this requires that rU

is known, to do proof 1 according to the protocol. However, we will still
get something indistinguishable from the previous distribution. This is be-
cause the output of M2 is indistinguishable from a real conversation, even to
someone who knows the secret witness for proof 2. Indeed, M2 is simulating
a protocol constructed from generic techniques based on any commitment
scheme as explained earlier. This means that the simulation essentially pro-
duces a set of commitments, some of which are opened and some are not.
The unopened commitments have contents different from what would be the
case in a real conversation, however, this is the only difference. By the hiding
property of the commitments, this difference cannot be detected in polyno-
mial time, even knowing what the commitments are supposed to contain.

3. As 2., but the commitment cU is replaced by a commitment to a random
value. This is indistinguishable from 2. by the hiding property of
commitments.

4. As 3., but when doing proof 1, instead of using rU to compute pseudorandom
values for the random coins, we use oracle access to the function frU ().
We now do not know ru explicitly, but we will produce exactly the same
distribution as in 3.

5. As in 4., but the oracle access to frU () is replaced by oracle access to a
random function. This is indistinguishable from 4. by pseudorandomness of
the function frU ().

6. As in 5., but the transcript of proof 1 is now generated by running the hon-
est verifier simulator M1 for proof 1. This is indistinguishable from 5., since
there, we ran proof 1 following the prover’s normal algorithm, using real ran-
dom coins. Summarizing, this last distribution is generated by first running
M1(CU , DU , EU , pk) to get (a1, e1, z1), and running M2(CU , DU , EU , pk, a1)
to get (a2, e2, z2), and this defines the desired honest verifier simulation.

We can now proceed with the proof of the required properties.

Anonymity: if Ṽ behaves such that at least one instance of the Join protocol
completes successfully with non-negligible probability, then we can extract from
the proof of knowledge given by Ṽ a signature on R. Note that no attempts
to do Prove would occur before this point. Given this signature, it is trivial to
simulate (without rewinding) all subsequent instances of Prove knowing only
the number of instances to be done in each phase. This cannot be distinguished
from the real game by witness indistinguishability of the underlying proofs of
knowledge.
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No cloning: we first describe the required Extract algorithm. It will, for each
proof Ũ had accepted in the last stage of the attack, rewind Ũ to the start
of this proof and try to extract the secret witness it is using by the standard
rewinding technique of sending random challenges to Ũ until it answers a new
challenge correctly. At this point a valid witness can be extracted. Each such
witness must include either a signature on R, or a signature σU on a pair of
form (cU , idU ). Extract outputs idU in the latter case, and a random string in
the former. We put the limitation that the algorithm gives up on a proof and
outputs a random string if it rewinds more than 2k times, where k is the length
of challenges.

To estimate the running time of this, note that the probability that Ũ will
have a proof accepted, given the state it is in just before the proof, is determined
by the number T of challenges it will answer correctly. The probability that we
will have to run Extract on the proof is T 2−k, while the number of rewinds we
have to do is 0 if T = 0, 2k if T = 1 and 2k/(T − 1) if T > 1. It follows that
contribution to the total expected running time from each proof is polynomial.
The total expected running time is just the sum of these contributions since we
compose sequentially.

To finalize the argument, we need the following

Claim: we may assume that in the output of Extract, we will only see triples
(cU , idU , σU ) that were obtained earlier by Ũ in some instance of Join.

Indeed, if this is false with non-negligible probability, we can break the sig-
nature scheme in a chosen message attack: we choose at random to either ask
for signatures on all pairs cU , idU or a signature on R and use this to simulate
the Join protocols done by Ũ and all proofs by honest users given to Ũ (with-
out rewinding, we just follow the protocol). Then by witness indistinguisha-
bility, Ũ ’s behaviour will be essentially the same as before, so the knowledge
extraction from Ũ will give us a signature on a new message with non-negligible
probability.

Consider now any two Prove instances where the same triple cU , idU , σU is
extracted. Let (a1, a2, e1, e2, z1, z2), (a′

1, a
′
2, e

′
1, e

′
2, z

′
1, z

′
2) be the transcripts of the

two instances.
Now, soundness of the Prove protocol implies that we could extract (except

with negligible probability) also two ways of opening cU from the two instances,
that is, two pairs (rU , sU ), (r′U , s′U ) such that

cU = commitPcom(rU , sU ) = commitPcom(r′U , s′U ),

and that

a1 = a(pk, (cU , idU , σU ), frU (α)), a′
1 = a(pk, (cU , idU , σU ), fr′

U
(α)).

But we must have rU = r′U , or the the binding property of the commitment
scheme is broken. This immediately implies that a1 = a′

1, and therefore, since
e1 �= e′1 with overwhelming probability, Detect will successfully extract idU , as
required in the definition.
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4 A More Efficient Solution

In this section, we present a more efficient unclonable group identification
scheme, based on two main ingredients: First a technique recently proposed by
Camenisch and Lysyanskaya [3] for digital signatures based on bilinear groups,
with protocols for proving knowledge of a signature on a committed value. Sec-
ond, a new technique for proving that an element in a group is of form gψ where
ψ is a pseudorandom value computed from a committed key. We will borrow
some notation from [3] (and several earlier papers): given a public string x, a
private witness w and a predicate pred,

PK{w : pred(x, w)}

means that we execute a Σ-protocol for the relation {(x, w)| pred(x, w) = true},
that is, a prover convinces a verifier that he knows w such that the predicate on
x and w is satisfied. We will also use the following variant:

PK(κ){w : pred(x, w)}

where κ is a bit string. This stands for the following: we execute the underlying
Σ-protocol in the normal interactive way, except that the verifier sends as the
second message a random string κ, and the challenge the prover has to answer
is determined as H(x, a, κ), where H is a hash function, modelled as a random
oracle and a is the first message in the original protocol. The point of this
construction is that it allows simulation of the protocol without rewinding, due
to the “programmability” of the random oracle, and (for the same reason) it also
allows knowledge extraction by standard rewinding. Since we will need the last
point for the proof, we cannot just use the Fiat-Shamir heuristic.

4.1 Proofs of Knowledge with Pseudorandom Exponents

In this subsection, we introduce some tools to be used in our construction. To
this end, we consider a group Gp of prime order p. We will assume p is chosen as
a safe prime, i.e., p = 2q + 1 where q is also prime. Gq will denote the (unique)
subgroup of Z∗

p of order q.
We further consider the case where a prover knows exponents x1, ..., xt ∈ Zp

such that β = αx1
1 · · ·αxt

t for publicly known β, α1, ..., αt ∈ Gp. A standard Σ-
protocol for prover P and verifier V can be used to prove knowledge of the xi’s.
That is, we want:

PK{(x1, ..., xt) : β = αx1
1 · · ·αxt

t } (1)

This Σ-protocol works as follows:

1. P chooses r1, ..., rt ∈ Zp uniformly at random and sends to V τ =
∏t

i=1 αri

i .
2. V chooses a random challenge ε ∈ Zp.
3. P responds with zi = ri + εxi mod p for i = 1..t. V checks that

∏t
i=1 αzi

i =
τβε.
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It is well known (and straightforward to show) that this protocol is indeed a Σ-
protocol for the underlying relation. It is also well-known that a straightforward
variant of the protocol allows us to do the following type of proof:

PK{(x1, .., xt, x
′
1, ..., x

′
t) : β = αx1

1 · · · αxt
t , β′ = α′x′

1
1 · · ·α′x′

t

t , x1 = x′
1}

Basically, we run the original protocol twice in parallel for the two equations.
This would normally involve two independent sets of random numbers r1, ..., rt

and r′1, ..., r′t. However, to demonstrate that x1 = x′
1 the prover must use r1 = r′1

and the verifier checks that the responses z1, ..., zt, z
′
1, ...z

′
t satisfy z1 = z′1. We will

use this variant later, but for now we stick to the basic version for simplicity. All
techniques we describe here can also be applied to the variant in a straightforward
way.

We now consider a change to the protocol where P chooses the randomness
in the first message according to a pseudorandom function ΨK(i, α, b), where
K is a key committed to by P , α is a public input, i is a number and b is a
bit. We will use a variant of the pseudorandom function of Naor and Reingold,
based on the DDH assumption in Gq, so that outputs from Ψ are in Gq. We
specify below how the function works and how the key is committed. However,
in the previous protocol, the random exponents were chosen in Zp, whereas the
pseudorandom function produces output in the subgroup Gq. To resolve this, we
let the exponents be chosen as the difference between two pseudorandom values,
which allows us to hit all of Zp. The modified protocol then works as follows:

1. P sets ri = ΨK(i, α, 0) and si = ΨK(i, α, 1) and sends to V τ =
∏t

i=1 αri−si

i .
2. V chooses a random challenge ε ∈ Zp.
3. P responds with zi = ri−si+εxi mod p for i = 1..t. V checks that

∏t
i=1 αzi

i =
τβε.

To argue that this is a Σ-protocol for the same relation, we need a result
by Perron[20]: Let QRp be the set of quadratic residues mod p. Then for any
a ∈ Zp∗, the set a + QRp contains almost as many quadratic residues as non-
residues: the difference is at most 1. Since in our case Gq = QRp, we get from
this:

Lemma 2. The distribution of ui − vi mod p where ui, vi are chosen uniformly
in Gq, is statistically close to uniform over Zp.

Lemma 3. Under the DDH assumption in Gq, the above protocol is a Σ-protocol
for the relation specified in (1).

Proof. Completeness is trivial, and special soundness follows exactly as for the
previous standard protocol. For honest verifier zero-knowledge, we argue as fol-
lows: To simulate, we will choose ε and zi at random in their respective domains
and then set τ = β−ε

∏t
i=1 αzi

i .
Now, assuming K is known only to P , pseudorandomness of Ψ implies that

our variant is indistinguishable from a protocol where ΨK(i, α, 0), ΨK(i, α, 1) are
replaced by uniformly random choice ui, vi from Gq. This creates a distribution
of zi that is statistically close to the simulated distribution by Lemma 2.
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Our goal is now to allow P to prove that he has followed the specified algorithm
for choosing the ri, si’s pseudorandomly. The first step of this is to have P
commit to each individual value under a public key chosen by a third party
(which will eventually be the group manager in our case). The public key will be
two random elements η, λ ∈ Gp, and P will make commitments comi = ηriλωi

and com′
i = ηsiλω′

i , for i = 1..t and random ωi, ω
′
i. We can now ask P to prove

that he committed to the correct values, that is, execute

PK{(ri, si, ωi, ω
′
i, i = 1..t) : τ =

t∏
i=1

αri(α−1)si ,

comi = ηriλωi , com′
i = ηsiλω′

i , i = 1..t}
The Σ-protocol for this is a standard variant of the one we presented above.

The final step is to show that each committed value was chosen according to
the pseudorandom function. For this, we need to specify in detail how it works.
We assume that input strings to Ψ all have length at most k (where k can in
principle be arbitrary). A key to the function is a number K ∈ Zq. Finally, we
will need a hash function H that take a string str of length at most k as input
and outputs an element in Gq. We will model this function as a random oracle.
The pseudorandom function is now defined as:

ΨK(str) = H(str)K mod p

We note that the function mapping y to yK mod p is a weak pseudorandom
function assuming the DDH assumption holds in Gq, i.e., as long as y is ran-
domly chosen and is not controlled by the adversary, the outputs look random.
However, in our case, and assuming the random oracle model, the function is
only used on values produced by H , and these are guaranteed to be random,
even if the adversary chooses the inputs to H . This argument is easily formalized
to prove.

Lemma 4. In the random oracle model, and assuming DDH holds in Gq, ΨK()
as defined above is a strong pseudorandom function.

We will assume that the key K is committed to by P in a somewhat non-
standard way which, however, fits nicely with the construction we will see in the
following. Concretely, we assume that d = gγKδr

hu is given, for publicly known
g, h ∈ Gp and γ, δ ∈ Gq. With this, we can summarize our goal, namely to give
a Σ-protocol implementing

PK{(K, r, u, ωi, ω
′
i, i = 1..t) : d = gγKδr

hu,

comi = ηΨK(i,α,0)λωi , com′
i = ηΨK(i,α,1)λω′

i , i = 1..t}
For this, it will be be enough to show how P can prove that some given commit-
ment com satisfies com = ηΨK(str)λω for public str. Since anyone can compute
ψ = H(str), our task reduces to:

PK{(K, r, u, ω) : d = gγKδr

hu, com = ηψK

λω} (2)
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A protocol for this follows here:

1. P chooses s, w ∈ Zq, ν, φ ∈ Zp at random. He sends v1 = gγsδw

hν and
v2 = ηψs

λφ to V .
2. V selects a random bit c.
3. P sends z1 = s−cK mod q, z2 = w−cr mod q, z3 = ν−cuγs−Kδw−r mod p,

and z4 = φ − cωψs−K mod p.
V checks as follows: if c = 0, that gγz1δz2

hz3 = v1 and ηψz1
λz4 = v2. If c = 1,

that dγz1δz2
hz3 = v1 and comψz1

λz4 = v2.

Since this protocol only works with a 1-bit challenge, we need to repeat it an
appropriate number of times to have a sufficiently small soundness error.

Lemma 5. The above is a Σ-protocol for the relation specified in (2)

Proof. Completeness follows by inspection of the protocol. Special soundness: if
for given v1, v2, the prover can send satisfactory answers z1, z2, z3, z4 to c = 0 and
z′1, z

′
2, z

′
3, z

′
4 to c = 1, we have by the checks carried out by V that gγz1δz2

hz3 = v1,

ηψz1
λz4 = v2. dγz′

1δz′
2hz′

3 = v1 and comψz′
1λz′

4 = v2. Combining these equations
imply that com = ηΨz1−z′

1λ(z4−z′
4)ψ

−z′
1 and d = αγz1−z′

1δz2−z′
2 h(z3−z′

3)γ
−z′

1δ−z′
2 ,

i.e., a, d are of the required form. Finally, honest verifier ZK is argued by the
following simulator: choose z1, z2 at random in Zq, z3, z4 at random in Zp and
c as a random bit. If c = 0, set v1 = gγz1δz2

hz3 and v2 = ηψz1
λz4 . If c = 1, set

v1 = dγz1δz2
hz3 and v2 = comψz1

λz4 . This simulation is seen to be perfect by a
standard argument.

4.2 The New Scheme

Our main idea for the scheme is similar to the earlier theoretical one: the user U
will commit to a secret key K. When registering with the group manager GM
he will obtain a signature on the commitment cU , using the signature system
described in [3] (called scheme A in [3]). He can now prove membership of the
group by proving knowledge of a valid signature on cU (as well as proving knowl-
edge of this value). If he tries to clone his identity we can exploit the special
soundness property of the protocol used and extract his identity.

KeyGen. Let GM take a security parameter k and output two groups Gp = 〈g〉
and Gp = 〈g〉 of prime order p = Θ

(
2k

)
where p = 2q + 1 and q is a prime.

Let Gq denote the unique subgroup of Z∗
p of order q. Let γ, δ be random

generators of Gq. Let e : Gp ×Gp → Gp be an efficiently computable bilinear
map, and η, λ be random generators of Gp.
To set up the signature scheme, GM chooses the following values at random:
x ∈ Zp, y ∈ Zp and sets X = gx, Y = gy. The secret key for the signature
scheme is Sk = (x, y) and the public key is Pk = (q, Gp,Gp, g,g, e, X, Y, η, λ).

Join. The user U chooses at random rU ∈ Zq and a key K ∈ Zq. U makes a
commitment cU = γKδrU mod p to K and sends it to GM4.

4 It is not necessary to have U prove that he can open cU , since later in the Prove
protocol, he must implicitly show he can open it to have the proof accepted.



Unclonable Group Identification 569

GM verifies that U is allowed to join the group and if so, he computes a
signature σ = (a, b, c) on cU where a is chosen at random in Gp, b = ay,
c = ax+cUxy and sends it to U . GM considers cU as the user’s id in the
following, whereas (K, rU , a, b, c) serves as the membership certificate.

Prove. Recall that the string α, denoting “the current time”, is common input to
U and V . U essentially proves that he is a member of a group by proving that
he knows a valid message and signature from GM . First U blinds his signature
σ by choosing at random μ, r′ ∈ Zp and computing σ̃ =

(
ã, b̃, ĉ

)
where ã = ar′

,

b̃ = br′
, ĉ = (cr′

)μ. Then U makes a commitment CU = ηcU λsU for random sU

and sends σ̃ and CU to V . Both compute

vx = e (X, ã) , vxy = e
(
X, b̃

)
, vs = e (g, ĉ)

V chooses a k-bit string κ at random, and U proves knowledge of a signature
on cU to V by giving the following proof:

PK(κ){(cU , ρ, sU ) : CU = ηcU λsU , vs
ρ = vxvcU

xy } (3)

Here, as ρ, the honest U uses ρ = μ−1 mod p. V will accept if this proof is
correct and it holds that:

e (ã, Y ) = e
(
g, b̃

)
Note that it was shown in [3] that the checks carried out by V plus the proof that
vs

ρ = vxvcU
xy together imply that U must know a valid signature on a message.

Doing the proof in (3) is a straightforward variant of the general type of proof
from lemma 3 as discussed earlier. Consider the underlying Σ-protocol for the
part relating to vs

ρ = vxvcU
xy . After specializing it to the concrete scenario here,

it will have a first message of form

τ = vr1−s1
xy vr2−s2

s ,

Furthermore, we will require that

r1 = ΨK(1, α, 0), r2 = ΨK(2, α, 0), s1 = ΨK(1, α, 1), s2 = ΨK(2, α, 1)

U must therefore prove that the values of r1, r2 and s1, s2 were generated pseudo-
randomly from K. As described earlier, U does this by making commitments

com1 = ηr1λω1 , com2 = ηr2λω2 , com′
1 = ηs1λω′

1 , com′
2 = ηs2λω′

2 ,

proving that these values are correct with respect to τ and finally using the proto-
col from Lemma 5 to show that each commitment contains a pseudorandom value
of correct form computed from K as committed to by CU . Note that CU is in fact
a commitment to K of exactly the form needed for that protocol.

All proofs to be given during Prove can be done simultaneously, using the
same challenge in all Σ-protocols.
The amount of computation required during Prove is 57 + 68r exponentiations
and 8 evaluations of the function e, where r is the number of times the protocol
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from Lemma 5 is repeated. Prove also requires 29k+r(6k+1) bits sent between
U and GM , where r is the same as before and k is the security parameter.
For example with r = 16 and k = 1024, Prove requires approximately 1150
exponentiations and needs to communicate 130KB. It would be interesting
to find a protocol that solves the same problem using a constant number of
exponentiations and communication.

Detect. Look at all proofs given in a phase and find all places where two con-
versations include first messages τ, τ ′ where τ = τ ′. If the two challenge values
involved in these two conversations are different, use the special soundness prop-
erty to extract a witness for the proof in question - this will be a pair of form
(cU , ρ). Output all cU ’s found this way.

Theorem 2. Assuming security of the signature scheme from [3], the DDH as-
sumption in Gq, and Assumption 1, the scheme described above is a secure un-
clonable identification scheme in the random oracle model, with sequential secu-
rity. The Join and Prove protocols are constant-round, and have communication
complexity O(k) bits, respectively O(k2) bits.

The scheme described here is extremely similar in structure to the theoretical
solution we gave earlier, so the proof is very similar as well. We only sketch it
here. Completeness follows by inspection of the protocols. For no cloning, the
required Extract algorithm will use standard rewinding to extract witnesses for
all proofs given. By a standard argument, this will succeed for all proofs that were
accepted by the verifier, with overwhelming probability. Soundness of the proofs
means we will extract a set of user id’s and corresponding signatures, so security
of the signature scheme implies that this forms a subset of the user id’s defined
in previous Join protocols. Now, soundness of the proofs from Lemma 5 and the
binding property of the commitment schemes defined by (γ, δ), (η, λ) imply that
the adversary must have used the key involved correctly and consistently, and
hence the value of τ will be identical in all instances of subproof (3), where the
same key was used. This allows Detect to recover the required information. As
for anonymity, note that all subproofs except the one from (3) can be replaced
by (perfect) simulations without changing the view of the adversary. After this
change, the key K is only used to call the pseudorandom function, and no other
information on K is present, since the commitment cU hides K perfectly. We
can therefore use Lemma 3 to conclude that also instances of subproofs from (3)
can be replaced by simulations without this being detectable by the adversary.

5 On Concurrent Security

For both the theoretical and the more efficient solution, it holds that all the proofs
given by honest users can be simulated without rewinding. Hence, the only prob-
lem in obtaining concurrent security lies in the Extract algorithm that is required
for the no cloning property, and which requires rewinding in both solutions.

To avoid this, we can use, at a small efficiency cost, the technique of Fischlin
[11], which shows how to transform any Σ-protocol in the random oracle model
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into a new one for which there is an on-line extractor, i.e., one can extract the
secret witness from a successful prover without rewinding.

Using this transformation on the Σ-protocols underlying our Prove-protocol
immediately gives a concurrently secure solution.

6 On Membership Revocation and Framing

After discovering the identity of a dishonest user, the group manager needs to
act. In some applications it may be sufficient to take some appropriate, say, legal
action against the user in question. But it may also be necessary to remove the
user out from the group by ensuring that the value cU can never be used again.

Since the value cU is unconditionally hidden in the Prove protocol, nothing in
the above systems prevents a dishonest user from provingmembership of the group
again at a later point in time. To allow for revocation of memberships, we can ex-
tend the protocolwith an dynamic accumulator as described in [4]. An accumulator
scheme [1, 2] is an algorithm that allows one to hash large set of values into a short
value, called the accumulator such that there is a witness that a given input is in
the accumulator. A dynamic accumulator allows one to efficiently add and remove
values from the accumulator. It can be used in the following way.

When the user joins the group and sends cU , the group manager adds cU to the
accumulator. To prove membership of the group, the user is now required, in ad-
dition to the protocol we already have, to prove that the value cU is in the accu-
mulator. We will omit the details of how this is done, they can be found in [4]. The
solutions needs that cU is committed to, but this is already done in our protocol.

When the identity of a dishonest user is discovered, the group manager re-
moves cU from the accumulator, which prevents the user or any clones of the
user from proving membership of the group, as long as the verifier is aware of
the new accumulator value.

An aspect we have not been concerned with in this paper is whether the group
manager can frame an honest user, that is, create on his own a protocol transcript
where the user seems to have cloned himself. For our efficient solution, we believe
framing is not possible, since the group manager does not know the user’s secret
key K. The part of the Prove protocol where the user proves knowledge of K
can only be simulated without knowing K if one can control the outputs of
the random oracle. While we use this to show zero-knowledge in the theoretical
analysis, such control is not available to anyone in real life.
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