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1 CNRS & École normale supérieure, DI, 45 rue d’Ulm, 75005 Paris, France
http://www.di.ens.fr/~pnguyen/

2 Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
http://www.cs.tau.ac.il/~odedr/

Abstract. Lattice-based signature schemes following the Goldreich-
Goldwasser-Halevi (GGH) design have the unusual property that each
signature leaks information on the signer’s secret key, but this does
not necessarily imply that such schemes are insecure. At Eurocrypt ’03,
Szydlo proposed a potential attack by showing that the leakage reduces
the key-recovery problem to that of distinguishing integral quadratic
forms. He proposed a heuristic method to solve the latter problem, but
it was unclear whether his method could attack real-life parameters of
GGH and NTRUSign. Here, we propose an alternative method to attack
signature schemes à la GGH, by studying the following learning prob-
lem: given many random points uniformly distributed over an unknown
n-dimensional parallelepiped, recover the parallelepiped or an approxi-
mation thereof. We transform this problem into a multivariate optimiza-
tion problem that can be solved by a gradient descent. Our approach
is very effective in practice: we present the first succesful key-recovery
experiments on NTRUSign-251 without perturbation, as proposed in
half of the parameter choices in NTRU standards under consideration
by IEEE P1363.1. Experimentally, 90,000 signatures are sufficient to re-
cover the NTRUSign-251 secret key. We are also able to recover the
secret key in the signature analogue of all the GGH encryption chal-
lenges, using a number of signatures which is roughly quadratic in the
lattice dimension.

1 Introduction

Inspired by the seminal work of Ajtai [1], Goldreich, Goldwasser and Halevi
(GGH) proposed at Crypto ’97 [9] a lattice analogue of the coding-theory-based
public-key cryptosystem of McEliece [19]. The security of GGH is related to
the hardness of approximating the closest vector problem (CVP) in a lattice.
The GGH article [9] focused on encryption, and five encryption challenges were
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Fig. 1. The Hidden Parallelepiped Problem in dimension two

issued on the Internet [8]. Two years later, Nguyen [22] found a flaw in the
original GGH encryption scheme, which allowed to solve four out of the five
GGH challenges, and obtain partial information on the last one. Although GGH
might still be secure with an appropriate choice of the parameters, its efficiency
compared to traditional public-key cryptosystems is perhaps debatable: it seems
that a very high lattice dimension is required, while the keysize grows roughly
quadratically in the dimension (even when using the improvement suggested
by Micciancio [20]). The only lattice-based scheme known that can cope with
very high dimension is NTRU [15] (see the survey [23]), which can be viewed
as a very special instantiation of GGH with a “compact” lattice and different
encryption/decryption procedures (see [20, 21]).

In [9], Goldreich et al. described how the underlying principle of their encryp-
tion scheme could also provide a signature scheme. The resulting GGH signature
scheme did not attract much interest in the research literature until the com-
pany NTRU Cryptosystems proposed a relatively efficient signature scheme
called NTRUSign [11], based exactly on the GGH design but using the compact
NTRU lattices. NTRUSign had a predecessor NSS [14] less connected to the
GGH design, and which was broken in [6, 7]. Gentry and Szydlo [7] observed that
the GGH signature scheme has an unusual property (compared to traditional
signature schemes): each signature released leaks information on the secret key,
and once sufficiently many signatures have been obtained, a certain Gram matrix
related to the secret key can be approximated. The fact that GGH signatures are
not zero-knowledge can be explained intuitively as follows: for a given message,
many valid signatures are possible, and the one selected by the secret key says
something about the secret key itself.

This information leakage does not necessarily prove that such schemes are
insecure. Szydlo [25] proposed a potential attack on GGH based on this leakage
(provided that the exact Gram matrix could be obtained), by reducing the key-
recovery problem to that of distinguishing integral quadratic forms. It is however
unknown if the latter problem is easy or not, although Szydlo proposed a heuris-
tic method based on existing lattice reduction algorithms applied to quadratic
forms. As a result, it was unclear if Szydlo’s approach could actually work on
real-life instantiations of GGH and NTRUSign. The paper [12] claims that, for
NTRUSign without perturbation, significant information about the secret key
is leaked after 10,000 signatures. However, it does not identify any attack that
would require less than 100 million signatures (see [11, Sect. 4.5] and [12, Sect.
7.2 and App. C]).
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Our Results. In this article, we present a new key-recovery attack on lattice-
based signature schemes following the GGH design, including NTRUSign. The
basic observation is that a list of known pairs (message, signature) gives rise
to the following learning problem, which we call the hidden parallelepiped prob-
lem (HPP): given many random points uniformly distributed over an unknown
n-dimensional parallelepiped, recover the parallelepiped or an approximation
thereof. We transform the HPP into a multivariate optimization problem based
on the fourth moment (also known as kurtosis) of one-dimensional projections.
This problem can be solved by a gradient descent. Our approach is very ef-
fective in practice: we present the first succesful key-recovery experiments on
NTRUSign-251 without perturbation, as proposed in half of the parameter
choices in the NTRU standards [4] being considered by IEEE P1363.1 [18]; the
number of required signatures can be as low as 90,000, but the true figure might
even be lower. We have also been able to recover the secret key in the signature
analogue of all five GGH encryption challenges, using a number of signatures
which is roughly quadratic in the lattice dimension. When the number of signa-
tures is sufficiently high, the running time of the attack is only a fraction of the
time required to generate all the signatures.

Related Work. Interestingly, it turns out that the HPP (as well as related
problems) have already been looked at by people dealing with what is known
as Independent Component Analysis (ICA) (see, e.g., the book by Hyvärinen et
al. [16]). ICA is a statistical method whose goal is to find directions of inde-
pendent components, which in our case translates to the n vectors that define
the parallelepiped. It has many applications in statistics, signal processing, and
neural network research. To the best of our knowledge, this is the first time ICA
is used in cryptanalysis.

There are several known algorithms for ICA, and most are based on a gradi-
ent method such as the one we use in our algorithm. Our algorithm is closest
in nature to the FastICA algorithm proposed in [17], who also considered the
fourth moment as a goal function. We are not aware of any rigorous analysis
of these algorithms; the proofs we have seen often ignore the effect of errors in
approximations. Finally, we remark that the ICA literature offers other, more
general, goal functions that are supposed to offer better robustness against noise
etc. We have not tried to experiment with these other functions, since the fourth
moment seems sufficient for our purposes.

Another closely related result is that by Frieze et al. [5], who proposed a
polynomial-time algorithm to solve the HPP (and generalizations thereof). Tech-
nically, their algorithm is slightly different from those present in the ICA litera-
ture as it involves the Hessian, in addition to the usual gradient method. They
also claim to have a fully rigorous analysis of their algorithm, taking into ac-
count the effect of errors in approximations. Unfortunately, most of the analysis
is missing from the preliminary version, and to the best of our knowledge, a full
version of the paper has never appeared.
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Open Problems. It would be interesting to study natural countermeasures against
our attack, such as:

– Perturbation techniques (as suggested by [12, 4, 13]), where the hidden paral-
lelepiped is replaced by a more complicated set. For instance, the second half
of parameter choices in NTRU standards [4] involves exactly a single pertur-
bation. In this case, the attacker now has to solve a hidden parallelepiped
problem for which the parallelepiped is replaced by the Minkowski sum of
two hidden parallelepipeds: the lattice spanned by one of the parallepipeds
is public, but not the other one.

– Using secret bases with much larger entries.

However, such countermeasures have an impact on the effiency of the signature
scheme.

Road map. The paper is organized as follows. In Section 2, we provide nota-
tion and necessary background on lattices, GGH and NTRUSign. In Section 3,
we introduce the hidden parallelepiped problem, and explain its relationship to
GGH-type signature schemes. In Section 4, we present a method to solve the
hidden parallelepiped problem. In Section 5, we present experimental results ob-
tained with the attack on real-life instantiations of GGH and NTRUSign. In
Section 6, we provide a theoretical analysis of the main parts of our attack.

2 Background and Notation

Vectors of Rn will be row vectors denoted by bold lowercase letters such as b, and
we will use row representation for matrices. For any ring R, Mn(R) will denote
the ring of n×n matrices with entries in R. The group of n×n invertible matrices
with real coefficients will be denoted by GLn(R) and On(R) will denote the
subgroup of orthogonal matrices. The transpose of a matrix M will be denoted
by M t, so M−t will mean the inverse of the transpose. The notation �x� denotes
a closest integer to x. Naturally, �b� will denote the operation applied to all
the coordinates of b. If X is a random variable, we will denote by Exp[X ] its
expectation. The gradient of a function f from Rn to R will be denoted by
∇f = ( ∂f

∂x1
, . . . , ∂f

∂xn
).

2.1 Lattices

Let ‖ · ‖ and 〈·, ·〉 be the Euclidean norm and inner product of Rn. We refer to
the survey [23] for a bibliography on lattices. In this paper, by the term lattice,
we mean a full-rank discrete subgroup of Rn. The simplest lattice is Zn. It turns
out that in any lattice L, not just Zn, there must exist linearly independent
vectors b1, . . . ,bn ∈ L such that:

L =

{
n∑

i=1

nibi | ni ∈ Z

}
.
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Any such n-tuple of vectors [b1, . . . ,bn] is called a basis of L: an n-dimensional
lattice can be represented by a basis, that is, a matrix of GLn(R). Reciprocally,
any matrix B ∈ GLn(R) spans a lattice: the set of all integer linear combinations
of its rows, that is, mB where m ∈ Zn. The closest vector problem (CVP) is the
following: given a basis of L ⊆ Zn and a target t ∈ Qn, find a lattice vector v ∈ L
minimizing the distance ‖v − t‖. If we denote by d that minimal distance, then
approximating CVP to a factor k means finding v ∈ L such that ‖v−t‖ ≤ kd. A
measurable part D of Rn is said to be a fundamental domain of a lattice L ⊆ Rn if
the sets b+D, where b runs over L, cover Rn and have pairwise disjoint interiors.
If B is a basis of L, then the parallelepiped P1/2(B) = {xB,x ∈ [−1/2, 1/2]n}
is a fundamental domain of L. All fundamental domains of L have the same
Lebesgue measure: the volume vol(L) of the lattice L.

2.2 The GGH Signature Scheme

The GGH scheme [9] works with a lattice L in Zn. The secret key is a non-singular
matrix R ∈ Mn(Z), with very short row vectors (their entries are polynomial in
n). Two distributions for the generation of R were suggested in [9]:

– The square distribution (called “random lattice” in [9]), where R is uniformly
distributed over {−	, . . . , 	}n×n for some integer bound 	. Goldreich et al. [9]
suggested 	 = 4 because the value of 	 had almost no effect on the quality of
the bases in their experiments.

– The hypercubic distribution (called “almost rectangular lattice” in [9]), where
R is the sum of kIn and a noise with square distribution for some 	. The GGH
challenges [8] used such a distribution, with parameters k = 4�√n + 1� + 1
and a noise with square distribution {−4, . . . ,+3}n×n. Micciancio [20] no-
ticed that this distribution has the weakness that it discloses the rough
directions of the secret vectors.

The lattice L is the lattice in Zn spanned by the rows of R: the knowledge
of R enables the signer to approximate CVP rather well in L. The basis R is
then transformed to a non-reduced basis B, which will be public. In the original
scheme [9], B is the multiplication of R by sufficiently many small unimodular
matrices. Micciancio [20] suggested to use the Hermite normal form (HNF) of L
instead. As shown in [20], the HNF gives an attacker the least advantage (in a
certain precise sense) and it is therefore a good choice for the public basis. The
messages are hashed onto a “large enough” subset of Zn, for instance a large
hypercube. Let m ∈ Zn be the hash of the message to be signed. The signer
applies Babai’s round-off CVP approximation algorithm [3] to get a lattice vector
close to m:

s = �mR−1 R,

so that s − m ∈ P1/2(R) = {xR,x ∈ [−1/2, 1/2]n}. Of course, any other CVP
approximation algorithm could alternatively be applied, for instance Babai’s
nearest plane CVP approximation algorithm [3]. To verify the signature s of m,
one would first check that s ∈ L using the public basis B, and compute the
distance ‖s − m‖ to check that it is sufficiently small.
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2.3 NTRUSign

NTRUSign [11] is a special instantiation of GGH with the compact lattices from
the NTRU encryption scheme [15], which we briefly recall: we refer to [11, 4] for
more details. In the NTRU standards [4] being considered by IEEE P1363.1 [18],
one selects n = 251 and q = 128. Let R be the ring Z[X ]/(Xn − 1) whose
multiplication is denoted by ∗. Using resultants, one computes a quadruplet
(f, g, F, G) ∈ R4 such that f ∗ G − g ∗ F = q in R and f is invertible mod q,
where f and g have 0–1 coefficients (with a prescribed number of 1), while F and
G have slightly larger coefficients, yet much smaller than q. This quadruplet is
the NTRU secret key. Then the secret basis is the following (2n)× (2n) matrix:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f0 f1 · · · fn−1 g0 g1 · · · gn−1
fn−1 f0 · · · fn−2 gn−1 g0 · · · gn−2

...
. . .

. . .
...

...
. . .

. . .
...

f1 · · · fn−1 f0 g1 · · · gn−1 g0
F0 F1 · · · Fn−1 G0 G1 · · · Gn−1

Fn−1 F0 · · · Fn−2 Gn−1 G0 · · · Gn−2

...
. . .

. . .
...

...
. . .

. . .
...

F1 · · · Fn−1 F0 G1 · · · Gn−1 G0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where fi denotes the coefficient of X i of the polynomial f . Due to the special
structure of R, it turns out that a single row of R is sufficient to recover the whole
secret key. Because f is chosen invertible mod q, the polynomial h = g/f (modq)
is well-defined in R: this is the NTRU public key. Its fundamental property is
that f ∗ h ≡ g (mod q) in R. The polynomial h defines a natural public basis of
L, which we omit (see [11]).

The messages are assumed to be hashed in {0, . . . , q−1}2n. Let m ∈ {0, . . . , q−
1}2n be such a hash. We write m = (m1,m2) with mi ∈ {0, . . . , q − 1}n. It is
shown in [11] that the vector (s, t) ∈ Z2n which we would obtain by applying
Babai’s round-off CVP approximation algorithm to m using the secret basis R
can be alternatively computed using convolution products involving m1, m2 and
the NTRU secret key (f, g, F, G). In practice, the signature is simply s and not
(s, t), as t can be recovered from s thanks to h. Besides, s might be further
reduced mod q, but its initial value can still be recovered because it is such
that s − m1 ranges over a small interval (this is the same trick used in NTRU
decryption). This gives rise for standard parameter choices to a signature length
of 251 × 7 = 1757 bits. While this signature length is much smaller than other
lattice-based signature schemes such as GGH, it is still significantly larger than
more traditional signature schemes such as DSA.

This is the basic NTRUSign scheme [11]. In order to strengthen the secu-
rity of NTRUSign, perturbation techniques have been proposed in [12, 4, 13].
Roughly speaking, such techniques perturb the hashed message m before signing
with the NTRU secret basis. However, it is worth noting that there is no per-
turbation in half of the parameter choices recommended in NTRU standards [4]
under consideration by IEEE P1363.1. Namely, this is the case for the parameter
choices ees251sp2, ees251sp3, ees251sp4 and ees251sp5 in [4]. For the other
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half, only a single perturbation is recommended. But NTRU has stated that the
parameter sets presented in [13] are intended to supersede these parameter sets.

3 The Hidden Parallelepiped Problem

Consider the signature generation in the GGH scheme described in Section 2.
Let R ∈ Mn(Z) be the secret basis used to approximate CVP in the lattice
L. Let m ∈ Zn be the message digest. Babai’s round-off CVP approximation
algorithm [3] computes the signature s = �mR−1 R, so that s − m belongs to
the parallelepiped P1/2(R) = {xR,x ∈ [−1/2, 1/2]n}, which is a fundamental
domain of L. In other words, the signature generation is simply a reduction of the
message m modulo the parallelepiped spanned by the secret basis R. If we were
using Babai’s nearest plane CVP approximation algorithm [3], we would have
another fundamental parallelepiped (spanned by the Gram-Schmidt vectors of
the secret basis) instead: we will not further discuss this case in this paper, since
it does not create any significant difference and since this is not the procedure
chosen in NTRUSign.

GGH [9] suggested to hash messages into a set much bigger than the fun-
damental domain of L. This is for instance the case in NTRUSign where the
cardinality of {0, . . . , q − 1}2n is much bigger than the lattice volume qn. What-
ever the distribution of the message digest m might be, it would be reasonable
to assume that the distribution s−m is uniform (or very close to uniform) in the
secret parallelepiped P1/2(R). This is because the parallelepiped is a fundamen-
tal domain, and we would expect the output distribution of the hash function to
be random in a natural sense. In other words, it seems reasonable to make the
following assumption:

Assumption 1 (The Uniformity Assumption). Let R be the secret basis of
the lattice L ⊆ Zn. When the GGH scheme signs polynomially many “randomly
chosen” message digests m1, . . . ,mk ∈ Zn using Babai’s round-off algorithm,
the signatures s1, . . . , sk are such that the vectors si − mi are independent and
uniformly distributed over P1/2(R) = {xR,x ∈ [−1/2, 1/2]n}.
Note that this is only an idealized assumption: in practice, the signatures and
the message digests are integer vectors, so the distribution of si −mi is discrete
rather than continuous, but this should not be a problem if the lattice volume is
sufficiently large, as is the case in NTRUSign. Similar assumptions have been
used in previous attacks [7, 25] on lattice-based signature schemes. We emphasize
that all our experiments on NTRUSign do not use this assumption and work
with real-life signatures.

We thus arrive at the following geometric learning problem (see Fig.1):

Problem 2 (The Hidden Parallelepiped Problem or HPP). Let V =
[v1, . . . ,vn] ∈ GLn(R). Define the parallelepiped spanned by V as P(V ) =
{∑n

i=1 xivi, xi ∈ [−1, 1]}. Denote by U(P) the uniform distribution on a par-
allelepiped P. Given poly(n) samples from U(P(V )), find a good approximation
of the rows of ±V .
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Algorithm 1. Solving the Hidden Parallelepiped Problem
Input: A polynomial number of samples uniformly distributed over a parallelepiped

P(V ).
Output: Approximations of rows of ±V .
1: Compute an approximation G of the Gram matrix V tV of V t (see Section 4.1).
2: Compute the Cholesky factor L of G−1, so that G−1 = LLt.
3: Multiply the samples of P(V ) by L to the right to obtain samples of P(C) where

C = V L.
4: Compute approximations of rows of ±C by Algorithm 2 from Section 4.3.
5: Multiply each approximation by L−1 to the right to derive an approximation of a

row of ±V .

In the definition of the HPP, we chose [−1, 1] rather than [−1/2, 1/2] like in
Assumption 1 to simplify subsequent calculations. Clearly, if one could solve the
HPP, then one would be able to approximate the secret basis in GGH by col-
lecting random pairs (message, signature). If the approximation was sufficiently
good, one would recover the secret vectors simply by rounding the coordinates
to their closest integer. If simple rounding failed, one could apply approximate
CVP algorithms to try to recover the secret lattice vectors, as one knows a
lattice basis from the GGH public key. The experiments of [22] on the GGH-
challenges [8] show that in practice, one does not need to be extremely close to
the lattice to recover the closest lattice vector, even in high dimension. But only
experiments can tell if the approximation will be sufficiently good for existing
lattice reduction algorithms, if simple rounding failed.

4 Learning a Parallelepiped

In this section, we propose a method to solve the Hidden Parallelepiped Problem
(HPP), based on the following steps. First, we approximate the covariance matrix
of the given distribution. This covariance matrix is essentially V tV (where V
defines the given parallelepiped). We then exploit this approximation in order
to transform our hidden parallelepiped P(V ) into a unit hypercube: in other
words, we reduce the HPP to the case where the hidden parallelepiped is a
hypercube. Finally, we show how hypercubic instances of the HPP are related
to a multivariate optimization problem based on the fourth moment, which we
solve by a gradient descent.

We remark that the idea of approximating the covariance matrix was already
present in the work of Gentry and Szydlo [25, 7]; however, after this basic step,
our strategy differs completely from theirs. We now describe our algorithm in
more detail.

4.1 The Gram Matrix/Covariance Leakage

It was first observed by Gentry and Szydlo [7, 25] that GGH signatures leak an
approximation of the Gram matrix of the transpose of the secret basis. Here, we
simply translate this observation to the HPP setting:
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Lemma 1 (Gram Leakage). Let V ∈ GLn(R). Let v be chosen uniformly at
random over the parallelepiped P(V ). Then:

Exp[vtv] = V tV/3.

Proof. We can write v = xV where x has uniform distribution over [−1, 1]n.
Hence,

vtv = V txtxV.

An elementary computation shows that Exp[xtx] = In/3 where In is the n × n
identity matrix, and the lemma follows. ��
Hence, by multiplying by 3 the average of vtv over all the samples v of the hidden
parallelepiped P(V ), we obtain an approximation of V tV , which is the Gram
matrix of V t. Note that V tV/3 is simply the covariance matrix of U(P(V )).

4.2 Morphing a Parallelepiped into a Hypercube

The second stage is explained by the following result:

Lemma 2 (Hypercube Transformation). Let V ∈ GLn(R). Denote by G ∈
GLn(R) the symmetric positive definite matrix V tV . Denote by L ∈ GLn(R) the
Cholesky factor1 of G−1, that is, L is the unique lower-triangular matrix such
that G−1 = LLt. Then the matrix C = V L ∈ GLn(R) satisfies the following:

1. The rows of C are unit vectors which are pairwise orthogonal. In other words,
C is an orthogonal matrix in On(R) and P(C) is a unit hypercube.

2. If v is chosen uniformly at random over the parallelepiped P(V ), then c = vL
is uniformly distributed over the hypercube P(C).

Proof. The Gram matrix G = V tV is clearly symmetric positive definite. Then
G−1 = V −1V −t is also symmetric positive definite: it has a Cholesky factoriza-
tion G−1 = LLt where L is lower-triangular matrix. Hence, V −1V −t = LLt. Let
C = V L ∈ GLn(R). Then:

CCt = V LLtV t = V V −1V −tV t = I.

For the second claim, let v have the uniform distribution U(P(V )), then v = xV
where x has uniform distribution over [−1, 1]n. It follows that vL = xV L = xC
has uniform distribution over P(C). ��
Lemma 2 says that by applying the transform L, we can map our parallelepiped
samples uniformly distributed over P(V ) into hypercube samples uniformly dis-
tributed over P(C). If we could approximate the rows of ±C, we could also
approximate the rows of ±V thanks to L−1. In other words, we have reduced
the Hidden Parallelepiped Problem into what one might call the Hidden Hyper-
cube Problem (see Fig. 2). From an implementation point of view, we note that
1 Instead of the Cholesky factor, one can take any matrix L such that G−1 = LLt.

We work with Cholesky factorization as this turns out to be more convenient in our
experiments.
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Fig. 2. The Hidden Hypercube Problem in dimension two

the Cholesky factorization (required for obtaining L) can easily be computed
by a process close to the Gram-Schmidt orthogonalization process (see [10]).
Lemma 2 assumes that we know the Gram matrix G = V tV exactly. If we only
have an approximation of the Gram matrix G, then C will only be close to
some orthogonal matrix in On(R): the Gram matrix CCt of C will be close to
the identity matrix, and the images of our parallelepiped samples will have a
distribution close to the uniform distribution of some unit hypercube.

4.3 Learning a Hypercube

For any V = [v1, . . . ,vn] ∈ GLn(R) and any integer k ≥ 1, we define the k-th
moment over a vector w ∈ Rn as:

momV,k(w) = Exp[〈u,w〉k],

where u is uniformly distributed over the parallelepiped P(V ). Clearly, momV,k

(w) can be approximated thanks to the samples of P(V ). We stress that our
moments are different from the moments previously considered in [11, 13]: our
moments are functions, rather than fixed values. We are interested in the second
and fourth moments. A straightforward calculation shows that for any w ∈ Rn,
they are given by

momV,2(w) =
1
3

n∑
i=1

〈vi,w〉2

momV,4(w) =
1
5

n∑
i=1

〈vi,w〉4 +
1
3

∑
i	=j

〈vi,w〉2〈vj ,w〉2

Note that the second moment is related to the Gram matrix/covariance men-
tioned in Section 4.1. When V ∈ On(R), the second moment becomes ‖w‖2/3
while the fourth moment becomes

momV,4(w) =
1
3
‖w‖4 − 2

15

n∑
i=1

〈vi,w〉4.

The gradient of the latter is therefore

∇momV,4(w) =
n∑

i=1

⎛⎝4
3

⎛⎝ n∑
j=1

〈vj ,w〉2
⎞⎠ 〈vi,w〉 − 8

15
〈vi,w〉3

⎞⎠vi.
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For w on the unit sphere the second moment is constantly 1/3, and

momV,4(w) =
1
3
− 2

15

n∑
i=1

〈vi,w〉4

∇momV,4(w) =
4
3
w − 8

15

n∑
i=1

〈vi,w〉3vi. (1)

Lemma 3. Let V = [v1, . . . ,vn] ∈ On(R). Then the global minimum of
momV,4(w) over the unit sphere of Rn is 1/5 and this minimum is obtained
at ±v1, . . . ,±vn. There are no other local minima.

Proof. The method of Lagrange multipliers shows that for w to be an extremum
point of momV,4 on the unit sphere, it must be proportional to ∇momV,4(w).
By writing w =

∑n
i=1〈vi,w〉vi and using Eq. (1), we see that there must exist

some α such that 〈vi,w〉3 = α〈vi,w〉 for i = 1, . . . , n. In other words, each
〈vi,w〉 is either zero or ±√

α. It is easy to check that among all such points,
only ±v1, . . . ,±vn form local minima. ��

Fig. 3. The fourth moment for n = 2. The dotted line shows the restriction to the unit
circle.

In other words, the hidden hypercube problem can be reduced to a minimiza-
tion problem of the fourth moment over the unit sphere. A classical technique to
solve such minimization problems is the gradient descent described in
Algorithm 2. The gradient descent typically depends on a parameter δ, which
has to be carefully chosen. Since we want to minimize the function here, we go
in the opposite direction of the gradient. To approximate the gradient in Step 2
of Algorithm 2, we notice that

∇momV,4(w) = Exp[∇(〈u,w〉4)] = 4Exp[〈u,w〉3u].

This allows to approximate the gradient ∇momV,4(w) using averages over sam-
ples, like for the fourth moment itself.
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Algorithm 2. Solving the Hidden Hypercube Problem by Gradient Descent
Parameters: A descent parameter δ.
Input: A polynomial number of samples uniformly distributed over a unit hypercube

P(V ).
Output: An approximation of some row of ±V .

1: Let w be chosen uniformly at random from the unit sphere of Rn.
2: Compute an approximation g of the gradient ∇mom4(w) (see Section 4.3).
3: Let wnew = w − δg.
4: Divide wnew by its Euclidean norm ‖wnew‖.
if momV,4(wnew) ≥ momV,4(w) where the moments are approximated by sampling
then

return the vector w.
else

Replace w by wnew and go back to Step 2.
end if

5 Experimental Results

As usual in cryptanalysis, perhaps the most important question is whether or
not the attack works in practice. We therefore implemented the attack in C++
and ran it on a 2GHz PC/Opteron. The critical parts of the code were written
in plain C++ using double arithmetic, while the rest used Shoup’s NTL library
version 5.4 [24]. Based on early experiments, we chose δ = 0.7 in the gradient
descent (Algorithm 2), for all the experiments mentioned here. The choice of δ
has a big impact on the behaviour of the gradient descent. We stress that our
choices of the parameters may not be optimal, so the experimental results should
be taken with caution. When doing several descents in a row, it is useful to relax
the halting condition 5 in Algorithm 2 to abort descents which seem to make
very little progress.

5.1 NTRUSign

We applied Algorithm 1 to real-life parameters of NTRUSign. More precisely,
we ran the attack on NTRUSign-251 without perturbation, corresponding to
the parameter choices ees251sp2, ees251sp3, ees251sp4 and ees251sp5 in the
NTRU standards [4] under consideration by IEEE P1363.1 [18]. This corresponds
to a lattice dimension of 502. We did not rely on the uniformity assumption: we
generated genuine NTRUSign signatures of messages generated uniformly at
random over {0, . . . , q − 1}n. The results of the experiments are summarized
in Figure 4. For each given number of signatures, we generated a new set of
signatures, and applied Algorithm 1: from the set of samples, we derived an
approximation of the Gram matrix, and used it to transform the parallelepiped
into a hypercube, and finally, we ran a series of random descents, starting with
random points. The curve shows the average number of random descents needed
to recover the secret key, based on the number of signatures: the average was
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Fig. 4. Experiments on NTRUSign-251 without perturbation. The curve shows the
average number of random descents required to recover the secret key, depending on
the number of signatures, which is in the range 80,000–300,000.

computed using roughly a thousand descents. A success is counted when the sim-
ple rounding of the approximation obtained discloses exactly one of the vectors
of the secret basis (which is sufficient to recover the whole secret basis in the
case of NTRUSign): no additional approximate CVP stage is required here.
Typically, a single random descent does not take much time: for instance, a
usual descent for 150,000 signatures takes roughly ten minutes. When success-
ful, a gradient descent may take as little as a few seconds. The minimal number
of signatures to make the attack successful in our experiments was 90,000, in
which case the required number of random descents to run was about 400. With
80,000 signatures, we tried 5,000 descents without any success, but maybe a
substantially larger (yet realistic) number of descents would disclose the secret
key: our experiments should not be considered as optimal. The curve given in
Fig. 4 may vary a little bit, depending on the secret basis: for instance, for the
basis used in the experiments of Fig. 4, the average number of random descents
was 15 with 140,000 signatures, but it was 23 for another basis generated with
the same NTRU parameters. It seems that the exact geometry of the secret basis
has an influence, as will be seen in the analysis of Section 6. It is now clear that
perturbation techniques are really mandatory for the security of NTRUSign,
though it is currently unknown if such techniques are sufficient to prevent this
kind of attacks.

5.2 The GGH Challenges

We also did a few experiments on the GGH-challenges [8], which range from
dimension 200 to 400. Because there is actually no GGH signature challenge, we
simply generated secret bases like in the GGH encryption challenges. This time,
we relied on the uniformity assumption: we created samples uniformly distrib-
uted over the secret parallelepiped, and tried to recover the secret basis. Because
the secret vectors are significantly longer than in the NTRUSign case, we never
recovered directly the secret vector by simple rounding when the descent was
successful, but the approximation obtained was sufficiently good to disclose the



284 P.Q. Nguyen and O. Regev

secret vector after applying Babai’s CVP nearest plane algorithm [3], provided
that the number of samples was large enough. When starting the descent, rather
than starting with a random point on the unit sphere, we took advantage of the
fact that we knew the rough directions of the secret vectors, due to the hyper-
cubic distribution. As a result, the gradient descent takes very few iterations
compared to the general case. For instance, in dimension 400, with 360,000 sig-
natures, the gradient descent required only 6 iterations. The difference between
the rounded vector found and the closest lattice vector was a 400-dimensional
integer vector with only four ±1 coefficients, the rest being zero. By applying
Babai’s CVP nearest plane algorithm [3] on an LLL-reduced basis (obtained
by LLL reduction of the public HNF basis), we obtained immediately an ex-
act vector of the secret basis: no strong reduction algorithm was needed (note
that the error vector was much smaller than in the experiments of [22]). From
our limited experiments ranging from dimension 200 to 400, it seemed that the
number of required signatures was roughly quadratic in the dimension, if one
wished for a very good success rate. To thwart such attacks, it seems that the
GGH scheme would need to use secret bases with much bigger entries, unlike in
the GGH challenges. This would certainly impact the efficiency of the signature
scheme, notably the size of the signature, which is already not negligible even
for NTRUSign.

6 Theoretical Analysis

Our goal in this section is to give a rigorous theoretical justification to the success
of the attack. We will not try to give a tight estimate on the performance of the
attack. Instead, we will show that given a large enough polynomial number of
samples, Algorithm 1 succeeds in finding a good approximation to a row of V
with some constant probability. Let us remark that it is possible that a rigorous
analysis already exists in the ICA literature, although we were unable to find
any (an analysis under some simplifying assumptions can be found in [17]). Also,
Frieze et al. [5] sketch a rigorous analysis of a similar algorithm.

In order to approximate the covariance matrix, the fourth moment, and its
gradient, our attack computes averages over samples. Mainly because the sam-
ples are independent (and identically distributed), we can use known bounds on
large deviations such as the Chernoff bound (see, e.g., [2]) to obtain that with
extremely high probability the approximations are very close to the true values.
In our analysis below we omit the explicit calculations, as these are relatively
standard.

6.1 Analysis of Algorithm 2

We start by analyzing Algorithm 2. For simplicity, we consider only the case in
which the descent parameter δ equals 3/4. A similar analysis holds for 0 < δ <
3/4. Another simplifying assumption we make is that instead of the stopping
rule in Step 5 we simply repeat the descent step some small number r of times
(which will be specified later).
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For now, let us assume that the matrix V is an orthogonal matrix, so our
samples are drawn from a unit hypercube P(V ). We will later show that the
actual matrix V , as obtained from Algorithm 1, is very close to orthogonal, and
that this approximation does not affect the success of Algorithm 2.

Let us first analyze the behavior of Algorithm 2 under the assumption that
all gradients are computed exactly without any error. Let v1, . . . ,vn be n or-
thonormal vectors that define the parallelepiped P(V ), and write any w ∈ Rn

as w =
∑n

i=1 wivi. Then, using Eq. (1), we see that for w on the unit sphere,

∇momV,4(w) =
4
3
w − 8

15

n∑
i=1

w3
i vi.

Since we took δ = 3/4, Step 3 in Algorithm 2 performs

wnew =
2
5

n∑
i=1

w3
i vi.

The vector is then normalized in Step 4. So we see that each step in the gradi-
ent descent takes a vector (w1, . . . , wn) to the vector α · (w3

1 , . . . , w
3
n) for some

normalization factor α (where both vectors are written in the vi basis). Hence,
after r iterations, a vector (w1, . . . , wn) is transformed to the vector

α · (w3r

1 , . . . , w3r

n )

for some normalization factor α.
Recall now that the original vector (w1, . . . , wn) is chosen uniformly from the

unit sphere. It can be shown that with some constant probability, one of its
coordinates is greater in absolute value than all other coordinates by a factor
of at least 1 + Ω(1/ log n) (first prove this for a vector distributed according to
the standard multivariate Gaussian distribution, and then note that by normal-
izing we obtain a uniform vector from the unit sphere). For such a vector, after
only r = O(log log n) iterations, this gap is amplified to more than, say, nlog n,
which means that we have one coordinate very close to ±1 and all others are at
most n− log n in absolute value. This establishes that if all gradients are known
precisely, Algorithm 2 succeeds with some constant probability.

To complete the analysis of Algorithm 2, we now argue that it succeeds with
good probability even in the presence of noise in the approximation of the gradi-
ents. First, it can be shown that for any c > 0, given a large enough polynomial
number of samples, with very high probability all our gradient approximations
are accurate to within an additive error of n−c in the 	2 norm (we have r such
approximations during the course of the algorithm). This follows by a stan-
dard application of the Chernoff bound followed by a union bound. Now let
w = (w1, . . . , wn) be a unit vector in which one coordinate, say the jth, is greater
in absolute value than all other coordinates by some factor η ≥ 1 + Ω(1/ log n).
Since w is a unit vector, this in particular means that wj > 1/

√
n. As we saw

before, in the vector w̃new := w − δ∇mom4(w), this factor increases to η3. We
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also have that w̃new,j = 2
5w3

j > 2
5n−1.5 > n−2. By our assumption on the ap-

proximation g, we have that for each i, |w̃new,i−wnew,i| ≤ n−c. So for any k �= j,

|wnew,k|
|wnew,j | ≤

|w̃new,k| + n−c

|w̃new,j| − n−c
≤ |w̃new,k| + n−c

|w̃new,j |(1 − n−c+2)
≤(1− n−c+2)−1η−3 + 2n−c+2.

So we see that a gap of η turns into a gap of ((1−n−c+2)−1η−3 +2n−c+2)−1. A
straightforward calculation shows that after O(log log n) steps, this gap becomes
Ω(nc−2). Hence, by choosing a large enough c, we can make the output vector
very close to one of the ±vis. This completes our analysis of Algorithm 2.

6.2 Analysis of Algorithm 1

We now complete the analysis of the attack by analyzing Algorithm 1. Recall
that a sample v from P(V ) can be written as xV where x is chosen uniformly
from [−1, 1]n. So let vi = xiV for i = 1, . . . , N be the input samples. Then
our approximation G to the Gram matrix V tV is given by G = V tĨV where
Ĩ = 3

N

∑
xt

ixi. We claim that with high probability, Ĩ is very close to the identity
matrix. Indeed, for x chosen randomly from [−1, 1]n, each diagonal entry of xtx
has expectation 1/3 and each off-diagonal entry has expectation 0. Moreover,
these entries take values in [−1, 1]. By the Chernoff bound we obtain that for
any approximation parameter c > 0, if we choose, say, N = n2c+1 then with
very high probability each entry in Ĩ − I is at most n−c in absolute value. In
particular, this implies that all eigenvalues of the symmetric matrix Ĩ are in the
range 1 ± n−c+1.

Recall that we define L to be the Cholesky factor of G−1 = V −1Ĩ−1V −t

and that C = V L. Now CCt = V LLtV t = Ĩ−1, which implies that C is close
to an orthogonal matrix. Let us make this precise. Consider the singular value
decomposition of C, given by C = U1DU2 where U1, U2 are orthogonal matrices
and D is diagonal. Then CCt = U1D

2U t
1 and hence D2 = U t

1Ĩ
−1U1. From this

it follows that the diagonal of D consists of the square roots of the reciprocals of
the eigenvalues of Ĩ, which in particular means that all values on the diagonal
of D are also in the range 1 ± n−c+1.

Consider the orthogonal matrix C̃ = U1U2. We will show below that with
some constant probability, Step 4 yields a good approximation of a row of ±C̃,
call it c̃. The output of Algorithm 1 is therefore

c̃L−1 = c̃C−1V = (c̃C̃−1)(C̃C−1)V = (c̃C̃−1)(U1D
−1U t

1)V.

As we have seen before, all eigenvalues of U1D
−1U t

1 are close to 1, and therefore
the above is a good approximation to a row of ±V , given that c̃ is a good
approximation to a row of ±C̃.

To complete the analysis, we will show that for large enough c, samples from
P(C) ‘look like’ samples from P(C̃). More precisely, assume that c is chosen such
that the number of samples required by Algorithm 2 is less than, say, nc−4. Then,
it follows from Lemma 4 below that the statistical distance between a set of nc−4

samples from P(C) and a set of nc−4 samples from P(C̃) is at most O(n−1).
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By our analysis of Algorithm 2, we know that when given samples from P(C̃),
it outputs an approximation of a row of ±C̃ with some constant probability.
Hence, when given samples from P(C), it must still output an approximation
of a row of ±C̃ with a probability that is smaller by at most O(n−1) and in
particular, constant.

Lemma 4. The statistical distance between the uniform distribution on P(C)
and that on P(C̃) is at most O(n−c+3).

Proof. We first show that the parallelepiped P(C) is almost contained and almost
contains the cube P(C̃):

(1 − n−c+2)P(C̃) ⊆ P(C) ⊆ (1 + n−c+2)P(C̃).

To show this, take any vector y ∈ [−1, 1]n. The second containment is equivalent
to showing that all the coordinates of yU1DU t

1 are at most 1+n−c+2 in absolute
value. Indeed, by the triangle inequality,

‖yU1DU t
1‖∞ ≤ ‖y‖∞ + ‖yU1(D − I)U t

1‖∞ ≤ 1 + ‖yU1(D − I)U t
1‖2

≤ 1 + n−c+1√n < 1 + n−c+2.

The first containment is proved similarly. On the other hand, the ratio of volumes
between the two cubes is ((1+n−c+2)/(1−n−c+2))n = 1+O(n−c+3). From this
it follows that the statistical distance between the uniform distribution on P(C)
and that on P(C̃) is at most O(n−c+3). ��
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