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Abstract. Analytical models are important tools for the performance investiga-
tion of the Internet. The literature shows that the fixed point algorithm (FPA) is
one of the most useful ways of solving analytical models of Internet performance.

Apart from what is observed in experimental literature, no comprehensive
proof of the convergence and uniqueness of the FPA is given. In this paper we
show how analytical models of reliable Internet protocols (TCP) converge to a
unique fixed point. Unlike previous work in the literature the basic principles of
our proof apply to both single and multiple bottleneck networks, to short and
long-lived TCP connections and to both Drop Tail and Active Queue Manage-
ment (AQM) routers. Our proof of convergence is based on a well known fixed
point theorem and our uniqueness proof exploits the feedback nature of the reli-
able protocol.

The paper specifies conditions under which the FPA of analytical models of
TCP converges to a unique point. The concepts used in the proof can also be ex-
tended to analyze the equilibrium, stability and global uniqueness issues of TCP,
other reliable protocols and the Internet as a whole.

Keywords: Analytical models, Internet, TCP, fixed point, convergence, equilib-
rium, stability.

1 Introduction

An equation f(x) = x which maps a point x to itself is called a fixed point equation.
Analytical models are important tools for investigating, designing, dimensioning and

planning IP (Internet Protocol) networks. The literature (for example see Olsén et al.
[10]) shows that the fixed point algorithm (FPA) is one of the most useful ways of
solving analytical models of Internet performance. The fixed point methods combine the
detailed models describing the behavior of the sources with network models resulting
in a compound model. Many analytical models such as [3, 4, 5, 9] use the fixed point
method.

Each homogeneous group of (TCP) connections (flows with the same path, the same
TCP version, the same packet size . . . ) is represented by a TCP sub-model. Each bot-
tleneck link and the associated router traversed by the groups of TCP connections is
represented by a network sub-model.
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The TCP sub-models calculate the load offered to the respective network sub-
models. The network sub-models in turn calculate the loss probability and queueing de-
lay for the corresponding TCP sub-models in an iterative fixed point procedure (FPA).
This is analogous to the fact that the packet loss probability and packet delay in the net-
work depend on the sending rate of the sources, and the flow-controlled (TCP) sources
adjust their sending rates in response to observed packet loss and packet delay. Hence
the usual fixed point elements (entries) used in solving analytical models of TCP per-
formance are the packet loss probability PL, the average queue length EN from which
the queueing delay and the RTT (round trip time – the time from the start of packet
transmission until the reception of its acknowledgement) are calculated and the load
offered by the TCP connections Λ.

In light of the above discussion, the main contributions of this paper are the
following.

– Convergence and Uniqueness Proof: Proof of the convergence of the FPA based
on a well established theorem (used in Nash Equilibrium theory) and proof of the
uniqueness of the fixed points based on the feedback nature of the reliable protocol
are given. Unlike some previous works ( [9, 3]) our elegant proofs apply to both
single and multi-bottleneck networks, to short and long-lived connections and to
AQM and Drop Tail routers at different network scenarios.

– Specification of the Conditions for Convergence and Uniqueness: While prov-
ing the convergence and uniqueness we also specify the conditions under which
the FPA of analytical models of reliable Internet protocols like TCP converges to
a unique point. None of the proofs in the literature ( [9, 3]) has explicitly specified
these conditions.

– Simplicity: Unlike the few previous works, this paper presents simple and accurate
proofs with minimal assumptions.

– Extendibility: Unlike the previous works, an extension of our robust proofs which
are based on well known concepts allows us to easily analyze the equilibrium, sta-
bility and global uniqueness issues of TCP, other reliable Internet protocols and the
Internet as a whole.

The rest of the paper is organized as follows. In sections 2 and 3 we show how the
FPA converges to a unique fixed point. We give the summary and work in progress in
section 4.

2 Existence of the Fixed Point

There are several fixed point theorems based on continuous functions [2] and discontin-
uous functions [6]. We use the Brouwer’s fixed point theorem (see [2]) which is based
on continuity of the fixed point function to show the existence of the fixed points.

To prove the convergence of the two–dimensional FPA of analytical models of TCP
performance for a single bottleneck link using the Brouwer’s fixed point theorem it
suffices to show that a continuous function f exists in a non empty compact convex set
or in a closed n-ball or equivalent such that

f (PL, EN ) = (PL, EN ). (1)
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2.1 The Compact and Convex Set (Region) Where the FPA Is Carried Out

The packet loss probability value PL is between 0 and 1 and the mean buffer occupancy
value EN is between 0 and K where K − 1 is the router buffer capacity. These two
intervals form a non empty compact convex set of points (plane) in which the fixed
point procedure is carried out.

We next derive the function f and show how and why it becomes continuous.

2.2 The Continuous Fixed Point Function

To derive the fixed point Equation 1 and show that it is continuous, we will first use well
known formulas for the derivation of the load that the TCP sub-models offer to the net-
work sub-models. We then prove that these formulas are continuous and conclude that
the formula for the throughput (load offered by a TCP connection) is continuous. We
will also use the packet loss probability and queuing delay as given by the M/M/1/K
queuing system for the network sub-model and explain that these functions are continu-
ous. Finally we will construct the vector valued fixed point function given in Equation 1
and show that it is continuous.

The formulas for the TCP sub-models and their continuity. TCP connections ad-
just the load they offer to the network as a function of the packet loss probability and
queueing delay at the bottleneck router. This relationship is given by the well known
PFTK throughput formula ( [11]) for TCP Reno.

Let PL denote the packet loss probability at a bottleneck router. Let EN denote the
queue length at the bottleneck router. Let Λ denote the load offered by the TCP sub–
model(s). Let T0 denote the TCP initial timeout value in seconds. Let Wm denote the
maximum TCP window size expressed in packets. Let W (PL) denote the expected TCP
window size as a function of packet loss probability, PL. Then [11]

W (PL) =

⎧
⎨

⎩

2
3 +

√
4(1−PL)

3PL
+ 4

9 W (PL) < Wm

Wm W (PL) ≥ Wm.
(2)

Let Q(PL, w) denote the probability that a loss in a window of size w is a timeout (TO).
Then [11]

Q(PL, w) =

⎧
⎪⎪⎨

⎪⎪⎩

1 w ≤ 3
(1−(1−PL)3)(1+(1−PL)3(1−(1−PL)w−3))

1−(1−PL)w w > 3, PL �= 0
3
w w > 3, PL = 0.

(3)

Let G(PL) denote a polynomial term used in the PFTK formula by

G(PL) = 1 + PL + 2P 2
L + 3P 3

L + 4P 4
L + 5P 5

L + 6P 6
L. (4)

Let E[X ] denote the expected round number when the first packet loss occurs. A round
begins when a packet is sent and ends when its ACK arrives. As shown in [11],

E[X ] =

{
W (PL) W (PL) < Wm

Wm

4 + 1−PL

PLWm
+ 1 W (PL) ≥ Wm.

(5)
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The throughput of a TCP connection is given by the PFTK formula

λ = t(PL, RTT) =
1−PL

PL
+ W (PL)

2 + Q(PL, W (PL))

RTT (E[X ] + 1) + Q(PL,W (PL))G(PL)T0
1−PL

. (6)

Substituting Equation 5 into Equation 6 and multiplying the first part of the resulting
equation by (1 − PL)/(1 − PL) and the second part by PL/PL yields

λ = t(PL, RTT) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1−PL)2

PL
+ W (PL)

2 (1−PL)+Q(PL,W (PL))(1−PL)

RTT (W (PL)+1)(1−PL)+Q(PL,W (PL))G(PL)T0
,

W (PL) < Wm

1−PL+ W (PL)
2 (PL)+Q(PL,W (PL))PL

PLRTT ( Wm
4 + 1−PL

PLWm
+2)+PL

Q(PL,W (PL))G(PL)T0
1−PL

,

W (PL) ≥ Wm.

(7)

W (PL) < Wm implies that

2
3

+

√

4(1 − PL)
3PL

+
4
9

< Wm (8)

so that

PL >
1

3
4W 2

m − Wm + 1
. (9)

The function W (PL) given in Equation 2 is continuous as

lim
PL→ 1

3
4 W2

m−Wm+1

W (PL) = Wm = W

(
1

3
4W 2

m − Wm + 1

)

. (10)

Similarly it can be shown that E[X ] is a continuous function of PL.
It can be shown using L’Hopital’s rule that the function Q(PL, Wm) described in

Equation 3 is a continuous function of PL. The function Q(PL, W (PL)) is also contin-
uous as W (PL) is continuous. The polynomial function G(PL) given by Equation 4 is
also continuous.

Besides the continuity of λ = t(PL, RTT) is not affected by the value of RTT which
is greater than 0.

Therefore the function λ = t(PL, RTT) of persistent TCP Reno connections given by
Equation 7 is continuous since a combination and composition of continuous functions
is continuous at all appropriate points. For other TCP implementations with Drop Tail
and RED the throughput formulas given in [7] can be used and the continuity can be
similarly shown.

Using similar arguments of the above formulas of persistent TCP connections, the
continuity of the square root formula for the rate of non–persistent TCP flows given
in [1] can be shown. Any point of discontinuity can be removed by re–defining the
function.

We next discuss the continuity of the network sub-model formulas.
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The formulas for the network sub-models and their continuity. The network sub-
model which focuses on the IP network receives the average traffic load Λ packets/sec
collectively offered by the TCP sub–model(s). The network sub-model (M/M/1/K)
with a router buffer capacity of K − 1 packets and a link capacity of C packets/sec (the
load ρ = Λ/C) is used to compute the loss probability PL and the expected number EN

of customers in the queueing system. The queueing delay part of the RTT is calculated
from EN for the TCP sub-models.

The M/M/1/K queueing system yields a closed form formula for the packet loss
probability and queue length. A simple way of accounting for the burstiness of TCP
traffic using the M/M/1/K is shown in [9] so that the closed form expressions of PL

and EN still hold.
Using L’Hopital’s rule the quantities PL and EN can be shown to be continuous func-

tions h1(Λ) and m(Λ). This implies that RTT which is a continuous function u(EN ) is
also a continuous function h2(Λ). If there are N TCP connections, the total load offered
Λ = Nλ = Nt(PL, RTT) = g(PL, RTT) for some continuous function g.

The fixed point formula and its continuity. From the above arguments the fixed point
equation used in modeling TCP is given by

(PL, EN ) = (h1(Λ), m(Λ)) = (h1(g(PL, RTT), m(g(PL, RTT)))
= (h1(g(PL, u(EN )), m(g(PL, u(EN ))))) = (f1(PL, EN ), f2(PL, EN ))
= f (PL, EN ). (11)

Theorem 2.1 The function f given in Equation 11 above is continuous.

Proof. The functions, h1, m, u, and g are all shown to be continuous in the preceding
sections. Hence the functions f1 and f2 which are compositions of continuous functions
are also continuous. This implies that the vector valued fixed point function f given by
Equation 11 is a continuous function.

Now by the Brouwer’s fixed point theorem the function f given by Equation 11 has
a fixed point in the non empty compact convex set explained in section 2.1. We next
show that this fixed point is unique.

3 Uniqueness of the Fixed Point of TCP Models

To prove the uniqueness of the fixed point of analytical models of TCP, we first con-
struct a fixed point function of the TCP throughput and show that it is continuous and
decreasing. We then state two theorems and prove them. We use these theorems to com-
plete the proof of the uniqueness of the fixed point of the analytical models of TCP.

As shown in [11] and explained in [8] the throughput function given by Equation 7
can be expressed as

λ = t(PL, RTT) =
1

RTT
√

2PL

3 + 3T0

√
3PL

8 PL(1 + 32P 2
L)

.

This implies that for a single TCP–network sub–model pair with N active TCP
connections
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Λ = Nλ =
N

h2(Λ)
√

2h1(Λ)
3 + 3T0

√
3h1(Λ)

8 h1(Λ)(1 + 32(h1(Λ))2)
= F (Λ) (12)

where RTT = h2(Λ) and PL = h1(Λ) as shown in the previous sections.
If there are k TCP sub–models each of which offers λi to the same bottleneck link,

let Ni denote the number of active TCP connections in TCP sub–model i. Let D denote
the queueing delay and ci refer to other components of RTT like the propagation delay
which are constant for each TCP sub–model. Since D is a continuous function of EN

which in turn is a continuous function of Λ, D is a continuous function h3(Λ). Now we
have

Λ =
k∑

i=1

λi =
k∑

i=1

Ni t(PL, RTTi) =
k∑

i=1

Ni t(PL, D + ci)

=
k∑

i=1

Ni t(h1(Λ), h3(Λ) + ci) = H(Λ). (13)

The first derivative F ′(Λ) is

F ′(Λ) =

−
(

h2(Λ)

√
2h1(Λ)

3
+ 3T0

√
3h1(Λ)

8
h1(Λ)(1 + 32(h1(Λ))2)

)−2

×

DΛ

(

h2(Λ)

√
2h1(Λ)

3
+ 3T0

√
3h1(Λ)

8
h1(Λ)(1 + 32(h1(Λ))2)

)

.

The first derivatives of h1(Λ) = PL and h2(Λ) = RTT = u(EN ) are positive
implying that the functions h1 and h2 are increasing. This can be verified by the fact
that when the traffic load increases the loss probability PL and the queuing delay EN

both increase. Hence F ′(Λ) < 0 for all possible values of Λ. This implies that the
function F (Λ) is continuous and decreasing function for Λ > 0 (PL > 0). This can
also be verified by the fact that when the loss probability and queuing delays increase
the TCP throughput decreases.

Similarly it can be shown that the fixed point function H used for the many TCP
sub–models case is also a continuous and decreasing function of Λ.

The following statement which is based on continuous and decreasing functions may
be a well known fact. However we put it as a theorem in order to easily reference it from
the succeeding parts of the paper.

Theorem 3.1. A continuous decreasing function p of one variable has at most one fixed
point.

Proof. The function q(x) = x is an increasing function. Therefore this function and
the decreasing function p(x) intersect at at most one point. This in turn implies that the
fixed point function p(x) = x has at most one fixed point.
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Hence each of the functions F and H given by Equations 12 and 13 has a unique fixed
point as it is also shown from the above statements that a fixed point exists (Brouwer’s
fixed point theorem).

Theorem 3.2. The vector valued function of two variables, f given by Equation 11 has
a unique fixed point.

Proof. Suppose there are two fixed points (PL1 , EN1) and (PL2 , EN2). This implies
that there are two fixed points Λ = F (Λ) and Λ′ = F (Λ′) where F is defined in
Equation 12. But this is a contradiction as the function F has a unique fixed point as
shown above. Hence (PL1 , EN1) = (PL2 , EN2) and the function f has a unique fixed
point.

4 Summary and Work in Progress

In this paper we have shown how the FPA converges to a unique fixed point. The proof
of convergence is based on a well known fixed point theorem and the uniqueness proof
exploits the feedback and reliable nature of the protocol (TCP). Unlike the previous
works in the literature ( [9, 3]), our proof is simple and elegant and its basic principles
are applicable to models of both short and long-lived TCP connections for single and
multi-bottleneck links with AQM and Drop Tail routers.

We have specified (using different theorems) the conditions under which the FPA of
analytical models of reliable Internet protocols like TCP and the performance of the
reliable Internet protocol (TCP) itself converge to a unique fixed point.

We are extending the techniques used in this paper to prove the convergence and
uniqueness of analytical models of TCP for multi-bottleneck networks with homege-
nous and heterogeneous (connections with different paths) TCP connections. We will
also use these techniques along with some studies in the literature ( [12, 13]) to further
analyze the equilibrium, stability and global uniqueness issues of TCP, other reliable
protocols and the Internet as a whole.
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