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Abstract. Nowadays, many high-speed Internet services and applica-
tions require high-speed multidimensional packet classification, but cur-
rent high-speed classification often use expensive and power-slurping
hardware (such as TCAM and FPGA). In this paper, we present a novel
algorithm, called AM-Trie (Asymmetrical Multi-bit Trie). Our algorithm
creatively use redundant expression to shorten the height of Trie; use
compression to reduce the storage cost and eliminate the trace back to
enhance the search speed further. Moreover, AM-Trie is a parallel al-
gorithm and very fit for the “multi-thread and multi-core” features of
Network Processor; it has good scalability, the increase of policy number
influences little to its performance. Finally, a prototype is implemented
based on Intel IXP2400 Network Processor. The performance testing re-
sult proves that AM-Trie is high-speed and scalable, the throughput of
the whole system achieves 2.5 Gbps wire-speed in all situations.

1 Introduction

In recent years, the Internet traffic increases dramatically and the users of Inter-
net increase exponentially. At the same time, the services of Internet turn from
traditional best-effort service to quality of service (QoS). Hence, network devices
should evolve from the traditional packets forwarding to content awareness, and
packet classification is one of the most important basic functions. Many network
technology such as VPN, NAT, Firewall, IDS, QoS, and MPLS require packet
classification. So the speed of packet classification algorithm will affect the per-
formance of these network devices directly, and it also takes great effect on the
next generation Internet. The high-speed packet classification is a hot topic in
today’s network research, there are many papers about classification [IL[2]3}4]
published in the top conference, such as Sigcomm and Infocom.

By now, hardware (such as TCAM, FPGA, etc.) is the most common way
to achieve high-speed classification, but the hardware is expensive and power-
slurping, so the industry hopes to find some high-speed software methods. Net-
work Processor Unit (NPU) is a kind of programable chip which is optimized for
network applications processing. Most NPUs are “Multi Thread and Multi-core”
architecture [5], they have multiple hardware threads in one microengine and
multiple microengines in one NPU chip; NPUs usually have optimized memory
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management unit for packet forwarding; and some NPUs provide special-purpose
coprocessors for some specific network operations. With the well designed archi-
tecture, NPU combines the flexibility of software and the high-speed of hardware
together, it can also greatly shorten the product development cycle. So it is con-
sidered as the core technology which impels the development of next generation
Internet. Network Processor has a good prospect and becomes a new direction
and hot topic [6}[7,[8] in network research after ASIC.

But the traditional software classification algorithms are not fit for NPU, they
usually based on the data structure of binary tree or hash table. The complexity
of these algorithms is O(dW), because they are not parallel algorithm, where d is
the classification dimension (field number of the policy table) and W is the bits
of the field. They cannot satisfy current high-speed network, not to mention the
high-speed IPv6 applications in the near future. Hence, researches on high-speed
packet classification algorithm based on NPU platform are very important.

In this paper, we present a parallel high-speed multidimensional classifica-
tion algorithm, called AM-Trie (Asymmetrical Multi-bit Trie), which has the
following features:

— Use redundant expression to express prefix with arbitrary length and build
AM-Trie, which is much lower than normal Trie.

— Compress AM-Trie to eliminate trace back. This increases the lookup speed
and reduces the storage cost. The time complexity of AM-Trie is O(d+h) and
the space complexity is O(N?), where d is the dimension of the classification,
h is the height of AM-Trie and N is the number of classification policy.

— AM-Trie is a parallel algorithm and very fit for the “multi-thread and multi-
core” feature of Network Processor.

— Our algorithm has good scalability, there is almost no influence to the per-
formance when the number of policy increase much.

The remainder of this paper is structured as follows. We describe the detail
of AM-Trie algorithm and analyze the algorithm complexity in Section 2 Per-
formance evaluation can be found in Section Bl Finally, Section [ gives a further
discussion and summarizes the paper.

2 AM-Trie Classification Algorithm

The performance metrics of packet classification include time complexity, space
complexity, scalability, flexibility, worst case performance, update complexity,
preprocessing complexity, etc., and for different applications the importance pri-
ority of these metrics are different. At present, the speed of Internet increases
dramatically, many new kinds of services appear. Hence, in order to adapt packet
classification algorithm to the evolution of next generation Internet, we should
consider time complexity, scalability and flexibility first.

However, the the search complexity of traditional tree/hash based classifica-
tion algorithm is direct proportion of the classified field length. For example,
to classify a IPv4 address we have to build a 32-level Binary Trie or establish
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32 Hash tables; and 128-level Binary Trie needed for IPv6 address, the search
efficiency is too low. Therefore, we hope to construct mbits-Trie to reduce the
height of Trie, and speed up the search. But because of the widely used Classless
Inter-Domain Routing (CIDR) technology, the prefix length may be any length
between 0 to field width. Such policy table cannot transform to m-bits-Trie con-
veniently, because the prefix length may not right suit with the multi-bit Trie
(for example, 2bits-Trie, which takes 2-bit as one unit, can not express prefix
length for odd number situation).

The first idea of AM-Trie is: express arbitrary length of prefix using the redun-
dancy. Considering a k-bits field, all possible prefixes are *, 0x, 1k, 00, O1x, ...,
r k/_‘l N r /k‘ ~ r "k\ ~
11...1%,00...0,...,11...1, totally 28*1 — 1 prefixes. We can number them as
1,2,...,281 — 1. They may be expressed using one (k -+ 1)bits number which
we call Serial Number. If the prefix is Px, and P is a p-bits number, then

Serial Number(Px) = 2P + P (1)

For example, * is the 1st prefix and 1111x is the 31st prefix. Using this redundant
expression, we can use one (k + 1)-bit number to express all k-bit prefix. Then
we can use such expression to build appropriate multi-bit Trie.

2.1 AM-Trie Creation

The redundant expression can express arbitrary length of prefix. Therefore, we
can cut a classification field in to several variable length sections, and then
construct multi-bit Trie — AM-Trie. Without loss of generality, assume a W-
bit-wide field is divided into [ parts (and constructed as a I-level AM-Trie), the
width of each part is hy, ho, ..., h; bits, and 22:1 h; = W, i.e. the ith level of
constructed AM-Trie has 2" nodes (How to optimize the [ and h;,i = 1...1 will
be mentioned in section [23).

Each node of AM-Trie have two pointer, pNext points to its children level and
pRule points to the related policy rule. When creating the AM-Trie of a policy
table, we add the policy one by one. Firstly, divide the policy into predefined
parts hi, hs,...,h;, and calculate the serial number of each section use the re-
dundant expression. Then calculate the offset value of each level according to
the serial number. If the related leaf node does not exist, add the policy rule
node to the right place, or compare the existing node and the new one and add
the higher priority rule. After that, add the next policy. The pseudocode for add
a node into AM-Trie is:

int AddNode(struct AMTrieNode *root, Rule newrule)

current=root;

divide newrule into predefined parts;

offset=Serial Number (first part);

while(not the last part)
current<--current [offset];
if (current->pNext == NULL) create children under current node;
offset=Serial Number(next part);

~N O O W=
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8  current<--current[offset]; //handle the last part
9  if (current->pRule==NULL) current->pRule=this rule; return 1;
10 else current->pRule=the higher priority rule; return O;

We use an example to give the direct-viewing of AM-Trie creation. Figure [
shows the AM-Trie derived from Table [Il here we chose [=2, hy = hy = 2bits.
Firstly, we add the the first policy RO which has only one part (*), it’s serial
number is 1. So RO is add to the first node under root. Similarly, R1, R2 is the
2nd and the 5th child of root. As for R3, its first part (01) has serial number
5, under the 5th child node of root we continually process its second part (1*),
so R3 is joined to the 3rd child node in the second level. The situation of R4
is similar to R3. If there is a rule R5 (011%*), when it joins to the AM-Trie, its
position is already occupied by R3, then we needed to compare the priority of
R3 and the R5 to judges whom takes this position.

From the generated AM-Trie, we can find that only the nodes in the right
part of the Trie may have children nodes, because the first 2% — 1 nodes map to
the prefix with a wildcard “*’, which is the end of a prefix, so they cannot have
child. Therefore this Trie looks asymmetrical, we name this Trie Asymmetrical
Multi-bit Trie.

Table 1. A simple policy table

Rule Field
RO(Default) *

R1 0*
R2 01*
R3 011*
R4 1111

Fig. 1. AM-Trie Creation and Search

2.2 AM-Trie Search, Optimization and Update

Finding a policy in the AM-Trie is similar to search a common Trie except that if
a leaf node doesn’t contain a policy we should go on searching its “prefix node”fl.
For instance, the red broken line in Figure [Il shows the search progress in the
same AM-Trie. If the classification field of the incoming packet is 0110, firstly
we calculate the serial number of its first part ‘01’ and go to the 5th child of
the root, and then calculate the serial number of the second part ‘10’ and go to
the 6th node in the second level. This leaf node has no policy, so we lookup the
prefix node of ‘10’ (i.e. ‘1*’), and go to the 3rd node in this level and find the
result is R3.

This example shows that when a leaf node has no rule, we have to trace back
to its prefix nodes. We can use a compression algorithm to avoid the trace back
and optimize the AM-Trie. We find that when the policy table determined, the

1 We call a prefix with wildcard “*’ covers all the prefixes match it, for example, in a

3bits field, 0* covers 00*, 01*, 000, 001, 010 and 011. If A covers B, A is the prefiz
node of B.
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longest rule-matched prefix of any prefix (with wildcard or not) determined too.
Hence, we can “push” the policy in a prefix to the nodes covered by it and
without policy in the period of preprocessing. Then all the leaf nodes contain
a policy and no trace back in searching a AM-Trie now. At the same time, the
prefix with wildcard ‘*’ in the left part of AM-Trie will never be accessed because
their information has been pushed to the nodes they covers in the right part. So,
we can delete these node to compress the storage of AM-Trie. Figure[2illustrates
the “push” procedure and the result of compression. The broken line with arrow
indicate the push operation, and the red nodes can be delete to compress the
AM-Trie. We can save about one half storage after compressing. And the search
complexity of compressed AM-Trie is O(h) now.

AM-Trie data structure supports incremental update. The Add operation is
just the same as AddNode in AM-Trie creation. The Delete operation is also
very simple. Call the search function to locate the policy we want to delete, and
then release the storage; if this level contains no policy after deletion, release the
whole level. Both Add and Delete operation has the complexity of O(h).

2.3 Multidimensional Packet Classification Using AM-Trie

In order to perform multidimensional classification using AM-Trie, we profit from
the idea of Aggregated Bit Vector (ABV) [I]. For a d-dimension classification
problem we build d AM-Tries, each AM-Trie maps to a dimension and its leaf
nodes stores the ABV. Because the search operations in different dimension are
independent, they can be parallel execution. AM-Trie algorithm is very fit for
the architecture of Network Processor, it can run in multiple microengines or
hardware threads concurrently and increase the performance enormously. When
we get the ABVs of all the dimensions, we AND them together and come out
the final classification result.

For a d-dimensional classification policy table which has N rules, if the height
of generated AM-Trie is h (usually h <« W, where W is the bits of the field),
the complexity of AM-Trie algorithm is:

1. The initialization complexity of AM-Trie algorithm is O(N log, N).
The creation time complexity of AM-Trie is O(Nh), but the initialization
of ABV need to sort the policy table. Hence, the initialization complexity
O(Nlog, N).
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Fig. 2. AM-Trie “push” and compression Fig. 3. Prefix distribution in a BGP table
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2. The search complexity of AM-Trie algorithm is O(h + d).
In worst case, each AM-Trie needs h comparisons to get the ABV address,
different AM-Trie can search concurrently; after that still need to read the
d ABVs and AND them to get the final result. So the search complexity of
AM-Trie algorithm is O(h + d).

3. The space complexity of AM-Trie algorithm is O(N?).
Because there are total N policies, the number of prefix in any field < N.
If a level is m-bits, the nodes which have children cost 2™ x sizeof(Node)
in the child level. In the worst case (all the nodes in the A — 1 level have
children and all the children do not duplicate), the required storage is less
than

[(h—1)% N+ 1] % 2™ % sizeof (Node) + N x sizeof (ABV). (2)

Where sizeof(Node) is the size of AM-Trie Node structure (8 bytes), and
sizeof (ABV) is the size of aggregated bit vector (N-bits). So the space
complexity of AM-Trie algorithm is O(N?) (Assume m is small enough that
2™ not a big number compare to N).

But how to choose the the number of level and the stride of each level to gain
a better performance? The lower the AM-Trie the faster the algorithm, but the
more storage it will cost. If we build a AM-Trie with only one level, the 2" in
Equation (@) will be 232, we can not afford such a huge memory cost.

In order to optimize the space complexity we can take the distribution of prefix
length into account. In the practical policy table, the prefix length distribution
is very non-uniformity, Figure Bl is the prefix length distribution of a BGP table
which we randomly select from [9]. This table contains 59351 policies, most of
them belong to a few kind of prefix length, the 24-bit policies even more than
half. A straightforward idea is if we choose the prefix length with high probability
as the dividing point, the generated AM-Trie will cost less storage. There are
some related work on this topic, we can use a similar way as Srinivasan proposed
in [10] to optimize the AM-Trie space complexity.

3 Performance Evaluation

We have implemented the AM-Trie Algorithm in single Intel IXP2400 network pro-
cessor, the eight microengines are assigned as follow: the receive, transmit, buffer
manage and scheduling module use one microengine respectively, and the rest 4 mi-
croengines carry on parallel AM-Trie classification as well as IP header processing.

Before our test we generate the policy table randomly according to the prefix
distribution shows in Figure Bl The policy table contains 6 fields (6-dimensional
classification), i.e. TCP/IP 5 tuple plus the TOS field. Then we build AM-Trie
for each field, all the fields support longest prefix match. In our implementation,
the height of all the 6 AM-Tries is no more than 3, according to the search
complexity analysis in section 23] only 15 memory access needed to classify
one packet. In other words, even if implemented with low speed DDR SDRAM
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Fig.4. The throughput of AM-Trie on Fig.5. The cost of memory increase lin-
IXP2400, the system achieves 2.5Gbps early as a function of policy number. AM-
wire-speed in all condition (number of poli- Trie only used 23M RAM when the size of
cies increases from 32 to 4096) policy table is 4096.

(150MHz), AM-TRIE may also achieve fast wire-speed (10Mpps). Finally we
begin our test using IXTA 1600 traffic generator to generate traffic to IXP2400
(all the packets are 64 bytes).

Figure [ shows the throughput of the whole system. The system throughput
does not decrease when the number of policies increases from 32 to 4096, the
throughput maintain above 2.5Gbps (5Mpps). The reasons are: 1) AM-Trie al-
gorithm has good scalability, it can easily be extend to support 256K policies
using hierarchical structure if necessary, and still maintain such high speed; 2)
IXP2400 is oriented to OC48 (2.5Gbps) network application, the AM-Trie al-
gorithm already makes the most of IXP2400 capability, by the restriction of
other system modules (such as receive, transmit, scheduling, etc.), the system
performance is unable to enhance more.

FigureBldemonstrated the memory cost of AM-Trie algorithm as a function of
the number of policy (in order to simplify the implementation, we fix the length
of ABV to 4096 bits, therefore the memory cost appear linear growth, but not the
theoretically space complexity O(N?)). AM-Trie belongs to algorithm of “trade
space for time”, it use a lower speed but large capacity and cheap RAM to
achieve comparative performance as the expensive and power-slurping hardware
(such as FPGA, TCAM, etc.). IXP2400 support 2x64M SRAM and 2G DDR
SDRAM, it’s very ample for AM-Trie algorithm.

We are implementing this algorithm on Intel high end network processor
IXP2800, which designed for OC192 network applications. The preliminary test
result is closed to 10Gbps, anticipated throughput will achieve 10Gbps (20M
pps) after code optimization.

4 Conclusion and Further Discussion

The rapid growth of Internet needs high-speed packet classification algorithm,
but current high-speed classification often use expensive and power-slurping
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hardware (such as TCAM and FPGA). In this paper, we propose a novel high-
speed parallel multidimensional packet classification algorithm, called AM-Trie
(Asymmetrical Multi-bit Trie). Our algorithm innovatively use redundant ex-
pression for arbitrary prefix length, greatly reduce the search complexity of Trie;
use compression to eliminate the trace back in search operation, further enhances
the search speed and reduces the storage cost. More important, the AM-Trie is
a parallel algorithm, and very fit for the “multi-thread and multi-core” features
of Network Processor; the algorithm have good scalability, the increase of pol-
icy number nearly has no influence to the algorithm performance. The time
complexity of AM-Trie is O(h + d), where h is the height of AM-Trie and d is
the dimension of classification; space complex is O(N?), where N is the policy
number.

We also implemented AM-Trie algorithm based on Intel IXP2400. The per-
formance analysis and the test result show that the AM-Trie algorithm can
achieves 2.5Gbps wire-speed (all the packets size are 64 bytes, i.e. 5Mpps) in
the TCP/IP 6 tuple classification, and it has big performance promotion space
in more powerful Network Processor(such as IXP2800 or above). At the same
time, our experimental result also indicate that “trade space for time” algorithms
on Network Processor using lower speed but cheap and large capacity RAM to
obtain high-speed classification is a feasible way.
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