

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part IV, LNCS 3994, pp. 1071 – 1077, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Managing Data Using Neighbor Replication on
Triangular-Grid Structure

Ali Mamat1, M. Mat Deris2, J.H. Abawajy3, and Suhaila Ismail1

1 Faculty of Computer Science and Information technology,
University Putra Malaysia,

43400 Serdang, Selangor, Malaysia.
ali@fsktm.upm.edu.my

2 University College of Tun Hussein Onn,
Faculty of Information technology and Multimedia,
P.O.Box 101, 86400 Parit Raja, Batu Pahat, Johor.

mmustafa@kuittho.edu.my
3 Deakin University, School of Information Technology, Geelong, VIC, Australia

jemal@deakin.edu.au

Abstract. Data is one of the domains in grid research that deals with the
storage, replication, and management of large data sets in a distributed
environment. The all-data-to-all sites replication scheme such as read-one
write-all and tree grid structure (TGS) are the popular techniques being used for
replication and management of data in this domain. However, these techniques
have its weaknesses in terms of data storage capacity and also data access times
due to some number of sites must ‘agree’ in common to execute certain
transactions. In this paper, we propose the all-data-to-some-sites scheme called
the neighbor replication on triangular grid (NRTG) technique by considering
only neighbors have the replicated data, and thus, minimizes the storage
capacity as well as high update availability. Also, the technique tolerates
failures such as server failures, site failure or even network partitioning using
remote procedure call (RPC).

1 Introduction

With the proliferation of computer networks, PCs and workstations, new models for
workplaces are emerging [1]. In particular, organizations need to provide current data
to users who may be geographically remote and to handle a volume of requests of
data distributed around multiple sites in distributed database environment. Therefore,
the storage, availability, accessibility and consistency are important issues to be
addressed in order to allow distributed users efficiently and safely access data from
many different sites. One way to provide access to such data is through replication. In
particular, there is a need for minimal replication in order to provide an efficient way
to manage the data and minimize the storage capacity.

One of the solutions is based on synchronous replication [2,3]. It is based on quorum
to execute the operations with high degree of consistency [4] and also to ensure
serializability. Synchronous replication can be categorized into several schemes, i.e., all
data to all sites (full replication), all data to some sites and some data to all sites.

1072 A. Mamat et al.

However, full replication causes high update propagation and also needs high
storage capacity [4,5,6]. Several studies model partial replication in a way that each
data object is replicated to some of the sites. However, it is still undefined which
copies are placed on which site, such that different degrees of quality of a replication
scheme can be modeled. A few studies have been done on partial replication
techniques based on some data items to all sites using tree structure technique [7,8].
This technique will cause high update propagation overhead. Thus, some-data-items-
to-all-sites scheme is not realistic. The European DataGrid Project [9,10]
implemented this model to manage the file-based replica. It is based on the sites that
have previously been registered for replication. This will cause the inconsistence
number of replication occurs in the model. Also, the data availability has very high
overhead as all registered replicas must be updated simultaneously. Thus, an optimum
number of sites to replicate the data are required with non-tolerated availability of the
system.

The focus of this paper is on modeling a technique based on synchronous solution
to minimize the storage and optimize the system availability of the replicated data in a
data grid. We describe the neighbor replication on triangular grid (NRTG) technique
by considering only neighbors have the replicated data. This assignment provides a
higher availability of executing write operations in replicated database due to the
minimum number of quorum size required.

 This paper is organized as follows: In Section 2 the model and the technique of the
NRTG is presented. In Section 3, the replica management is discussed. In Section 4,
the performance of the proposed technique is analyzed in terms of availability, and a
comparison with tree grid structure technique is given.

2 Neighbor Replication on Triangular Grid (NRTG) Technique

2.1 Model

Briefly, a site i initiates a NRTG transaction to update its data object. For all
accessible data objects, a NRTG transaction attempts to access a NRTG quorum. If a
NRTG transaction gets a NRTG write quorum without non-empty intersection, it is
accepted for execution and completion, otherwise it is rejected. We assume for the
read quorum, if two transactions attempt to read a common data object, read
operations do not change the values of the data object. Since read and write quorums
must intersect and any two NRTG quorums must also intersect, then all transaction
executions are one-copy serializable.

2.2 The NRTG Technique

In NRTG, all sites are logically organized in the form of triangular grid structure. It is
inherited from binary-tree structure with the inner leaves of the tree linked together as
shown in Fig. 1.

Each site has a master data file. In the remainder of this paper, we assume that
replica copies are data files. A site is either operational or failed and the state
(operational or failed) of each site is statistically independent to the others. When a
site is operational, the copy at the site is available; otherwise it is unavailable.

 Managing Data Using Neighbor Replication on Triangular-Grid Structure 1073

1

2 3

4 5 6

n-1 n

Fig. 1. Triangular-neighbor organization of n sites

For example, from Fig. 1, data from site 1 will replicate to site 2 and site 3 which
are neighbors to it. Site 5 has four neighbors, which are sites 2, 3, 8, and 9. As such,
site 5 has five replicas. From this property, it is clear that each site required with the
maximum number of replications is 5, thus, minimizing the storage capacity as
compared with full replication scheme.

3 Managing Replication Under NRTG

The quorum for an operation is defined as a set of sites (called replicas) whose
number is sufficient to execute that operation. In other words, it is modeled as a set of
replicas: C = {C1,C2,…,Cn}, where i=1,2,…,n, are called the sequence numbers of
these replicas. Each replica, Ci manage a set of data: Di= {d1

i,d2
i ,…,dm

i }. The
consistency constraint requires that Di≡Dj, for i,j = 1,2,…,n. The replication
management of NRTG is analogous with the one that proposed in [11].

Each replica in the system provides a number of remote procedures that can be
called by users for processing the data managed by the replica.

3.1 The Coordinating Algorithm for the Primary Replica

When a primary replica receives an NRTG-Procedure-Call from a transaction
manager, it uses the coordinating algorithm to maintain the consistency of all replicas
in terms of NRTG-Procedure-Call. This section describes the coordinating algorithm.

In the coordinating algorithm, the primary replica uses the 2PC protocol to ensure
the replication consistency. In the first phase, the primary replica asks the NRTG
quorum whether it can be formed or not. If the NRTG quorum can be formed
(replicas under NRTG quorum return a Successful (1) for such execution), the
primary replica returns a SUC to the transaction manager. If the transaction manager
requests a commit, then in the second phase the primary replica asks all replicas to
commit the NRTG-Procedure-Call execution. If NRTG quorum cannot be formed,
then the primary replica returns a (0) to the transaction manager and asks all replicas
to abort the operation in the second phase. If operation returns a Partial-Commit (-1)
(the primary replica returns a PC and other non-primary replicas may return a -1), the
primary replica returns a -1 to the transaction manager. The primary replica also

1074 A. Mamat et al.

records the number of replicas that return a -1. This number will be used in conflict
resolution during the recovery process.

3.2 The Cooperating Algorithm for NRTG Replicas

When a NRTG replica receives a request from a primary replica, it checks whether
the request can proceed or not and acts accordingly.

• If the request can be performed, the NRTG replica locks the required data and
returns 1. Later if the primary replica asks to commit the operation, the neighbor
performs the operation and releases the lock. If the neighbor asks to abort the
operation, it will release the lock.

• If the neighbor finds that the operation cannot be executed (the required data is
not free), it then returns an 0.

• If the NRTG replica finds that the data is in a partially committed state, then it
returns a PC to the primary replica. The primary replica will then partially
commits the operation and record the event when the primary replica asks to
partially commit the operation. If the primary replica asks to abort the
operation, then the non-primary replica aborts the operation.

The 2PC protocol used by NRTG-Procedure-Call transaction manager guarantees that
the replicas will be in a consistent state if a transaction returns a 1 or 0. However, to
guarantee all replicas do the same thing to the transactions with -1 pending, a majority
consensus should be reached among all replicas.

The order of each partially committed NRTG-Procedure-Call over a data is also
important when a re-join of network partitions carries out of these NRTG-Procedure-
Calls.

If the network is partitioned into two disconnecting parts, they will eventually be
re-united again. In this case, replicas in both partitions have partially committed
updates. The conflict resolution algorithms during recovery process are responsible to
make replicas in these two parts consistent. When recovering from a network
partition, replicas of each part of the partition have to send a ‘re-uniting’ message to
replicas of the other part.

The NRTG-RPC returns -1 only when the network is partitioned. If the network is
partitioned into two disconnecting parts, the two parts will eventually be re-united
again. In this case, replicas in both partitions may have some partially committed
updates. The conflict resolution algorithm is responsible to make replicas in these two
parts consistent.

4 Performance Analysis and Comparisons

4.1 Availability Analysis

In estimating the availability, all copies are assumed to have the same availability p.
CX,Y denotes the communication cost with X technique for Y operation, which is
R(read) or W(write).

 Managing Data Using Neighbor Replication on Triangular-Grid Structure 1075

4.1.1 TGS Technique
Let h denotes the height of the tree, D is the degree of the copies in the tree, and M =
⎡(D+1)/2⎤ is the majority of the degree of copies. The availability of the read and
write operations in the TGS can be estimated by using recurrence equations based on
the tree height h. Let ARh+1 and AWh+1 be the availability of the read and the write
operations with a tree of height h respectively. Then the availability of a read
operation for a tree of height h+1 can be represented as:

and the availability of a write operation for a tree of height h+1 is given as:

where p is the probability that a copy is available, and AR0 = AW0 = p.
Thus system availability for TGS is

 Av(TGS,r,w) = f AR h+1 + (1-f)AW h+1 …(2)

where f and (1-f) are the probability that an arriving operation of read and write for
data file x, respectively.

4.1.2 NRTG Technique
Let pi denote the availability of site i. Read operations on the replicated data are
executed by acquiring a read quorum and write operations are executed by acquiring a
write quorum. For simplicity, we choose the read quorum equals to the write quorum.
Thus, the quorum size for read and write operations equals to ⎣LBx/2⎦, that is,

ANRTG,R = ANRTG,W = ⎣LBx/2⎦. For example, if the primary site has four neighbors,
each of which has vote one, then CNRTG,R = CNRTG,W == ⎣5/2⎦ = 3.

For any assignment B and quorum q for the data file x, define ϕ(Bx,q) to be the
probability that at least q sites in S(Bx) are available, then

ϕ(Bx,q) = Pr{at least q sites in S(Bx) are available }

= ∑ ∏ ∏
∈ ∈ −∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

)q,B(QG Gj G)B(Sj
j

x x

)1(Pp j
 … (3)

Thus, the availability of read and write operations for the data file x, are ϕ(Bx,r) and
ϕ(Bx,w), respectively. Let Av(Bx,r,w) denote the system availability corresponding to
the assignment Bx, read quorum r and write quorum w. If the probability that an
arriving operation of read and write for data file x are f and (1-f), respectively, then

Av(Bx,r,w) = f ϕ(Bx,r) + (1-f) ϕ(Bx,w).

Since in this paper, we consider the read and write operations are equal, then the
system availability,

 Av(Bx,r,w) = ϕ(Bx,r) = ϕ(Bx,w). … (4)

()AR h
iDAR i

h

D

Mi i

D
AR h pp − −∑

=
+ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+= 11)1(

iD
hAWi

hAW
D

Mi i

D
pAWh

−−∑
=

⎟
⎠
⎞

⎜
⎝
⎛=+)1(1

 (1)

1076 A. Mamat et al.

4.2 Performance Comparisons

4.2.1 Comparisons of Write Availabilities
In this section, we will compare the performance on the write availability and system
availability of the TGS technique based on equations (1) and (2), and our NRTG
technique based on equations (3) and (4) for the case of n=13, 40 and 121. In
estimating the availability of operations, all copies are assumed to have the same
availability.

Fig. 2 and Table 1, show that the NRTG technique outperform the TGS technique.
When an individual copy has availability 88%, write availability in the NRTG is
approximately 99% whereas write availability in the TGS is approximately 82% for
n=13. Moreover, write availability in the TGS decreases as n increases. For example,
when an individual copy has availability 86%, write availability is approximately
78% for n=13 whereas write availability is approximately 73% for n = 121.

Table 1. Comparison of the write availability between TGS and NRTG under the different set
of copies p=0.8,…,0.98

 Write Availability Techniques
0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

NRTG(R/W) .956 .968 .978 .986 .991 .996 .998 .999 1.00

TGS(W),n=13 .692 .738 .782 .823 .861 .896 .927 .955 .979

TGS(W),n=40 .634 .697 .755 .807 .853 .892 .926 .954 .979

TGS(W),n=121 .571 .656 .731 .794 .847 .890 .925 .954 .979

0

0.2

0.4

0.6

0.8

1

1.2

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

Availability of a data copy

op
er

at
io

n
av

ai
la

bi
lit

y

NRTG

TGS,n=13

TGS,n=40

TGS,n=121

Fig. 2. Comparison of the write availability between TGS and NRTG

5 Conclusions

In this paper, a new technique, called neighbor replication on grid (NRTG) structure
has been proposed to manage the data in distributed database environment. It showed

 Managing Data Using Neighbor Replication on Triangular-Grid Structure 1077

that, the NRTG technique provides a convenient approach to minimize the storage,
high availability for update-frequent operations by imposing a neighbor binary vote
assignment to the logical grid structure on data copies, and also data access time. This
is due to the minimum number of replication sites required. The fault-tolerant
programs developed in the environment are able to tolerate failures such as server
failure, a site failure or even a network partitioning. In comparison to the TGS
structure, NRTG provides higher system availability, which is preferred for large
systems.

References

1. O. Wolfson, S. Jajodia, and Y. Huang,"An Adaptive Data Replication Algorithm,"ACM
Transactions on Database Systems, vol. 22, no 2 (1997), pp. 255-314.

2. J. Holliday, R. Steinke, D. Agrawal, and A. El-Abbadi,”Apidemic Algorithms for
Replicated Databases”, IEEE Trans. On Know. and Data Engineering, vol.15, No.3
(2003), pp.1-21.

3. H. Stockinger,”Distributed Database Management Systems and The Data Grid”,IEEE-
NASA Symposium, April 2001, pp. 1-12.

4. Budiarto, S. Noshio, M. Tsukamoto,”Data Management Issues in Mobile and Peer-to-Peer
Environment”, Data and Knowledge Engineering, Elsevier, 41 (2002), pp. 183-204.

5. L.Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Lyengar,“Improving Availability and
Performance with Application-Specific Data Replication”, IEEE Trans. On Knowledge
and Data Engineering, vol.17, no. 1, (2005), pp 106-120.

6. M.Mat Deris, J.H. Abawajy, H.M. Suzuri,”An Efficient Replicated Data Access Approach
for Large Scale Distributed Systems”, IEEE/ACM Conf. On Cluster Computing and Grid
(CCGRID2004), April 2004, Chicago, USA.

7. M. Nicola and M. Jarke,” Performance Modeling of Distributed and Replicated
Databases”, IEEE Trans. On Knowledge and Data Engineering, vol.12, no. 4, (2000), pp
645-671.

8. J.Huang, Qingfeng Fan, Qiongli Wu, and YangXiang He,”Improved Grid Information
Service Using The Idea of File-Parted Replication”, Lecture Notes in Computer Science
Springer, vol. 3584 (2005), pp. 704-711.

9. P. Kunszt, Erwin Laure, Heinz Stockinger, Kurt Stockinger,”File-based Replica
Management”, International Journal of Future Generation of Computer Systems, Elsevier,
21 (2005), pp. 115-123.

10. H. Stockinger, F Donno, E. Laure, S. Muzaffar, P. Kunszt, “Grid Data Management in
Action: Experience in Running and Supporting Data Management Services in the EU Data
Grid Project”, Int’l. Conf. On Computing in High Energy and Nuclear Physics, March
2003, La Jolla, California. http://gridpp.ac.uk/papers/chap3-TUAT007.pdf

11. W. Zhou and A. Goscinski,”Managing Replicated Remote Procedure Call Transactions”,
The Computer Journal, Vol. 42, No. 7, pp 592-608, 1999.

	Introduction
	Neighbor Replication on Triangular Grid (NRTG) Technique
	Model
	The NRTG Technique

	Managing Replication Under NRTG
	The Coordinating Algorithm for the Primary Replica
	The Cooperating Algorithm for NRTG Replicas

	Performance Analysis and Comparisons
	Availability Analysis
	Performance Comparisons

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

