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Abstract. With the development of the Semantic Web, the issue on Semantic 
Web security has received a considerable attention. OWL security is a burgeon-
ing and challengeable sub-area of Semantic Web security. We propose a novel 
approach about OWL security, especially about inference control in OWL re-
trieval. We define OWL inference control rules (ICRs) to present the aim of in-
ference control. To achieve ICRs, our approach introduces a novel concept 
“semantic related view” (SRView) w.r.t an OWL knowledge base, which de-
scribes semantic relations in it. We present a construction process of SRViews 
from OWL knowledge bases and define pruning operations to rewrite them. 
Based on pruned SRViews, a query framework to achieve inference control is 
proposed, followed by analysis of correctness and complexity.  

1   Introduction  

The Semantic Web is an extension of the current Web, which supports machine-
understandable semantics to enable intelligent information management. With the 
increasing efficiency of utilizing data in the Semantic Web, there is a considerable 
attention for security issues. Thuraisingham pointed out security standards for the 
Semantic Web, in which security of the whole Semantic Web was divided into secu-
rity of its components: XML, RDF and OWL security etc. [1].  

Various research efforts have been done on XML security, especially about access 
control in the context of XML. Fan et al. introduced a novel approach that the security 
restrictions were annotated on the schema structure (DTDs) and queries were corre-
sponding rewritten and optimized [2]. Compared with XML security, RDF security 
just begins. Reddivari et al. proposed a simple RDF access policy framework (RAP), 
which contained a policy based access control model to achieve control over various 
actions possible on an RDF store [3]. Largely dissimilar to XML and RDF cases, 
OWL security contains a great part of inference control that prevents users from infer-
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ring blocked or unallowable information. How to present inference control restrictions 
and achieve them is still an open problem, and to the best of our knowledge, no pub-
lished paper is known for it.  

In this paper, we will give a novel approach about OWL inference control. Firstly 
we give a brief introduction to OWL knowledge base (KB) in section 2. Then we 
define OWL inference control rules (ICRs) to formally present OWL inference con-
trol restrictions in section 3. In section 4, a new term “semantic related view” 
(SRView) is introduced to describe whole semantic relation in an OWL KB. We also 
give a construction process and pruning operations of SRViews. With pruned 
SRViews, a query framework to achieve inference control is proposed in section 5, 
followed by conclusion and future work in section 6.  

2   A Brief Introduction to OWL Knowledge Base  

The proposed OWL recommendation consists of three languages with increasing 
expressive power: OWL Lite, OWL DL and OWL Full. For inference in OWL Full is 
undecidable [4], we focus on inference control in OWL DL. In the following, we use 
“OWL” instead of “OWL DL”. We adopt description logic form to compactly express 
OWL KB, for OWL DL is description logic SHOIN(D) with RDF syntax.  

Definition 1. Let RA, RD, CA, CD, IA and ID be pairwise disjoint sets of atomic abstract 
roles, atomic concrete roles, atomic concepts, data types, individuals and data values. 
Let R ∈RA, a SHOIN(D) abstract role is either an atomic abstract role R or its inverse 
role R− . The set of SHOIN(D) role is defined as { |R R− ∈ RA} U RA U RD. And 
SHOIN(D) concept constructors are given in Table 1.  

Table 1. Syntax and semantics of concept constructors in SHOIN(D)  

Syntax Semantics Syntax Semantics 

AA C∈  I IA ⊆ Δ  1 2C C�  
1 2 1 2( )I I IC C C C= I�

DD C∈  D DID D= ⊆ Δ  1 2C C�  
1 2 1 2( )I I IC C C C= U�  

AR R∈  I I IR ⊆ Δ × Δ  C¬  ( ) \I I IC C¬ = Δ  
DU R∈  DI IU ⊆ Δ × Δ  1{ , , }nw wL  

1 1{ , , } { , , }I I I
n nw w w w=L L  

Ai I∈  I Ii ∈ Δ  .P E∀  ( . ) { | ', ( , ') }I I IP E d d d d P y E∀ = ∀ ∈ → ∈  
Dv I∈  D DIv v= ∈ Δ  .P E∃  ( . ) { | ', ( , ') }I I IP E d d d d P y E∃ = ∃ ∈ ∧ ∈  

R−  ( ) {( , ') | ( ', ) }I IR d d d d R− = ∈  n P≥  ( ) { | #({ ' | ( , ') }) }I InP d d d d P n≥ = ∈ ≥  
 I I= Δ  n P≤  ( ) { | #({ ' | ( , ') }) }I InP d d d d P n≤ = ∈ ≤  

⊥  I⊥ = ∅    

In table 1, IΔ  and DΔ  are two nonempty sets standing for abstract and concrete do-
mains.  and ⊥  are considered as the top and bottom concepts. { 1, , nw wL } is a sub 
set of IA or ID; C1 and C2 are abstract concepts; P is a SHOIN(D) role; the expressions 

.P E∀  and .P E∃  satisfy that if P ∈ RD, E ∈CD; if P ∈ { |R R− ∈RA}U RA, E is an 
abstract concept.  
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Definition 2. A SHOIN(D) KB ∑ (TΣ , RΣ , AΣ ) consists of three finite axiom boxes: 

TBox TΣ , RBox RΣ  and ABox AΣ , whose axioms’ syntax and semantics are given in 

table 2.  

Table 2. Axioms in a SHOIN(D) KB  

 Syntax  Semantics  

TBox axiom 1 2C C�  1 2
I IC C⊆  

 1 2R R�  1 2
I IR R⊆  

RBox axiom 1Trans( )R  1 1( )I IR R +=  

 1 2U U�  1 2
I IU U⊆  

:i C  I Ii C∈  

1 2i i=  1 2
I Ii i=  ABox axiom 

1 2i i≠  1 2
I Ii i≠  

An interpretation ( , )Δ ⋅I II  satisfies an axiom if it satisfies corresponding semantics 
restriction given in table 2. I satisfies a TBox (RBox and ABox respectively), if I 
satisfies any axiom in it. I satisfies a SHOIN(D) KB ∑ , if I satisfies its TBox, ABox 
and RBox. Such interpretation I is called a model of KB ∑ .  

3   OWL Inference Control Rule  

Before discussing OWL ICR, we will give a short introduction of OWL query mecha-
nism. Answers of OWL queries are a collection of logical entailed axioms of the 
OWL KB. Using semantics discussed in section 2, we define “logical entail”: for any 
axiom α , a KB ∑  logical entails α , denoted as | α∑ = , if for any model ( , )I II Δ ⋅  
of ∑ , I satisfies α . With “rolling-up” technique [5], OWL query problems can be 
simplified to be instance retrievals Retrieval(C) of singleton concepts C:  

Retrieval(C)={ | | : }i i CΣ =    

Now we give the definition of OWL ICR.  

Definition 3. An OWL ICR is a triple (subject, axioms set, sign), where subject is an 
identification of user, axioms set is a given set of logical entailed ABox axioms of the 
OWL KB ∑ , and sign∈ {+(positive), -(negative), ?(unknown)}.  

For a positive OWL ICR (s, { 1,..., nα α }, +), it means when the query presenter s 
give a query: Retrieval(C), if :i i Cα =  and i∈Retrieval(C), i must be returned to s. 
Negative or unknown ICRs have similar meanings with replacing “must” with “must 
not” or “maybe”. For the set of logical entailed axioms of ∑  may be infinite, it is 
impossible to sign all axioms with +, - or ?. Therefore we set ? as the default value.  

Definition 4. For a given OWL ICR set SR, let S(s,+)=U Sa for any (s, Sa, +)∈ SR and 
S(s,-)=U Sa for any (s, Sa, -)∈ SR. SR is consistent w.r.t an OWL KB ∑ , if for any 
subject s, there is a OWL KB *∑ , where ∑ |= *∑  and *∑ |=Sa(s,+) and for any 
axioms α  in Sa(s,-), *∑ |≠ α . We call such KB *∑  as a suitable sub-KB of ∑ .  
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For any consistent OWL ICR set SR w.r.t ∑ , perfect inference control aims to find 
the most general suitable sub-KB *∑  of ∑  for a given subject s, where no other 
suitable sub-KB '∑  satisfying '∑ |= *∑ . In OWL retrieval, *∑  will replace ∑  as a 
special view for the subject s. However, this problem is as hard as finding most gen-
eral consistent sub-ontology in an inconsistent big ontology [6], and there is no effi-
cient method to deal with such problem. In this paper, we give a primitive approach to 
find a biggish suitable sub-KB. The creation of the biggish suitable sub-KB is consid-
ered as pruning KB ∑ . We use SRView as an abstraction of ∑  and define pruning 
operations for SRView. A pruned SRView will play a role as a suitable sub-KB in 
OWL query.  

4   Semantic Related View of OWL Knowledge Base 

Before turning our attention towards SRView, we introduce some common notions. 
We define the set sub(C) of sub-concepts of a SHOIN(D) concept C:  

∅  if C A= | n P≥ | n P≤ | 1{ , , }nw wL  

1( )sub C  1if C C= ¬  

1 2( ) ( )sub C sub CU  1 2if C C C= � | 1 2C C�  
( ) { }sub C C

⎧
⎪
⎪= ⎨
⎪
⎪⎩

U  

( )sub E  if .C P E= ∃ | .P E∀  

Let S Σ  be the set of concepts appearing in an OWL KB ∑ , and sub(S Σ )= ( )sub CU  
for any C in S Σ . After talking about these notions, we present a formal structure of a 
SRView.  

Definition 5. A SRView is a graph G(V, E), where V is a set of labels and E is a set of 
edges with connectives. Every edge can be denoted as a triple (l, coni , l1), where l, 
l1 ∈ V, coni ∈ { P∃ , P∀ , ¬ , � , � , n P≥ , n P≤ , � }. For any label l in V, let 
Eout(l)={(l, coni, l1)| (l, coni, l1) E∈ }, Ein(l)={(l1, coni, l)| (l1, coni, l) E∈ }.  

Additionally, we define a label function L: sub(S Σ ) → V and it satisfies that for any 
two concepts (or data types) C1 and C2 in sub(S Σ ), L(C1) ≠ L(C2).  

Now we will give the detailed creation of a SRView from an OWL KB ∑ . At the 
beginning, we initialize V={L( ), L( ⊥ )}, E= ∅ , and following creation consists of 
three ordinal steps:  

Developing step: for any concept C in S Σ , we add a concept tree Tree(C) in G. The 
addition process AddTree(C) is described in Figure 1. Obviously, Tree(C) is a syntax 
tree to denote the structure of concept C.  

Connection step: for any axiom 1 2C C�  in the TBox of ∑ , we connect Tree(C1) 
and Tree(C2) by adding (L(C1), � , L(C2)) in E.  

Merging step: if two trees have the same structure, we will merge the two trees 
into one. For any label l in V, let Cout(l)={(coni, l1)| (l, coni, l1) ∈ Eout(l) and 
coni ≠� } An merging rule is presented as follows: for any two labels l and l*, if 
Cout(l)=Cout(l

*), then merge two labels into one label l and add a set of new edges 
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{(l, coni, l1)|(l
*, coni, l1)∈Eout(l

*)}U {(l1, coni, l)| (l1 coni, l
*)∈Ein(l

*)} in E. When no 
merging rule can be applied to G, we call G is a SRView of KB ∑  and denote it as 
G=SRV(∑ ).  

Obviously, a SRView G(V, E) expresses syntax structures of concepts by concept tree 
and “subsumption” relationships by “� ” edge. For any edge in E can be seen as a 
production rule, a SRView explicitly creates a production system to explain complex 
concepts by containing all restrictions on these concepts.  

 

Fig. 1. AddTree( ) procedure  

After talking about creating SRView, we will go into pruning it. The eight pruning 
operations are defined as triples (operation, old edge, substituted edge) in table 3.  

Table 3. Pruning operations  

Operation  Old Edge Substituted Edge 

Del (l, coni, l1)   

¬  (l, ¬ , l1) (L( ⊥ ),� , l), (L( ⊥ ),� , l1) 

�  (l, � , l1),(l, � , l2) (l, � , l1), (l, � , l2) 

�  (l, � , l1),(l, � , l2) (l1, � , l),(l2, � , l) 

P∃  (l, P∃ , l1) (l*, *P∃ , l1), (l*,� ,l), where P*� P 

P∀  (l, P∀ , l1) (l*, *P∀ , l1), (l*,� ,l), where P� P* 

 n P≥  (l,  n P≥ , l1) (l*, m P≥ , l1), (l*, � , l), where m>n 

 n P≤  (l,  n P≤ , l1) (l*, m P≤ , l1),(l*, � , l), where n>m 

In table 1, l* is a new label added by pruning operations and “P*� P” means P* is a 
sub-role of P. A pruning operation will replace old edges with substituted ones in E. 
Pruning operations rewrite SRView to release some restrictions and such rewriting 
will affect reasoning so that some blocked axioms will not be inferred by the pruned 
SRView.  

Procedure AddTree(C) begin 
If L(C) is not defined  
{add a new label l in V and let L(C)=l;  
Switch (C) {  

Case 1C¬ : AddTree (C1); add a new edge (L(C), ¬ ,L(C1)) in E; 
Case 1 2C C� : AddTree(C1); AddTree(C2); add (L(C),� ,L(C1)) and (L(C),� ,L(C2)) in E; 
Case 1 2C C� : AddTree(C1); AddTree(C2); add (L(C),� ,L(C1)) and (L(C),� ,L(C2)) in E; 
Case .P E∃ : AddTree(E); add (L(C), P∃ , L(E)) in E;  
Case .P E∀ : AddTree(E); add (L(C), P∀ , L(E)) in E;  
Case n P≥ : add (L(C),  n P≥ , L( )) in E;  
Case n P≤ : add (L(C),  n P≤ , L( )) in E; } 

} 
end  
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Definition 6. An SRView G*(V*, E*) is a pruned view of G(V, E) w.r.t a operation 
set SO={O1, …, On}, if G*(V*, E*) is the new graph after applying all operations to G.  

5   Inference Control with Pruned SRView  

Now we give an overview of our query framework (figure 2), which describes data 
exchange between subject and knowledge base system. The knowledge base system 
consists of four processors (rectangles) and two stores (rounded rectangles). We will 
detailedly discuss how knowledge base system deals with a query.  

1) When the knowledge base system receives a query Q=Retrieval(C) from subject 
s, Parser parses C into its concept tree Tree(C) and labels C as L(C).  

2) Connector connect Tree(C)=GC(VC, EC) and SRV( Σ )=GKB(VKB, EKB) into a 
mixed SRView G, where V=VCUVKB and E=ECUEKB. After exhaustively applying 
merging rules to G, Connector sends G as the final result.  

3) Pruner gets G from Connector, and a pruning operation set So(s) from Pruner 
store. Pruner applies So(s) to prune G and return a pruned SRView G* w.r.t So(s).  

4) Reasoner provides three sub-processors: SRView interpreter, ABox rewriter and 
RBox preprocessor (Figure 3). SRView interpreter sends an direct production 
DP(Cout(l)) and sup-label set Lsup(l) of any label l to Tableau Reasoner.  

¬ l* if #Cout(l)=1 and ( ¬ , l*)∈Cout(l) 

coni.l* if #Cout(l)=1, (coni, l*)∈Cout(l) and coni ≠ ¬  

l1� l2 if #Cout(l)=2 and (� , l1), (� , l2)∈Cout(l) 
DP(Cout(l))=

⎧
⎪
⎪
⎨
⎪
⎪⎩

 

l1� l2 if #Cout(l)=2 and (� , l1), (� , l2)∈Cout(l) 

Lsup(l)=   {l*|( l, � , l*)∈E}  

ABox rewriter replaces any concept C with its label L(C) in ABox A Σ  and new ABox 

is denoted as L(A Σ ). For a RBox R Σ , we introduce � R as the transitive-reflexive 

closure of �  on { | }R S R S R R− −
Σ Σ∈U � � . RBox preprocessor computes “� R” rela-

tions that are repeatedly used in reasoning process. Finally Tableau Reasoner will 

return Retrieval(L(C)) as an answer set of the query to subject s.  
Now we will prove that any answer in Retrieval(L(C)) is a validate answer to 

Q=Retrieval(C), that means Retrieval(L(C)) ⊆ Retrieval(C).  

Definition 7. For a SRView G=(V, E) and any l in V, let TBox(l)={DP(Cout(l))� l, l�  

DP(Cout(l))}U {l� l*| l*∈Lsup(l)}, TBox(G)= ( ( ))l V TBox l∈U .  

Lemma 1. For a query Retrieval(C), a KB Σ (T, R, A) and its SRView GKB, let 

G=Merge(GKB, Tree(C)), we can get that Σ (T, R, A)|=i: C ⇔  *Σ (TBox(G), R, L(A) 

|=i: L(C). 
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Fig. 2. A query framework with pruned SRViews  
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Fig. 3. Level structure of Reasoner  

Lemma 2. For a subject s and corresponding pruning operation set SO(s) and a 
SRView G=(V, E), let G*=(V*, E*) be a pruned SRView of G w.r.t SO(s), we have 
TBox(G)|=TBox(G*).  

For any pruning operation, it relaxes constraint of complex concepts. The pruned 
SRView can be inferred by original SRView. For example, n P≥  rule adds a new 
label l* by replacing n with a larger number m and states l* is subsumed by l, directly 
l=  n P≥ .  l*=  m P≥ .  can infer that l*� l. Therefore, lemma 2 holds.  

Lemma 3. For a query Retrieval(C), a KB Σ (T, R, A), a pruned SRView G*=(V*, 
E*) and its label function L(), Retrieval(L(C)) w.r.t G* is the set {i| *Σ (TBox(G*), R, 
L(A)|=i: L(C)}.  

This Lemma obviously holds, for Tableau Reasoner considers G*, R and L(A) as 
TBox, RBox and ABox of new KB respectively. From above three lemmas, we will 
have the following theorem.  
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Theorem 1. Let s be a subject, SO(s) a pruning operation set, Retrieval(C) a query, 
Σ (T, R, A) a KB and GKB a SRView of Σ . G=Merge(GKB, Tree(C)) and G* is the 
pruned SRView of G w.r.t SO(s). We can get that if *Σ (TBox(G*), R, L(A))|=i: L(C), 
Σ (T, R, A) |=i: C. That also means Retrieval(L(C)) ⊆ Retrieval(C).  

After proving the correctness of our framework, we will go into complexity issue.  

Lemma 4. For any Σ (T, R, A), the creation process of its SRView GKB=(VKB, EKB) 

can be performed in polynomial time of (|sub(S Σ )|+#T).  
In developing step: for any concept C in S Σ , its concept tree Tree(C) can be per-

formed in polynomial of sub(C). In connection step: for the number of edges with 
connective “� ” in EKB is the number #T of axioms in T, this step can be performed in 
polynomial time of #T. Finally in merging step, merging rule can at most be applied 
polynomial times of (|sub(S Σ )|+#T). Lemma 4 also guarantees that GKB can be stored 

in polynomial space of (|sub(S Σ )|+#T).  

Lemma 5. For a SRView GKB and Tree(C), G=Merge(GKB, Tree(C)), the creation of 
G can performed in polynomial time of (|sub(S Σ )|+#T+sub(C)).  

Lemma 6. For any SRView G=(V, E) and its pruned SRView G*=(V*, E*) w.r.t 
So(s), let |G|=|V|+|E|, |G*| is a linear function of |G|.  

Based on the definition of pruning operations, any operation replaces one or two 
old edges with at most one new label and two edges. This guarantees that |G*| ≤ 3|G|.  

Theorem 2. All procedures to deal with SRView in our framework can be performed 
in polynomial time of (|sub(S Σ )|+#T+sub(C)) and all SRViews can be stored in poly-
nomial space of (|sub(S Σ )|+#T+sub(C)).  

From Lemma 4-6, theorem 2 holds. For inference problem in SHOIN(D) is 
NEXPTIME-complete [4], the additional time and space spent on SRView will not be 
a bottleneck of a knowledge base system.  

6   Conclusion and Further Work 

In this paper, we define OWL ICR to formally present OWL inference control restric-
tions. To achieve ICRs, a new concept “SRView” is proposed to describe the whole 
semantic relation in an OWL KB. We also present a construction process of SRView 
and define pruning operations of them. Based on pruned SRView, we construct a 
query framework to achieve inference control and prove the correctness and complex-
ity of it. Creating pruning operation sets w.r.t OWL ICRs is still a manual work in our 
framework. Future work includes designing some assistant method to semiautomatic 
or automatic create them, which will make our framework less manually interfered.  
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