

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part IV, LNCS 3994, pp. 918 – 921, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Task Generation Method for the Development
of Embedded Software

Zhigang Gao, Zhaohui Wu, and Hong Li

College of Computer Science, Zhejiang University,
Hangzhou, Zhejiang, P.R. China, 310027

{gaozhigang, wzh, lihong}@zju.edu.cn

Abstract. The development of embedded software has the tendency towards
higher levels of abstraction. This development paradigm shift makes the
synthesis of embedded software a key issue in the development of embedded
software. In this paper, we present a new method of generating real-time tasks,
which uses Component Sequence Diagram to organize tasks and assign their
priorities. Moreover, we use simulated annealing algorithm to explore design
space and iterate the process of task generation until an optimization
implementation is obtained. Experimental evaluation shows this method can
yield correct implementation and has better time performance.

1 Introduction

Synthesis of embedded software refers to the process from function specification to
code implementation on a specific platform. It is a key problem in the design of
embedded system. Non-functional requirements are implemented in task generation
phase when synthesizing embedded software. Current research works often ignore or
deal with non-functional properties roughly [3, 5]. In this paper, we focus our
attention on the problem of task generation on single processor and propose a novel
task generation method. Gu et al. [6] proposed a method of synthesizing real-time
implementation from component-based software models. Our work is an extension of
the work of Gu et al., which combines simulated annealing (SA) algorithm with
Component Sequence Diagram (CSD). We use SA to explore design space and CSD
to organize tasks, to assign their priorities, and to prune the search space of simulated
annealing algorithm. The process of task generation is iterated until an optimization
implementation is obtained.

The rest of this paper is organized as follows. Section 2 presents the computational
model. Section 3 describes the process of task generation. Section 4 gives the
experimental results and the conclusions of this paper.

2 Computational Model

The software model before task generation is called the structural model, and the
software model after task generation is called the runtime model.

 A Task Generation Method for the Development of Embedded Software 919

Structural Model. We use the structural model proposed in [1]. A transaction is
defined as a series of related components’ actions triggered by an event. An example
of structural model is shown in Fig. 1.

C4

E1 C2 C3 E2 C5 C6Tr1

Tr2

C1 Tr3

Fig. 1. Structural model consisting of three transactions

Runtime Model. The runtime model is based on task sequences. It is a sequence of
related tasks communicating with each other through events.

3 The Implementation of Task Generation

The problem of assigning priorities to tasks for obtaining a schedulable system is an
NP-hard problem [7]. Similarly, the problem of task generation is an NP-hard
problem, too. It usually resorts to heuristic algorithms. Unfortunately, heuristic
algorithms would result in high computation overhead because of large search space.
Here we use a diagram, CSD, to describe assignment sequence of components. It has
no scale and only denotes the constraints of time sequence (CTS). Since the
assignment of components on CSD denotes a kind of execution orders of components
according to the constraints of time sequence, we can organize components into tasks
and assign their priorities according to their places on CSD. The process of task
generation is shown in Fig. 2. It includes two phases: initialization and task
generation. Task generation is performed iteratively until an acceptable Critical
Scaling Factor (CSF) [2] is obtained or no schedulable task set can be found.

Component
Order

Adjustment
Initialization

Priority
Mapping

CSF
Check

End

F

T

F: false T: true

F

T

Task Generation

Transation
Set

Fig. 2. The process of task generation

3.1 Initialization

The purpose of initialization is to abstract the constraints of time sequence between
components and to obtain a feasible component arrangement scheme that accords with
their CTS. It includes three steps: First, generate the transaction set. Only the
transactions within the least common multiple (LCM) of all periods of transactions in
the structural model need to be generated. We introduce the notion of virtual

920 Z. Gao, Z. Wu, and H. Li

transaction. A transaction with the period less than LCM is divided into multiple virtual
transactions. Second, abstract the constraints in transactions and virtual transactions.
Third, assign all the components of transactions and virtual transactions obtained in the
first step on CSD, while satisfying the constraints obtained in the second step.

3.2 Task Generation

The purpose of task generation is to find a task set with acceptable CSF. It includes
three steps: First, adjust component order to search for all feasible assignment
schemes of components in the search space of SA. Second, merge the components
that belong to the same transaction and are adjacent into a task and assign their
priorities. Third, check Whether CSF is acceptable. The worst-case local response
time of a task can be obtained using the formula presented in [4]. A task sequence’s
worst-case local response time (WCRT) is the sum of the worst-case local response
time of all its tasks. After all task sequence’s WCRT is computed, we can obtain the
CSF of a system according to the deadlines of all task sequences.

The complete process of task generation is shown in Algorithm TG.

Algorithm TG (TS)
/* TS is the set of transactions. TE is the temperature

of SA. E and E1 are the energy of components assignment on
CSD. CSFexp is the expected CSF. Tmin is the threshold of
temperature of SA */

TE = 10*max{ / | }
iTr ik iD C Tr RM∈∑ ;

Initialize components assignment on CSD;
E = 0; CSF = CSFold = 0;
Priority mapping;
Calculate CSF of the task set;
E1 = -CSF;
do {

Select two components Ci and Cj randomly on CSD;
if (Ci and Cj are exchangeable)

Exchange their positions on CSD;
else
 continue;

Priority mapping;
Calculate CSF of the task set;
if (E < E1)

E1 = E;
else {

if (
1() / 0.5E E TEe − <)

E = E1;
else

Return to the components assignment
before exchanging;

 }
if (CSF > CSFold) TE = TE*0.95;

} while (CSF < CSFexp and T > Tmin)
if (T <= Tmin) return false;
return true;

 A Task Generation Method for the Development of Embedded Software 921

4 Experiments and Conclusions

In order to evaluate the effect of our algorithm, we compared our method, named
SA+CSD, with the method only using SA. The results are shown in Fig. 3.

Fig. 3. The result of experiments

In this paper, we present a new method of task generation. It uses CSD to generate
tasks and assign their priorities. By using of CTS, the speed of task generation is
improved greatly. Our future work will focus on the influence of other resource
constraints, such as memory, energy, on task generation.

References

1. Wang, S., Shin, K.G.: An Architecture for Embedded Software Integration Using Reusable
Components. CASES. (2000) 110-118

2. Vestal, S.: Fixed-Priority Sensitivity Analysis for Linear Compute Time Models. IEEE
Trans. Software Eng., Vol. 20. (1994) 308-317

3. Kodase, S., Wang, S., Shin, K.G.: Transforming Structural Model to Runtime Model of
Embedded Software with Real-Time Constraints. DATE. (2003) 20170-20175

4. Tindell, K., Clark, J.: Holistic Schedulability Analysis for Distributed Hard Real-Time
Systems. Microprocess & Microprogram, Vol. 40. (1994) 117-134

5. Gomaa, H.: Designing Concurrent Distributed, and Real-Time Applications with UML.
Addison–Wesley. (2000)

6. Gu, Z., Shin, K.G.: Synthesis of Real-Time Implementations from Component-Based
Software Models. Proc. IEEE Real-Time Systems Symposium (RTSS 2005). Miami, FL

7. Burns, A.: Scheduling Hard Real-Time Systems: A Review. Software Engineering Journal,
Vol. 6, No. 3. (1991) 116-128

	Introduction
	Computational Model
	The Implementation of Task Generation
	Initialization
	Task Generation

	Experiments and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

