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Abstract. Next-generation wireless sensor networks may revolution-
ize understanding of environmental change by assimilating heteroge-
neous data, assessing the relative value and costs of data collection, and
scheduling activities accordingly. Thus, they are dynamic, data-driven
distributed systems that integrate sensing with modeling and prediction
in an adaptive framework. Integration of a range of technologies will al-
low estimation of the value of future data in terms of its contribution
to understanding and cost. This balance is especially important for en-
vironmental data, where sampling intervals will range from meters and
seconds to landscapes and years. In this paper, we first describe a general
framework for dynamic data-driven wireless network control that com-
bines modeling of the sensor network and its embedding environment,
both in and out of the network. We then describe a range of challenges
that must be addressed, and an integrated suite of solutions for the de-
sign of dynamic sensor networks.

1 Introduction

The technology of wireless sensor networks is now becoming a mature research
field. As a result, the discipline is undergoing a natural evolution into cross-
cutting subtopics and applications, and the original vision of smart dust—
myriads of tiny, minimalist sensors—is now just one niche. Given the physical
reality of many applications, especially the size and expense of physical transduc-
ers and the cost of deployment, we are now seeing a movement toward networks
that are comparatively lower in population and density. However, integral to this
paradigm is the notion that the sensor nodes should be much smarter. We will
argue that a key aspect of this intelligence is that these sensors are, surprisingly,
even more embedded into their environment. This tight coupling between the
sensed and the sensors results from the need for the network to have adequate
explanatory power under significant energy consumption constraints.

Our particular application is the monitoring of physical environments and
ecosystems, with the goal of predicting biodiversity and carbon accumulation
based on scenarios of change in the atmosphere and disturbance. Changing tem-
perature, moisture availability, and atmospheric CO2 concentrations determine
the rates at which leaves gain carbon and, thus, the rates of tree growth. While it
is clear that species respond differently to climate and CO2, heterogeneous data,
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combined with modeling challenges, have frustrated efforts to scale such relation-
ships in ways that would permit reasonable estimates of impacts on biodiversity
(see e.g. Clark et al. 2001).

We believe that dynamic wireless sensor networks promise to revolutionize
understanding of such complex phenomena by using statistically-aware dynami-
cal models that guide their responses to changing sampling and communication
needs in the context of evolving data acquistion and communication costs. The
underlying simulation models are computationally intensive and ingest data with
disparate natural scales. Current wireless networks are capable of meeting many
of the data needs, but network control algorithms must be developed to steer
sampling and collaboration based on complex multi-level models. By injecting
state-of-the art dynamical models and statistical computation into the network,
complemented by out-of-network modeling, the network can acquire data at rel-
evant scales and drive models that aid understanding and anticipate change.

2 Dynamic Sensor Networks

If sensor networks are to revolutionalize ecological forecasting, they must be-
come autonomous instruments that employ dynamic model-driven control of
the sensing process, including sampling, communication, estimation, prediction,
and model inference. A framework that encompasses these ideas must also ac-
comodate the limited resources available in the network, complementing them
with out-of-network capability. Figure 1 depicts such a framework, showing the
two key functions, modeling and control, distributed between the network and
out-of-network (i.e., in the lab) computational resources. The elements are in-
Network Inference and Prediction (NIP) for real-time assessment of the system,
Dynamic In-Network Control (DINC) for real-time adaptation, and Dynamic
Out-of-Network Control (DONC) for network analysis, adaptive deployment (re-
configuration), and trouble shooting. To manage complexity, computationally
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demanding and long-term tasks are handled by a Scalable Landscape Inference
and Prediction (SLIP) model operating outside the network along with DONC
processing.

The SLIP model of forest stand dynamics focuses on 1) data assimilation from
environmental variables, tree growth, and tree demography and 2) algorithm de-
velopment to permit efficient computation for change over large landscapes. Data
range from long-term (up to 15 yr) experiments involving manipulating canopy
characteristics, CO2 (FACE experiments), herbivores, remote sensing, and wire-
less networks of environmental sensors. Models involve mass (water, CO2), and
energy exchange, including basic tree physiology, and growth dynamics of trees.
To simulate large landscapes, the SLIP model makes use of recent developments
in algorithms, data structures, and hardware (Govindarajan et al. 2004, 2005).
The SLIP model is also the basis for in-network NIP modeling (Figure 1) and
as input to DINC and DONC.

In numerous applications, complex models will actually be networks con-
structed of component models. Both within and outside the in situ network,
we expect that these component models will execute in real time with varying
degrees of collaboration and competition. Given that communication is dramat-
ically more expensive than computation in wireless networks, in-net and out-of-
net model designs will be strongly influenced more by comparative communica-
tion costs than computational constraints. Consequently, in-network models will
rely heavily on local, inexpensive information, informed by out-of-net models
that fully exploit evolving global datasets.

A critical aspect of both the SLIP and NIP models is the integration of
estimation and prediction within a Bayesian inference framework. The advantage
is predictive intervals that are directly anchored by data. Hierarchical Bayes
modeling (see e.g. Smith and Gelfand 1992) has emerged as a powerful new
tool for inference, prediction, and decision in high-dimensional systems, and has
been further developed for environmental applications (Agarwal et al. 2002)
and specifically for modeling tree stand dynamics (Clark 2005). The approach
provides a basis for integrating the extensive data from a range of scales. It allows
modeling a complex system as a network of relationships among elements, both
known and unknown. If we have set of parameters R specifying a particular
process model Φ, data assimilation within the hierarchical Bayes framework is
based on the decomposition

[data, Φ, R] = [data|Φ, R][Φ|R][R].

Each of the three conditional relationships might be further decomposed, de-
pending on complexity. Data can enter into different stages of the model, with
each data type related to one or more elements of the process tailored to the
appropriate scale, measurement errors, and so on. Parametric modeling at the
various stages provides for context, which may be spatial, temporal, or involve
relationships among subsets of observations.

In the context of this research, the SLIP simulator serves as the out of net-
work model (Figure 1). It makes use of sophisticated algorithms to capture large
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numbers of interactions across broad landscapes in reasonable time. Because of
computational and memory demands, SLIP will run on a server or cluster out-
side the wireless network itself. DINC responds to NIP predictions in real time,
with updated scheduling based on optimization. NIP also passes information to
Dynamic Out-of-Network Control (DONC), which provides for more detailed
assessment and control.

3 Sensor Network Design and Implementation

Wireless sensor network architectures and implementations should reflect the
specific opportunities and constraints of the environmental sensing application.
First, research-quality scientific data requires external probes, flexible and quiet
analog circuit design, and a weatherproof package. Secondly, for scientific-quality
sensing applications, large-scale redundancy (to aid battery lifetime or allow dis-
posability) is economically infeasible. For example, the cost of probes is approx-
imately 40% of the total, so that the networking and sensing infrastructure for
a single node can exceed $1,000 at the prototype stage. Moreover, installation
costs are significant due to the careful probe deployment procedures required.
Hence optimization of spatial sampling and model-aided redeployment, in addi-
tion to dynamic temporal sampling and reporting, will be a growing concern in
ecosystems sensing applications.

The prototype WiSARDNet (wireless sensing and relay device network) sensor
network technology (Yang 2005, www.wisardnet.nau.edu) targets applications in
biological and ecological field research. A WiSARDNet consists of two classes of
nodes; 1) many nodes that provide sensing and multihop networking capabilities,
and 2) relatively few gateways to the internet for SLIP and DONC functions.
WiSARD nodes use a dual-processor design, with the labor divided between a
brains board that provides communication and networking services and a probe
data acquisition board that handles the details of the sensing tasks. The hard-
ware design is a three-board stack; the data acquisition board used in WiSARDs
is replaced in gateways by a board that provides communication interfaces and
non-volatile memory for data archival.

The WiSARDNet protocol stack design is driven by the sensing application,
wherein communication can be scheduled because of the low temporal sampling
rates for environmental phenomena. These rates are not necessarily static: adapt-
ing sampling to hot or cold spots in time or space allow for improved data quality
at a fixed average sampling rate. The protocol stack is based on proactive coor-
dination, or scheduling, of communication transactions. We have implemented
a media access control (MAC) algorithm (Flikkema 2003) that employs local
proactive coordination in a slotted-time framework so that a node is awake—
and consuming energy—only when it has scheduled communication with one of
its cliques (sets of neighboring nodes). The MAC layer is coupled with lower and
higher layers in the service of energy efficiency, scalability, and robustness.

Dynamic sensor node design. Most current wireless sensor nodes target min-
imum energy consumption and 8-bit processors that use little power but have
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very limited computational capability. The most obvious requirement driven by
dynamic sensing is a hardware/software design that is capable of significantly
higher computational power while maintaining low energy consumption. Next-
generation 16- and 32-bit embedded processors are being introduced that pro-
vide order-of-magnitude increases in computational throughput over the 8-bit
microcontrollers while using far less energy than 32-bit architectures now used
in easily rechargeable devices such as PDAs. New devices provide for energy
management with programmable subsystem clocks and a low-power instruction
cache. On-chip memory management units allow separate logical program and
data spaces, enabling protection critical in systems with dynamic software re-
configuration.

Support for over-the-network dynamic reconfiguration is also required, includ-
ing loading of new tasks and programs and replacement of existing components.
Progress in this direction includes the module registration approach in the SOS
operating system (Han 2005) to provide protection from calls to nonexistent or
outdated components. Efficient implementation of code and data protection can
use hardware memory management.

Sensor network OS’s should be extended to include application-level sup-
port of energy-consumption management. The Energy Centric Operating System
(ECOSystem) (Zeng et al. 2002, 2003) has demonstrated how to schedule com-
putation and communication to satisfy a specified power budget to guarantee a
specified battery lifetime.

4 Algorithm and Software Development

Data service layer. Casting model-driven adaptive sensing and reporting as a
data management problem may ultimately broaden the functionality of sensor
networks (overview in Kumar 2003). We are currently building a data service
layer for WiSARDNet that supports a high-level programming interface for spec-
ifying data acquisition tasks. These tasks may acquire information about both
the environment as well as the system itself (e.g., remaining battery power and
storage capacity at each sensor). High-level specifications of tasks simplify pro-
gramming and enable greater optimization opportunities.

The data service layer is jointly implemented by a central server and the
nodes in the WiSARDNet. Given a sensing task, the central server carries out
optimization based on models with previously assimilated data, and obtains
an initial acquisition plan to be deployed in the network. This plan consists
of sub-plans to be executed at individual nodes, which specify when and what
to sample and report. The fundamental building blocks of plans are dynamic
continuous queries: They are continuous in that they continuously execute over
streaming input data and produce results; they are dynamic in that they admit
dynamic external control—these two features are essential in supporting NIP,
DINC, and DONC. Together, the dynamic continuous queries form data/control
flows over the network, where one query’s output may be another query’s data
or control input. Each node in the WiSARDNet runs a data service component
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that interprets the deployed plan and executes the local sub-plans. The data
service component coordinates the execution and adaptation of sub-plans and
their interaction with WiSARDNet hardware probes and communication layer,
tags data reports with meta-data about sampling and measurement conditions,
and provides multi-resolution data storage within the network.

Model-driven sensing and reporting. Environmental and system modeling offers
many opportunities for optimization. With the out-of-network models of eco-
logical processes (SLIP), we can quantify the utility or fidelity of data (in both
accuracy and timeliness) and use it to control sampling and reporting in the
WiSARDNet (DONC). As noted earlier, the utility of an observation depends
on how it is to be used. For example, even if the local estimate of soil moisture is
precise enough for water balance modeling, a model for plant mortality risk may
require a more precise estimate. Thus, DONC must consider the requirements
and needs of multiple models.

Inside the network, as new sensor readings are acquired, dynamic contin-
uous queries running on the nodes collectively maintain local models of the
environment (NIP). Within the fidelity requirements set by DONC, we use the
in-network models to control sampling and reporting adaptively (DINC) in order
to achieve energy savings. In particular, we may choose not to acquire a sensor
reading if, according to DONC, its utility is low or its value can be confidently
predicted by NIP to within the required accuracy. Furthermore, instead of re-
porting every raw sensor reading to the central server, the network only needs
to report updates to local model parameters or deviations of readings from local
model predictions.

Finally, our system also maintains reliability models of sensors and communi-
cation links, and uses them with statistical inference techniques to reason about
errors and failures, which routinely occur in wireless sensor networks. Models of
battery lifetime provide us with the basis for energy-based optimization.

Algorithmic challenges. In order to fully realize the potential of the model-driven,
dynamic-system approach to understand complex environmental phenomena,
one has to address the algorithmic challenges at various levels. One of the basic
challenges is to define the right utility and fidelity measures based on the under-
lying models, which can provide the framework for developing clever algorithms
that maximize fidelity with as little resources as possible. These measures will
define the (often conflicting) optimization criteria, guide various trade offs, etc.

One of the main algorithm challenges is to develop algorithms that provide
various trade-offs in a dynamic sensor network, including: fidelity vs. accuracy,
data fidelity vs. sensing and reporting cost; model maintenance cost vs. cost-
saving potential; cost vs. benefit of dynamic adaptation; and cost vs. benefit
of failure protection. We have recently begun research in this area. Silberstein,
Braynard, and Yang (2006) investigate the trade-off between a purely temporal
model and a spatio-temporal model for suppressing change reporting in a sen-
sor network; the former only exploits temporal coherence while latter exploits
both temporal and spatial coherence. We are studying similar trade-offs for the
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forest growth model (Chakraborty, et al., 2006). In the same vein, there has
been preliminary work (Silberstein, Munagala, and Yang 2006) on developing
power-efficient distributed local control algorithms to exploit spatio-temporal
correlations to perform query-specific model-driven data acquisition. Some re-
cent work (Goel, Guha, and Munagala 2006; Flikkema 2006) presents a theo-
retical framework, algorithms (both adaptive and non-adaptive), and analysis of
the trade-offs between acquisition cost and information gained in model-driven
resolution of uncertain data.

A related challenge is to develop an optimization framework that spans across
multiple software layers and executes both inside and outside the network. Each
software layer—application, data service, OS, and networking—continuously car-
ries out optimization and adaptation at runtime, and a coordination among them
is needed to maximize the performance. Similarly, DINC and DONC must co-
ordinate with each other to ensure overall efficiency and stability of the system.
Furthermore, optimization could be expensive. For example, when optimizing
sensor data acquisition tasks, reasoning with complex statistical models can be a
challenging computational task, especially when complicated by energy costs and
network topology. Our recent work (Silberstein, et al. 2006) involves developing
computationally efficient techniques based on sampling and linear programming
with both energy and network considerations.

Finally, the availability of sensor data provides many opportunities to signifi-
cantly improve environmental modeling. For example, one can run environmental
models at a finer time scale and thus incorporate variations in the values of pa-
rameters (instead of drawing them from a distribution). But these opportunities
cannot be realized without addressing a number of algorithmic challenges in the
simulation of complex models. For example, one may have to use an event based
simulation (e.g., using kinetic data structures (Agarwal et al. 2002)) and update
the information locally and only when it is necessary. In some of our previous
work, we have exploited spatial coherence but did not pay enough attention to
temporal coherence (Govindrajan et al. 2004, 2006). We are currently devel-
oping algorithms for the SLIP model that exploits both temporal and spatial
coherence.

5 Conclusion

One of our goals is to experimentally evaluate whether a network can deliver
better results than the standard fixed sampling and out-of-network modeling in
the context of changing real-world environmental conditions. Ultimately, results
from these experiments will inform the design of an accurate, dynamic, energy-
efficient production networks tailored to the specific demands of the application.

Our effort to understand the biodiversity and carbon consequences of envi-
ronmental change is broad enough to encompass many of the types of challenges
faced by dynamic data-driven application systems. The research results will be
applicable to many environmental sensing/decision applications, including mi-
crometeorological sensing, pollution monitoring and environmental remediation,
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and public security/safety. In particular, results from this effort will inform the
planning and implementation of future distributed in situ monitoring, modeling,
and decision systems.
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