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Abstract. Previous work in the Instrumented Oil-Field DDDAS project
has enabled a new generation of data-driven, interactive and dynamically
adaptive strategies for subsurface characterization and oil reservoir man-
agement. This work has led to the implementation of advanced multi-
physics, multi-scale, and multi-block numerical models and an autonomic
software stack for DDDAS applications. The stack implements a Grid-
based adaptive execution engine, distributed data management services
for real-time data access, exploration, and coupling, and self-managing
middleware services for seamless discovery and composition of compo-
nents, services, and data on the Grid. This paper investigates how these
solutions can be leveraged and applied to address another DDDAS ap-
plication of strategic importance - the data-driven management of Ruby
Gulch Waste Repository.

1 Introduction

The dynamic, data driven application systems (DDDAS) paradigm is enabling
a new generation of end-to-end multidisciplinary applications that are based
on seamless aggregation of and interactions between computations, resources,
and data. An important class of DDDAS applications include simulations of
complex physical phenomena that symbiotically and opportunistically combine
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computations, experiments, observations, and real-time data to provide impor-
tant insights into complex systems.

In a recent DDDAS project, we have developed several key technologies to
enable a new generation of data-driven, interactive and dynamically adaptive
strategies for subsurface characterization and reservoir management. This “In-
strumented Oil-Field” project [1, 2, 3] aimed at completing the symbiotic feed-
back loop between measured data and the computational models to provide more
efficient, cost-effective and environmentally safer production of oil reservoirs,
which can result in enormous strategic and economic benefits. Our work in this
project has led to conceptual and infrastructure solutions [1, 2, 3, 4, 5, 6, 7], which
include advanced multi-physics, multi-scale and multi-block numerical models
as well as an autonomic DDDAS software stack. The software stack provides a
middleware for autonomic DDDAS applications and consists of a Grid-based ex-
ecution engine that supports self-optimizing, dynamically adaptive applications,
distributed data management services for large scale data management and pro-
cessing, and self-managing middleware services for seamless discovery, access,
interactions and compositions of components, service and data on the Grid.

In this work, we look at the application of these technologies in the more gen-
eral class of knowledge-based, data-driven subsurface management applications.
This paper is concerned with the problem of dynamic data-driven waste manage-
ment at the Ruby Gulch Waste Repository, and more specifically, the Gilt-Edge
site. It investigates how the DDDAS models, methodologies and software stack
can be applied to address this challenging application.

2 The Dynamic Data-Driven Waste Management
Problem: The Ruby Gulch Waste Repository

Fig. 1. Gilt Edge Monitoring System
Server

The Gilt Edge Mine is located near
Deadwood, South Dakota. Mining for
gold and silver at this site occurred
from 1880-1999. In 1999 the Dakota
Mining Corporation (which operated
the mine through its subsidiary,
Brohm Mining Company) declared
bankruptcy, and the site reverted to
the state of South Dakota. Mining ac-
tivities had resulted in several nega-
tive environmental impacts on the site.
One of the main environmental issues
was the presence of multiple sources of
ARD (Acid Rock Drainage). The pri-
mary source was the Ruby Waste Rock
Repository. This repository is a valley in which mine rock was disposed of post
leaching. It contains approximate 11 million cubic yard of waste rock. As ARD
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flowing from this repository would severely impact drinking water quality down-
stream of the site, this ARD needs to be captured and treated.

In order to minimize the amount of water coming out of this repository a ROD
(Record of Decision) for this repository called for the emplacement of a cap over
the site. As EPA had interest in the monitoring of the performance of this cap,
a monitoring system was designed and installed by scientists from the Idaho
National Laboratory (INL) [8, 9]. The monitoring system autonomously collects
continuous data using the following sensors: (1) a weather station operated by
SDENR (South Dakota Department of Environment and Natural Resources); (2)
an outflow meter at the bottom of the Ruby Repository; (3) temperature sensors
in four well boreholes; (4) advanced tensiometers are located within boreholes
and measure matrix potential (related to water saturation); (5) a multi-electrode
resistivity system.

In addition to the autonomously collected data, gas-ports and porous-ceramic
cup-lysimeters in the wells are sampled monthly (starting in June 2004). Gas
analysis is done in the field for CO2 and O2. Water samples are sent to a lab-
oratory for analysis. In addition to this data there is a substantial amount of
historical data (collected by BMC and DENR), which has been aggregated into
the database. Figure 1 illustrates the monitoring process at the Gilt Edge mine.

3 Models, Methods and Middleware for Data-Driven
Subsurface Management Applications

3.1 The Integrated Parallel Accurate Reservoir Simulator (IPARS)

IPARS represents a new approach to parallel reservoir simulator development,
emphasizing modularity, code portability to many platforms, ease of integration
and inter-operability with other software. It provides a set of computational fea-
tures such as memory management for general geometric grids, portable parallel
communication, state-of-the-art non-linear and linear solvers, keyword input,
and output for visualization. A key feature of IPARS is that it allows the def-
inition of different numerical, physical, and scale models for different blocks in
the domain (i.e., multi-numeric, multi-physics, and multi-scale capabilities). A
more technical description of IPARS and its applications can be found in [10].

3.2 Optimization Algorithms

Novel stochastic optimization algorithms [4, 5] have been included in the frame-
work, namely, the Very Fast Simulated Annealing (VFSA), the Finite Difference
Stochastic Approximation (FDSA) and the Simultaneous Perturbation Stochas-
tic Approximation (SPSA). The VFSA and SPSA, in particular, have potentials
for large scale implementations. The critical issue here, is that parameter esti-
mation may involve several hundreds of thousands of variables and the objective
function evaluation is a highly demanding process since it involves a full simu-
lation run. This also rules out the possibility for using gradient-based methods,
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especially in a multi-model environment that systematically aims at different
physics and algorithms for which sensitivity coefficients are not trivial either to
compute or reformulate.

3.3 Storage and Management of Large Volumes of Data

Effective solutions to the waste management problem targeted in this work will
require gleaning and extracting information from results of optimization pro-
cesses using complex numerical models and from data gathered by field sensors.
Datasets generated by an optimization run consists of the values of the input
and output parameters along with the output from simulations of a numerical
model of the physical domain. Datasets gathered from field sensors consist of
readings obtained from each sensor, the location of the sensor, and the date of
the reading. This information provides a dynamically updated (as more readings
are obtained) historical record of the field under study. By maintaining simula-
tion and sensor datasets, a large-scale dynamic knowledge base can be created.
This knowledge base can be used to speed up the execution of optimization runs,
to carry out post-optimization analyses, to refine numerical models using field
data, and to control where and how much field data should be collected, thus
implementing a dynamic, data-driven application system approach. Common
types of queries against these datasets include computing data subsets via range
queries, aggregations such as counts, averages on over regions of meshes, and dif-
ferences between regions of interest on multi-resolution datasets. With the help of
inexpensive disk-based storage, we are seeing the emergence of large scale, hier-
archical storage platforms with varying capacity/bandwidth (from larger, slower
disk pools to smaller, faster disks to memory on cluster) and distance from com-
pute nodes. A challenging issue is to be able to use different levels of storage
and computing hierarchy in a coordinated way to maximize the bandwidth of
data retrieval and processing. A number of strategies, such as multi-level hier-
archical indexing [11], partial replication [12], caching [13], and adaptive data
redistribution can be employed.

To support the knowledge base, we make use of three middleware systems to
support the data management and processing requirements as described above
of optimization based studies for waste management application. STORM [14]
is a service-oriented middleware that supports data select and data transfer
operations on scientific datasets, stored in distributed, flat files, through an
object-relational database model. Mobius [15] provides support for management
of metadata definitions, on-demand database creation, and federation of dis-
tributed XML databases. It uses XML schemas to define the structure of data
elements and XML documents to represent instances of data elements. Data-
Cutter [16] provides a coarse-grained data flow system and allows combined use
of task- and data-parallelism. In DataCutter, application processing structure is
implemented as a set of components, called filters, that exchange data through
a stream abstraction.
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3.4 Autonomic Grid Middleware Substrate

Emerging knowledge-based and dynamic data-driven subsurface management
and control applications, such as the applications described in this paper, com-
bine computations, experiments, observations, and real-time data, and are highly
heterogeneous and dynamic in their scales, behaviors, couplings and interactions.
AutoMate [17], an Autonomic Computational Engine for management and con-
trol, investigates conceptual models and implementation architectures to address
these challenges and enable the development and execution of such self-managing
Grid applications. Key components include:

– The Seine/MACE Computational Engine [18] that implements a dynamic
geometry-based shared space interaction model to support the dynamic and
complex communication and coordination patterns required by the multi-
block parallel multi-block simulations.

– The Accord Programming System [19] that enables the definition of auto-
nomic components and the dynamic composition, management and opti-
mization of these components using externally defined rules and constraints.
Autonomic components in Accord export sensors and actuators for external
monitoring, control and adaptation.

– The Autonomic Runtime Environment [20] provides policies and mechanisms
for both “system sensitive” and “application sensitive” runtime adaptations
to manage the heterogeneity and dynamism of the applications as well as
Grid environments.

– The Content-based Grid Middleware Substrate [17] that supports autonomic
application behaviors and interactions, and to enable simulation components,
sensors/actuators, data archives and Grid resources and services to seam-
lessly interact as peers. Key components of the middleware include the Me-
teor, a decentralized infrastructure for decoupled associative interactions, the
Squid content-based routing engine and decentralized information discovery
service, and the Pawn peer-to-peer messaging substrate.

– The Discover Collaboratory [21] that provides collaborative problem solving
environment and enables geographically distributed scientists and engineers
to collaboratively monitor, interact with, and control high performance ap-
plications in a truly pervasive manner using portals.

4 Dynamic Data-Driven Waste Management: Modeling
the Gilt-Edge Site with Dynamic Data

In order to make better predictions from the measurements at the Gilt Edge site,
the first task is to develop a model that suitably explains the observations from
the experiments at the waste repository. For instance, it was observed that there
exists a diurnal/seasonal variation in the outflow measurements. Using IPARS,
a system of modified air-water equations can be used to model the problem.
This solution takes into account that water can exist in the air phase as vapor,
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and can explain the diurnal variations qualitatively. An example water pressure
profile reproduced by the model is shown in Figure2.

Fig. 2. Example of an air-water simulation
to predict water pressure profile

Once the predicted model is cali-
brated, the next challenge is to deter-
mine the physical parameters of the
site such as permeability, porosity and
capillary pressure in order to repro-
duce the exact measured outflows at
the site. This task can be modeled as
a parameter estimation problem us-
ing the numerical model of the en-
vironment. This is where an efficient
optimization method such as SPSA
or VFSA plays a significant role. At
present, the SPSA method is being
implemented on the hydrology model
in IPARS. Using the autonomic com-
putational engine, the execution of
IPARS and the optimization methods
can be dynamically orchestrated in a
Grid environment [1, 2].

Fig. 3. The Dynamic Data-Driven Waste
Management framework

To perform parameter estimation a
mismatch function based on the dif-
ference of measured and calculated
outflow of water at a specified loca-
tion at the site is posed. Similarly,
an objective function based on max-
imum cleanup rate can be designed
for optimal site management. To ex-
tend these optimizations for data as-
similation, the numerical models im-
plemented using IPARS would need to
be refined using dynamic data from
outflow measurements at the site. To
achieve this, an optimal control scheme should be formulated to accommodate
dynamic changes into the parameters (i.e., properties) and state variables (e.g.,
saturations, pressures, temperatures) of the model. Increasing understanding of
the physical model and the need to respond more quickly to observations leads to
metamodels (surrogate models) or reduced models. These simpler models mimic
the behavior of the original predictive model given by IPARS.

Accurate model prediction and optimization capabilities in conjunction with
the Grid middleware and data management tools described in Section 3 makeup
the fundamental components of the The Dynamic Data-Driven Waste Manage-
ment framework proposed in this work (see Figure 3). The framework adds
autonomic descision making and control capabilities to the monitoring process.
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The autonomic computational engine and middleware service provide the
infrastructure for: (1) enabling the efficient, large scale, dynamically adaptive
multi-block IPARS simulations; (2) for discovering, aggregating and assimilat-
ing data from the sensors at the remote Gilt-Edge site and dynamically injecting
it into the simulation processes as required; (3) selecting and invoking appropri-
ate optimization services; (4) enabling dynamic composition of services to realize
data driven workflows on the Grid; and (4) enabling remote collaborative and
interactive access to the simulations and the data using pervasive portals.

The estimation of physical properties of the environment involves search of
a parameter space and requires data from outflow measurements dynamically
drive the simulation of the numerical models and parameter space search. A
knowledge base can be created from the datasets that are generated (via sim-
ulations or field measurements) and referenced in this application to speed up
the optimization process. Mobius can be used to manage metadata associated
with distributed datasets in the knowledge base. At any given step during opti-
mization the knowledge base can be queried to see if a given step, or a subset
of numerical simulations at that step, has been already evaluated. STORM and
DataCutter can be employed to support queries into distributed collections of
large datasets stored as a collection of files. For instance, in post-optimization
analyses, a user may want to compare and correlate a subset of results obtained
from one optimization run with results from another set of optimization runs.

5 Conclusion

Our previous work in the Instrumented Oil-Field DDDAS project has developed
advanced numerical models and a suite of software components, which provide
support for 1) execution of dynamically adaptive applications in a Grid envi-
ronment, 2) management and manipulation of large distributed datasets, and 3)
seamless discovery of, interaction with, and composition of application compo-
nents, services, and data in the Grid. We believe that these advanced numerical
models and tools can be applied to other types of data-driven subsurface manage-
ment applications. In this paper we investigated how these technologies can be
leveraged to enable data-driven management of Ruby Gulch Waste Repository.
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