
Efficient Coding of Quadtree Nodes

Mariano Pérez, Xaro Benavent, and R. Olanda

Instituto de Robótica. University of Valencia
Poĺıgono de la Coma, s/n.

Aptdo. 22085, 46071-Paterna, Spain
Mariano.Perez@uv.es

Abstract. In this paper an alternative non-pointer quadtree node cod-
ification to manage geographical spatial data is presented. New codifica-
tion is based on a variable sequence of z-ordered base four digits. Memory
requirements of the new codification are lower than previous codifica-
tions, and in particular lower than FD codification, the most commonly
used in linear quadtrees. Furthermore, z-ordering makes compatible new
codification with most of the algorithms developed for FD.

1 Introduction

In recent years, a wide set of data structures has been developed to manage
spatial data in Geographic Information Systems (GIS) field. The most popular
approaches are based on quadtrees, bintrees, R-trees, the cell tree and the grid
file [3]. The quadtree is probably one of the most extended for spatial information
representation, and amongst the different kinds of quadtrees, the region quadtree
is the most used [1].

Region quadtrees can be represented in memory as a dynamic tree (using
pointers) or they can be stored using a set of linear codes (without using point-
ers). Pointer-based approach is ill-suited for implementing disk-based structures
whereas linear codes approach is especially interesting when the quadtree size
is quite large or when it is stored on secondary storage devices. Memory re-
quirements in the case of linear codes is lower than when using pointers, but it
is possible to regenerate the whole structure from only a few leaf nodes, as it
happens for linear quadtrees [1].

2 Previous Quadtree Codifications

There are several ways of implementing linear codes that are able to identify
the quadtree nodes. Usually the codification employs numbers in base four or
five, called locational codes. The digits of these numbers are directional codes
which locates the node within the quadtree from the root node. Depending
on the implementation, apart from the location code, the node level (depth
of the leaf node within the quadtree) is also stored. The most popular linear
implementations are the FL (Fixed Length), the FD (Fixed Depth) and the VL
(Variable Length) [3].

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part III, LNCS 3993, pp. 13–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

14 M. Pérez, X. Benavent, and R. Olanda

The FL and VL locational codes are based on a base five sequence of digits.
Each digit indicates NW, NE, SW, SE and ”don’t care” directions. These codifi-
cations do not need an additional field to codify the node level. This information
is implicit in the directional code; the ”don’t care” value indicates the node is
a leaf. The main difference between VL and FL is that the VL locational codes
have a variable length and it is usually shorter than the FL locational one.

The FD codification is usually implemented as a structure with two fixed size
fields. The first field, called quadcode [2], stores the directional code and indicates
the position and orientation of the node within the quadtree. The second field
indicates the node level.

The quadcode is a z-ordered base four code and consists of a sequence of
values:

q = q1q2...qN (1)

where qi = 0, 1, 2, 3, with i = 1, 2, .., N , being N the code length (which is the
maximum number of tree levels). For each square block in which a quadrant is
divided, a new value qi is added to have a unique characterization of each node.

Among the three indicated codifications, the FD is the most referenced in sci-
entific literature because the FD locational code (quadcode) is a base four code,
and it is easily handled using two bits per digit, which allows the use of binary
and logical operations to carry out the codification and de-codification processes.
Furthermore, FD codification is the most used in linear region quadtrees [4].

3 Base 4 Variable Length Code (B4VL)

B4VL is an improved alternative version of the FD codification, where the lo-
cational code and the node level are integrated in a unique code, and where
locational code has variable size. These properties are not present in the FD
codification.

To carry out the packing process in B4VL, the bits that define the code are
divided into two parts. The first part, corresponding to low bits, has a fixed size
and is used to store the node level. The other part has a variable length, and
stores the locational code (Figure 1).

q n

2n bits S bitsN

Fig. 1. Bits distribution in B4VL codification. First part correspond to node level (n).
Second part correspond to locational code (q).

The B4VL locational code is similar to quadcode (equation 1), but its size is
optimized. If n is the node level, the locational code is a length n sequence of
values:

q = q1q2...qn (2)

where qi = 0, 1, 2, 3, being i = 1, 2, .., n.

Efficient Coding of Quadtree Nodes 15

If the maximum node level in the quadtree is N , the number of bits used to
codify the first part of the node code is �log2(N + 1)�, while the second part
needs 2n bits, being n the node level. The length of the first part is independent
of the node level, so it is only computed once and this value is stored in memory.
The number of bits of the second part is variable and equal to twice the node
level (see Figure 1).

The algorithm that generates the code from the node level (n) and the loca-
tional code (q) is based on the following equation:

code ← ((q � SN) + n) (3)
where � is the left bitwise binary operator, and SN is the number of bits in the
first part of the code. This number is the same for every node in the quadtree and
its value is �log2(N + 1)�, where N is the maximum node level in the quadtree.

The inverse operation is based on the following equations:
{

n ← (code&MS)
q ← (code � SN) (4)

where & is the AND binary operator, and � is the right bitwise operator; MS

represents a binary mask computed once using the equation: MS = 2SN − 1.
Both operations (equations 3 and 4) have an optimal computational cost,

which is constant (O(1)) with node level.

4 Results

As we have indicated above, FD and FL codes have a fixed size, while VL and
the proposed B4VL codification have a variable size depending on the depth of
node. Table 1 shows the storage cost for the four codifications. The first part of
the summation for the B4VL and the FD codifications is related to the number
of bits used to store the node level and the second part to the quadcode.

Table 1. The number of bits used in B4VL, FD, FL and VL codifications based on
node level n (depth) and based on the maximum achieved level of the quadtree N

B4VL E(n) = �log2(N + 1)� + 2n

FD E(n) = �log2(N + 1)� + 2N

FL E(n) = �N · log2 5�
VL E(n) = �(n + 1) · log2 5� (if n < N) OR E(n) = �(N) · log2 5� (if n = N)

In order to compare the memory space required for each kind of codification,
the average number of bits needed to codify the nodes included in fully occupied
quadtrees will be considered (quatrees are selected based on its maximum level
N). Results are shown in Table 2.

Table 2 highlights that B4VL has variable memory size, but it is always lower
than the space required by FD. It also shows that B4VL size codes are higher
than FL and VL for trees of small height, but they are much lower for deeper
trees (N ≥ 7).

16 M. Pérez, X. Benavent, and R. Olanda

Table 2. Average node bits for each codification based on the maximum quadtree node
level N

N 1 2 3 4 5 7 10 13 17 20 25 30 40
B4VL 3.00 5.60 7.43 10.36 12.34 16.33 23.33 29.33 38.33 44.33 54.33 64.33 85.33
FD 3.00 6.00 8.00 11.00 13.00 17.00 24.00 30.00 39.00 45.00 55.00 65.00 86.00
FL 3.00 5.00 7.00 10.00 12.00 17.00 24.00 31.00 40.00 47.00 59.00 70.00 93.00
VL 3.00 5.00 6.91 9.80 11.83 16.77 23.77 30.77 39.82 46.82 58.77 69.83 92.83

5 Conclusions

In this paper a new approach to codify nodes in quadtree representation has been
presented. The approach is based on a unique compact base four representation
of the locational code and the level of the node.

It has been demonstrated that the storage cost of the proposed codification
is better than previous codifications (table 2). Space memory requirements for
B4VL codification are always lower than the memory needed for FD codification.
Compared to FL and VL codifications, B4VL is similar for small height quadtrees
and lower for deeper quadtrees, but B4VL uses a base four digits code, so its
coding and decoding process is much more simple and efficient than FL and VL.

An important property is that the sequence of relevant bits in B4VL loca-
tional code (equation 2) and in FD locational code (equation 1) are equivalent
in practice. So, it is possible that algorithms developed for FD works with B4VL
making minor modifications.

Acknowledgements. This work has been supported by the project UV-AE-
20050985 of the University of Valencia and the project GV2005-184 of the Gen-
eralitat Valenciana.

References

1. Gargantini, I.: An Effective Way to Represent Quadtrees. Communications of the
ACM. 25(12), 1982, pp. 905–910.

2. Li, S., Loew, M. H.: The Quadcode and its Arithmetic. Communications of the
ACM. 30(7), 1987, pp. 621–626.

3. Samet, H.: Applications of spatial data structures: Computer graphics, image pro-
cessing, and GIS. Addison-Wesley Longman Publishing Co., Inc., Boston, 1990.

4. Tzouramanis, T., Vassilakopoulos, M., Manolopoulos, Y.: Overlapping Linear
Quadtrees: a Spatio-temporal Access Method. Proc. 6th ACM Symposium on Ad-
vances in Geographic Information Systems (ACM-GIS’98), 1998, pp. 1–7.

	Introduction
	Previous Quadtree Codifications
	Base 4 Variable Length Code (B4VL)
	Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

