Agent-Based Middleware Architecture for
Workflow in Grid Portals

Sangkeon Lee!, Jaeyoung Choi!, and Keumwon Cho?
1 School of Computing, Soongsil University,
1-1 Sangdo-dong, Dongjak-gu, Seoul 156-743, Korea
seventy9@ss.ssu.ac.kr, choi@ssu.ac.kr
2 Supercomputing Center, Korea Institute of Science and Technology Information,
52 Eoeun-dong, Yusung-gu, Daejun 305-306, Korea
ckw@kisti.re.kr

Abstract. In this paper, we propose an agent-based middleware ar-
chitecture for the workflows used in Grid portal. We combined work-
flow model, workflow management system, job distribution, parameter
scheduling, and service inteface in the middleware architecture. The
workflow model consists of three layers. The agent-based middleware
architecture consists of five agents and three types of communication
protocols. Users can design a lightweight, flexible and effective middle-
ware, which can be used to construct a workflow-based Grid portal.

1 Introduction

Grid portals[I][2] are widely used to construct virtual scientific research environ-
ments to integrate various types of software such as simulation software, analysis
software and visualization software. A scientific research may require iterative
execution of the experiments with experimental data or change of parameters.
The number of iteration can be larger than billion times. To process billions
of experiments on computing resources, Grid computing is necessary. Scientists
design their research with workflows[3][4], which integrates the software and
experimental data with a flow of research scenario. Therefore, virtualization,
resource scheduling[5], data management, security management, information in-
tegration, ontology processing[6], high-speed network, and other facilities should
be integrated to construct a Grid portal.

However, construction of e-Science environments using Grid portal is not sim-
ple because Grid computing requires setting and managing tens of middleware
and integrating them as a single system. The most difficult problem is that
those middleware are designed separately, so integrating the heterogeneous mid-
dlewares causes many troubles.

Therefore, integrating complex layers between Globus Toolkit[7] and user in-
terface into a single design is required and design of the integrated system must
take care of all matters such as it’s workflow model, workflow management, job
distribution, parameter scheduling[8], and the service oriented architecture.

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part III, LNCS 3993, pp. 972-[375] 2006.
© Springer-Verlag Berlin Heidelberg 2006

Agent-Based Middleware Architecture for Workflow in Grid Portals 973

In this paper, we propose an agent-based middleware architecture for workflow
design in e-Science environments. This architecture uses a service-oriented work-
flow model, which is developed by our prior research, called Meta Services[d],
which integrates functionalities mentioned above. Meta Services provide an ap-
proach to abstract and map a workflow for a service by overriding workflow’s
attributes with the service’s parameters.

By combining Meta Services with an agent-based middleware architecture,
we designed and implemented a lightweight, flexible, and effective middleware
architecture which can be used to construct workflow-based Grid portals.

2 Agent-Based Middleware Architecture for the
Workflow Model

The Agent-based middleware architecture is shown in Figure 1. It consists of
five major agents : AM (Access Manager), OM (Ontology Manager), SM (Ser-
vice Manager), RM (Resource Manager), and EM (Execution Manager). Our
workflow model has three layers: SM on service layer, RM on flow layer, and
EM on task layer. Description of services, flows, and tasks is stored as XML
files and managed by OM. Finally, AM is required to handle security such as
authentication and access control.

Ontology
Service

Service
Management

| Security

Collect
L Resource Workflow
Resaource X
) Scheduling Mamt
Information

Execute & Detect IREEord

M Jab Faul Historical — Control Flows
Om O a_u tSrfOfmaﬁce = Job Flows

~* Info Flows

Web services Legacy App MPI Job Dz

Aggregator

Fig. 1. Agent-based Middlleware Archtecture

2.1 Communication Among Agents

There are three types of communication protocols in the agent-based middleware
architecture: admin protocol, user protocol, and agent protocol. An administra-
tor has an administrator’s authority, and he can connect or manage SM, RM,
and EM. Users can connect to OM through a GUI editor, and they can browse,
search, and compose their works such as tasks, flows, and services depending on

974 S. Lee, J. Choi, and K. Cho

their authorities. After a workflow scenario is prepared as a service by searching
or composing, then a user submits the scenario to SM. Then, SM processes the
overriding of workflow parameter and submits the changed flow to RM. After
this process, RM analyzes the flow and distributes tasks to EMs, which con-
nected to the RM. If a task is allocated to an EM, then the EM executes the
task when a processor is available. Execution of flow and task is also performed
with a user’s authority, and it doesn’t interrupt other user’s process.

2.2 Distribution of Flow and Task

In our agent-based middleware architecture, an EM has a parameter named
‘number of processing element’. Its value reflects how many tasks can be executed
on the EM at the same time. By default the value sets with a number of processor
in which the EM is installed. An administrator can change it using SET PE
operation. EM can also cooperate with other Grid job distributors by reducing
its concurrency using SET PE operation. EM has a waiting queue whose size is
multiple of processing element. When an EM is started, it registers itself to a
RM, and the RM maintains a list of EMs with information such as the number
of processors and the size of waiting queue.

Each RM has a priority queue which queuing list of users connected to AM.
When a user is appended to the list, a flow queue is created for the user. If an
EM’s waiting queue is freed, RM fills the EM’s waiting queue with one of the acti-
vatable tasks from the flow queue of a user who has the highest priority. After the
task is finished, the task owner’s flow queue updates the list of activatable tasks.

2.3 Parameter Scheduling

Instead of appending prefix or postfix to data or parameter, parameter schedul-
ing is performed by separation of tasks’ working directory. When a task is exe-
cuted, EM creates a temporary working directory /msftmp/(username)/{flow)/
(username) /(task id) under a local user’s home directory permitted by the grid-
map file of hosts where the EM is executed. RM allocates a flow ID to the flow
when it is submitted and task ID is assigned in a flow description stored in OM.
When the task is completed its execution, the data file marked as an outputfile
in the flow description is transferred to the next task’s working directory. There-
fore, even if a user doesn’t override the name of an input or an output file, file
corruption by conflict file names never occurred.

3 Conclusion and Future Work

In this paper, we present an agent-based middleware architecture for workflow-
based Grid portals. The architecture contains essential functionalities for Grid
portals. The functionalities include workflow, service interface, job distribution,
and parameter scheduling. Our agent-based architecture consists of five agents
and each agent has its own role over the corresponding workflow model. By using

Agent-Based Middleware Architecture for Workflow in Grid Portals 975

this middleware model, users can design a lightweight, flexible, and effective
middleware which is used to construct workflow-based Grid portals.

We have remodeled our pervious middleware MSF[I0] using the agent-based
middleware architecture and have implemented a prototype. We tested the mid-
dleware with simple scenarios which are used in Bio-grid portal for drug discov-
ery. Workflow editor, management console, more complex workflow pattern, and
performance optimization are required to use our middleware practically. So we
are going to design and implement this features and continuously upgrade our
middleware architecture.

Acknowledgement

“This work was supported by the National e-Science Project, funded by the
Korean Ministry of Science and Technology (MOST).”

References

1. Allen, G., (ed.): Enabling applications on the Grid - a GridLab overview. Intl.
Journal on High Performance Computing Applications. 17 4 (2003) 449-466

2. Stevens, R., Robinson, A., Goble, C.: myGrid: personalized bioinformatics on the
information grid. Bioinformatics. 19 1 (2003) 302-304

3. Cao, J., Jarvis, S., Saini, S., Nudd, G.: GridFlow: Workflow Management for Grid
Computing. 3rd International Symposium on Cluster Computing and the Grid.
(2003) 12-15

4. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M., Vahi,
K.: Pegasus Mapping Scientific Workflows onto the Grid. In Proceedings of across
Grid EU Conference. (2004)

5. Litzkow, M., Livny, M., Mutka, M.: Condor - A Hunter of Idle Workstations. 8th
International Conference of Distributed Computing Systems. (1998) 13-17

6. Wroe, C., Stevens, R., Goble, C., Roberts, A., Greenwood, M.: A suite of
DAML+OIL Ontologies to Describe Bioinformatics Web Services and Data. In-
ternational Journal of Cooperative Information Systems special issue. 12 2 (2003)
197-224

7. Foster, 1., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Intl.
J. Supercomputer Applications. 11 2 (1997) 115-128

8. Abramson, D., Sosic, R., Giddy, J., Hall, B.: Nimrod: A tool for performing para-
metised simulations using distributed workstations. In Proc. of the 4th IEEE Sym-
posium on High Performance Distributed Computing. 8 (1995)

9. Lee, S., Choi, J.: Meta Services: Abstract a Workflow in Computational Grid En-
vironments. Lecture Notes in Computer Science, Vol. 3516. Springer-Verlag, Berlin
Heidelberg New York (2005) 916-919

10. Hwang, S., Choi, J., Park, H.: Meta Scheduling Framework for Workflow Service on
the Grids. Lecture Notes in Computer Science, Vol. 3036. Springer-Verlag, Berlin
Heidelberg New York (2004) 445-448

	Introduction
	Agent-Based Middleware Architecture for the Workflow Model
	Communication Among Agents
	Distribution of Flow and Task
	Parameter Scheduling

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

