
Workflows for Wind Tunnel Grid Applications

A. Paventhan1, Kenji Takeda1, Simon J. Cox1, and Denis A. Nicole2

1 Microsoft Institute for High Performance Computing,
School of Engineering Sciences,
University of Southampton, UK

{povs, ktakeda, sjc}@soton.ac.uk
2 School of Electronics and Computer Science,

University of Southampton, UK
dan@ecs.soton.ac.uk

Abstract. Aerodynamicists use wind tunnels to aid the research, design
and development of products such as aircraft, cars, and yachts, amongst
others. The data acquired from such tests must be acquired, collated,
processed and analysed in a timely fashion to maximise productivity. In
many scenarios a variety of data acquisition systems are used, and man-
aging the overall testing process can be challenging. The wind tunnel
grid project aims to provide an extensible, network-based system that
can provide a more seamless working environment for scientists and en-
gineers, so that they can focus on the data analysis and interpretation
part of the process.

In this paper we describe the development and implementation of
the wind tunnel grid system workflow. By exploiting Windows Work-
flow Foundation we are able to provide an easy-to-use and extensible
workflow environment (wind tunnel grid workflow framework) that meets
the requirements of both the developer and end-user well. By leveraging
the .NET-based CoG Toolkit previously developed, interoperability with
Globus grid services is demonstrated.

1 Introduction

The importance of workflows while developing real-world scientific and grid ap-
plications is becoming increasingly apparent [1]. While many business workflow
systems tend to be control flow driven, many scientific workflows are data-centric.

Current Grid computing [2] solutions allow large-scale multi-institutional ac-
cess to distributed resources. There are many issues, however, still to address
while implementing application-specific scientific workflow on grids.

We can categorize scientific workflow systems as below: 1) Workflow systems
motivated by application driven system requirements. 2) Generic workflow sys-
tems. The extensibility of a domain-specific workflow solutions to another appli-
cation domain is limited as it does not address other sets of requirements. On
the other hand, a generic workflow solution would require further customization
to be applicable to a particular application domain. The set of requirements
for scientific workflow systems in different scientific disciplines, in terms of data

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part III, LNCS 3993, pp. 928–935, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Workflows for Wind Tunnel Grid Applications 929

size, formats, realtime requirements and computational complexities, bring dif-
ferent sets of challenges. Considering the Wind Tunnel user requirements (see
Section 3), a customized workflow is important due to the varied nature of the
work, which changes on a job-by-job basis in a multi-user facility .

In this paper we present an approach to building customized scientific work-
flows based on WinFX Windows Workflow Foundation. Windows Workflow
Foundation is an extensible framework for developing workflow solutions with
predefined set of activities (IfElse, While, Parallel, InvokeWebService and so on)
and support for building domain-specific custom activities by inheritance. By
making use our earlier work, the multi-language Commodity Grid Kit [3], we
deliver a wind tunnel grid workflow framework for application development.

The rest of the paper is organized as follows. In Section 2 we discuss related
works. Section 3 outlines wind tunnel experiment requirements to illustrate why
workflow customization is important. Section 4 covers a brief overview of Win-
dows Workflow Foundation. In Section 5, we present our approaches to wind
tunnel grid workflow, with conclusions and future work presented in Section 6.

2 Related Works

In this section, we discuss the influences of related works on our project and
highlight the particular wind tunnel experimental requirements that lead us to
our work.

The GriPhyN [4] project addresses the workflow requirements of physics exper-
iments. On data request, an abstract workflow is constructed. It is then converted
to concrete workflow represented as Condor DAGman files [5] for submission to
Condor-G scheduler. In case of wind tunnel experiments, the workflow is triggered
by data acquisition and the raw data transfer requires more customization. In the
KEPLER system [6], the workflow components are known as actors and controlled
by an object known as a director. KEPLER addresses Grid and web services ac-
cess, but, the integration of data acquisition hardware and experiment specific data
transfer are paramount in our work. Grid-DB [7] is a data-centric grid workflow
system. It provides a declarative language to define workflow. DiscoveryNet [8] ad-
dresses the need for knowledge discovery process in lifesciences. The components
and workflows in DiscoveryNet are composed as Web and Grid services by shar-
ing across teams. While the Triana [9] problem solving environment demonstrates
distributed workflow to implement gravitational wave search algorithm.

The wind tunnel experiments run on several proprietary systems and their inte-
gration into scientific workflowrequires customized solutions. Also, the data trans-
fer and processing requirements are experiment specific, with the issues of physical
locality before, during and after any given test a significant issue . The wind tunnel
workflow framework is aimed at providing user with ready-to-use experiment spe-
cific workflow activities, hiding the underlying complexities and at the same time
providing user with an option for customization, if required. Over time the pro-
cesses and systems available in the wind tunnel change significantly, so the ability
to rapidly develop and customise workflows is a necessary requirement.

930 A. Paventhan et al.

()(a) Aircraft landing-gear test in wind tunnel us-
ing microphone arrays

(b) Typical LDA visualiza-
tion [11]

Fig. 1. Wind Tunnel Experiments

3 Wind Tunnel Experiments

The wind tunnel facilities at University of Southampton [10] are typical in that
they house a variety of specialized experimental hardware and software for aca-
demic and industrial research. They are used in a wide variety of projects includ-
ing fundamental aerodynamics, aerodynamics of racing cars and road vehicles,
rotorcraft aerodynamics, aeroacoustics, aeronautics, wind engineering and indus-
trial aerodynamics. Currently, in many wind tunnel experiments, the data move-
ment operations to the processing computer are manual due to interoperability
issues between hardware, software and the acquisition systems. The automated
solution would require the following steps: 1. Experiment-specific data verifi-
cation to ensure whether the acquisition was indeed successful 2. Experiment-
specific annotation of metadata for auto-upload and processing 3. Raw data
movement operations (based on metadata) and 4. User-defined processing step.
We discuss below the requirements of a typical wind tunnel experiment that has
been used to demonstrate the Grid system.

3.1 Laser Doppler Anemometry (LDA)

LDA systems use non-intrusive point-measurement techniques to accurately mea-
sure fluid velocity in highly turbulent or reversing flow. For each experimental
configuration, a calibration step must be performed and a transformation matrix
must be derived. LDA data acquisition software collects selected number of sam-
ples (typically thousands) at user programmed traverse positions of up to three
velocity components (This value is also equal to number of Burst Spectrum Anal-
ysers (BSA)). The collected data are stored in separate raw data files for each
traverse position. The raw data filenames have a suffix 0, 1 or 2 to indicate the
velocity component (u,v & w, in the laser coordinate system). The file extension

Workflows for Wind Tunnel Grid Applications 931

represents the traverse position. There are essentially n × p raw data files for one
experiment, n (n=3) is the number of velocity component and p is the number
of traverse positions. The user parameters for acquisition are stored in a sepa-
rate flat file. The upload activity of the workflow requires verification of the raw
data files prior to the uploading to processing node. Since the number of velocity
components and traverse positions are known from the parameter file, all the raw
data files along with metadata (transformation matrix, user parameters) can be
uploaded without any user intervention. The LDA processing steps include data
conversion, coincidence processing, moment processing, spectrum processing and
correlation processing. The user should be able to run the default algorithm or
provide the new one by overriding the default.

The other experiments that we work on with similar requirements include: 1.
The microphone phased array technique used in aeroacoustic research with near-
realtime upload and processing requirements. and 2. Particle Image Velocimetry
(PIV) with binary image upload and high-performance cross-correlation pro-
cessing requirements. As can be seen from the requirements, the metadata must
be used for customized data upload. In addition, the user processing step also
requires customization so that different algorithms can be developed and used
as the state-of-the-art advances.

4 Windows Workflow Foundation

Microsoft Windows Workflow Foundation is an extensible framework and is
part of the upcoming Microsoft’s next generation development Framework,
WinFX [12]. The workflow in Windows Workflow Foundation is composed from
a set of activities, compiled to a .NET assembly and is executed on the workflow
runtime and the Common Language Runtime (CLR).

4.1 Workflow Model and Composition

There are two models supported [13]: 1. Sequential Workflow Model—comprising
activities that execute in a predictable sequential path, and 2. State Machine
Model—a flow driven by events triggering state transitions. In both these mod-
els the basic element of the workflow is called an activity. Some of the Win-
dows Workflow Foundation’s activity types include: control-flow (While, IfElse,
Delay), exception (throw, exception-handler and BPEL compensations), data
handling (Update, Select), transactions (and compensations for long-lived
“transactions” that cannot be directly unwound) and Communication (Invoke-
WebService, InvokeMethod). A workflow consists of metadata for the workflow
definition and the accompanying .NET classes that form the code file. The work-
flow can be composed using a visual workflow designer, which has a drag-and-
drop interface or declaratively in XOML, an XML dialect for writing workflows.
The workflow can also be completely coded in CLR languages. A workflow must
be compiled with wfc workflow compiler before it can be run. All the Windows
Workflow Foundation activities are derived from Activity base class. The Win-
dows Workflow Foundation extensible development model enables creation of

932 A. Paventhan et al.

domain-specific activities which can then be used to compose workflows that are
useful and understandable by domain scientists.

4.2 Workflow Runtime, Scheduling and Hosting

The Workflow runtime layer is at the core of Windows Workflow Foundation and
is responsible for execution, tracking, state management, scheduling and poli-
cies. The workflow engine runs inside a hosting process provided by the workflow
application. The hosting layer is responsible for communication, persistence,
tracking, transaction, timing and threading. It is possible to dynamically up-
date the running workflows on the fly. With this flexible approach to workflow
hosting and extensible framework for workflow activities, most of the function-
ality of the state-of-the-art scientific workflow systems [14] can be hosted on top
of Windows Workflow Foundation. In the following sections we illustrate how
specific workflows to wind tunnel aerodynamic testing can be constructed using
Windows Workflow Foundation.

5 Wind Tunnel Grid Workflow

In this section, we describe architecture of the wind tunnel application workflow
and show how customized solutions can benefit the wind tunnel users.

5.1 Application Workflow Leveraging Windows Workflow
Foundation

Our approach to implementing a wind tunnel grid workflow based on Win-
dows Workflow Foundation is shown in Figure.2. Users are able to use local
services, Web Services and Globus Grid services using our previously developed
MyCoG.NET commodity grid toolkit [3]. Three different sets of activities are
available to compose an experimental workflow: 1. Windows Workflow Founda-
tion Activities 2. MyCoG.NET-based Grid activities to access Globus services
3. Experiment-specific activities for upload, processing, results and so on. The
user can design the workflow from these activity sets depending on his or her
requirements.

There are two possible options to host the workflow: 1. Client-controlled host-
ing, and 2. By submitting to the wind tunnel grid workflow server for hosting. In
client controlled hosting, the workflow runtime runs as part of the host process run-
ning on the user’s PC. In this case, the user has to leave the host process running
until the workflow finishes. Underlying the hosting process is the WinFX workflow
runtime and .NET Common Language Runtime. The workflow can be monitored
from wind tunnel grid workflow client while it is running. In the second case, the
user deploys their workflow for hosting to the wind tunnel grid workflow server
after successful Grid Security Infrastructure (GSI) [15] authentication and dele-
gation of user credentials. The wind tunnel grid workflow server maintains user
account information. A separate host process is instantiated for the user’s work-
flow and the runtime is started. This allows the user to disconnect after submission
and monitor the workflow periodically from wind tunnel grid workflow client.

Workflows for Wind Tunnel Grid Applications 933

Fig. 2. Wind Tunnel Experimental Workflow Architecture

The generic wind tunnel workflow activities are: WTWInit - initializes wind
tunnel workflow server hosting process for the user; this is the first activity in
any wind tunnel experimental workflow. UserNotification - Customized user noti-
fication on the state of the workflow (workflow completion or failure). Figure.3
shows a sequential LDA workflow designed using customized wind tunnel grid
workflow activities. The WaitForDAQ is an event driven activity customized for
the LDA experiment. On completion of the data acquisition, this activity verifies
the raw data files for completeness and workflow transitions to next activity. The
MyGridFTP, MyGram and MyMDS activities use the MyCoG.NET Commodity
Toolkit to access Globus resources. The implementation details of MyCoG.NET
are discussed in [3]. These Grid service access activities are further customized for
individual experiments. For example, as shown in Figure.3, the LDAUpload ac-
tivity derived from MyGridFTP has specific input properties for the experiment
(data acquisition hostname, number of data points, number of burst spectrum
analysers). Some properties are initialized at workflow design time with
default values and others received as input from the host process. The experiment
specific properties would enable, for example, automatic uploading of raw data
files from data acquisition host to a Gram server, as can be seen from Section.3.1.
The FetchResults is an activity derived from MyGridFTP to transfer results from
Gram host to Windows Workflow server and to the user’s desktop.

The microphone array processing algorithm is significantly more processor
intensive than the LDA case. A similar workflow can be constructed using Globus
services, or Windows-based HPC resources. This is currently carried out using
Labview and Matlab, but a C# version of the processing algorithms is being
developed and integrated using Windows Workflow Foundation.

We specifically highlight the ease with which the Windows Workflow version
of the LDA system was constructed. Due to the ease-of-use and intuitive nature
of the workflow GUI, the user is able to drag-and-drop activities onto the work
surface, rapidly customising their own workflow without worrying about lower-
level details.

934 A. Paventhan et al.

Fig. 3. LDA workflow

In our earlier implementation [3] of LDA workflow, each stage of the workflow
is triggered by the user via portal interface. By bringing Globus grid service
access to the Windows Workflow Foundation using MyCoG, the user would
be able to design, execute and monitor wind tunnel experimental workflow on
Globus resources.

This is of significant benefit to the wind tunnel engineer, who previously had to
deal with the workflow steps on different hardware using bespoke software tools.
The new system provides benefits not only in terms of speed, but reliability and
consistency for the testing process and subsequent analysis.

6 Conclusions and Future Work

In this paper we have discussed the implementation of real-world scientific work-
flows using Windows Workflow Foundation in wind tunnel applications. This pro-
vides an easy-to-use, customisable and extensible framework to create sequential
or state-based workflows. We have shown, using the MyCoG.NET commodity
grid toolkit, that interoperability between Windows Workflow Foundation and
Globus grid services is possible, including certificate-based authentication, proxy
support, GridFTP file transfer and GRAM job submission. In this way Windows
Workflow Foundation can be used to orchestrate workflows between Microsoft
Windows-based Services, other Web Services and Globus Grid services.

While the paper describes an application-specific example of using Windows
Workflow Foundation, it is designed as a generic framework. It is therefore suit-
able for other branches of experimental and computational sciences as well. Due

Workflows for Wind Tunnel Grid Applications 935

to its extensibility, the addition of provenance tracking, semantic definition and
representation, and metadata derivation from results is possible.

As more grid resources move to Web Service interfaces, the use of Windows
Workflow Foundation as a generic framework for composing scientific workflows
is likely to become more common.

References

1. Ludascher, B., Goble, C.: Guest Editors’ Introduction to the Special Section on
Scientific Workflows. ACM SIGMOD Record 34(3) (2005)

2. Foster, I., Kesselman, C.: The GRID 2: Blueprint for a New Computing Infras-
tructure. second edn. Morgan-Kaufmann (2003)

3. Paventhan, A., Takeda, K.: MyCoG.NET:Towards a multi-language CoG Toolkit.
In 3rd ACM International Workshop on Middleware for Grid Computing. (2005)

4. Deelman, E., Blythe, J., Gil, Y., Kesselman, C.: ”Workflow Management in Gri-
PhyN” in Grid Resource Management J. Nabrzyski,et.al,eds. Kluwer (2003)

5. Condor DAGman. (http://www.cs.wisc.edu/condor/dagman/)
6. Ludscher, B., Altintas, I., et.al: Scientific workflow management and the KEPLER

system. (Concurrency and Computation: Practice & Experience, (to appear))
7. Liu, D.T.: The design of GridDB: A Data-Centric Overlay for the Scientific Grid.

In: Proceedings of the International Conference on Very Large Data Bases. (2004)
8. Curcin, V., Ghanem, M., et.al: IT Service Infrastructure for Integrative Systems

Biology. In: IEEE International Conference on Services Computing. (2004)
9. Churches, D., Gombas, G., et.al: Programming scientific and distributed workflow

with triana services. Concurrency and Computation: Practice & Experience, (to
appear) (2005)

10. Southampton wind tunnels. (http://www.windtunnel.soton.ac.uk/)
11. Takeda, K., Ashcroft, G.B., Zhang, X., Nelson, P.A.: Unsteady aerodynamics of

slat cove flow in a high-lift device configuration. AIAA Paper 2001-0706 (2001)
12. WinFX Developer Center. (http://msdn.microsoft.com/winfx/)
13. Andrew, P., Conard, J., et.al: Presenting Windows Workflow Foundation, Beta

Edition. Sams (2005)
14. Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing.

ACM SIGMOD Record 34(3) (2005) 44–49
15. Welch, V.: Grid Security Infrastructure Message Specification. (2004)

	Introduction
	Related Works
	Wind Tunnel Experiments
	Laser Doppler Anemometry (LDA)

	Windows Workflow Foundation
	Workflow Model and Composition
	Workflow Runtime, Scheduling and Hosting

	Wind Tunnel Grid Workflow
	Application Workflow Leveraging Windows Workflow Foundation

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

