Supporting Software Agents by the Graph
Transformation Systems

Leszek Kotulski

Institute of Computer Science Jagiellonian University
kotulski@ii.uj.edu.pl

Abstract. Agent systems demand from graph transformation systems
not only an effectiveness of parsing but also supporting of the online
derivation control (in order to visualize or control of their development).
The way of the effective realization Derivation Control Environment for
the distributed systems is presented. Finally, the computational effec-
tiveness of the parsing, membership problems of the full graph transfor-
mation system is discussed.

1 Introduction

Multiagent systems consist of an agents environment and a number of software
agents that are situated in that environment. Agents act autonomously, driven
by their goals and plans, thereby sensing and reacting to their environment and
cooperating with other agents. This environment represents not only hardware
architecture but also the some logical resources (such as data bases, message
subsystem, etc.) necessary to preform the agents task [9]. An individual agent
can be executed in the computing unit if the proper local environment is present
in this unit; otherwise either this agent should be moved to another computing
unit or this unit environment has been enriched. Let us notice, that comput-
ing units (connected by communication media), resources associated with each
environment and agent system can be represented, every separately, as a graph
structures. The connection of the above structures is not only difficult to per-
forml] but is also extremely difficult to visualize and manage.

The graph transformation mechanism seems to be useful in the support both
the analysis some system properties and the online control of the distributed
agent system description (DASD) modification. The first task was a matter of
intensive and and finished with the success research [2]. These techniques are
especially useful when we have a graph, which describes some problem, and
we would like to answer if it belongs to the class of objects described by a
given graph grammar. It is necessary to mark, that only few grammars can
solve the membership problem with the polynomial computational complexity
(as for example [0]). The graph transformations become also an important formal
specification technique [3].

! We cannot simple join these graphs and trees because graph isomorphism in general
case is an NP-complete problem.

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part III, LNCS 3993, pp. 887-[890] 2006.
© Springer-Verlag Berlin Heidelberg 2006

888 L. Kotulski

The online control of the DASD modification needs the introduction of the
derivation control mechanism, which is able online react on the events appearing
in the distributed network. Such a proposition is presented in section two. Next,
the usefulness of this proposition is illustrated by two examples: the coordination
of changes in the agents environment and the optimization of the agent system
effectiveness. For large systems it would be desirable if this control be held in
the parallel way. Thus, at the end the parallel derivation and time complexity
of the proposed solution is considered.

2 Derivation Control Environment

It is already proved that the graph transformations can be useful for problems
describable by graphs, that properties should be checked. Problems appear when
we need control dynamic changes occurring in the distributed environment as the
reaction on an individual activity of its components. Unfortunately, individual
components activity and their active cooperation are the key concept of the
agent systems [1L[10].

We assume, that the minimal requirements to the graph transfor-
mation system useful for agent system seems to be following: react
on-line to both user and software requests, solve a problem of the
derivation control in a parallel way, be able to parse graphs with the
polynomial computational complexity for grammars with sufficient
descriptive power to solve problems at hand.

The last requirement can be fulfilled with an ETPL(k) graph grammar, used
in such different areas as pattern recognition [6] and on-line allocation control
[5]. The O(n?) computational complexity of parsing has been proved for this
grammar [4]. To fulfill the rest of the above requests there is a need to design a
special environment making possible an on-line parallel derivation control, which
is called the derivation control environment (DCE). The basic term in this
environment is the term request.

The requests are serviced by a DCE, that can
be both monolithic and distributed one. A dis-
tributed DCE is a collection of monolithic DCEs,
which communicate via system request. Formally
DCE is introduced in [7]. Intuitionally (see Fig.
1), the derivation control diagram can be inter-
preted as a graph connecting Control Points (the
dotted circles) inside which sequentially are eval- *, . i
uated the synchronizing function (if exists) and " o e
the selector choosing one of the transitions from
the active CP to another one (drawn as an edge). Fig.1. Part of DCE

During such transition, both the production
Py ; is applied and the semantics action SFj ; is executed. The semantics action
SF (associated with the transition): enriches the order queue (requesting some

Supporting Software Agents by the Graph Transformation Systems 889

actions of the operating system), removes the request (that is serviced) from the
request queue, evaluates parameters of the right-hand graph of the production
P. The production P is applied to the current graph G creating a new graph G’,
in a way that is defined by transformation rules of the graph grammar associated
with this derivation control diagram.

3 Derivation Control Environment and Agent Systems

Let us consider an example of usefulness of the graph transformation mecha-
nism in the case of agent system migration problem. We assume that an agent
can migrate in a distributed computing environment in order to find the least
overloaded computing node. Unfortunately, the anomaly takes place when a new
computing node is starting: all agents want to migrate to this node what im-
mediately overload it. We assume that, DCE maintains the current allocation
graph, and agent migration is associated with performing some productions up-
dating this graph. The overloading problem can be solved if before migration
each agent asks DCE for a permission [§]. This permission will be given only for
a few agents. Moreover, such DCE can also be treated as an agent introducing
the migration policy on the top level, by introducing some optimization algo-
rithm. The ordered structure of the graph makes possible to complete such an
optimization with the polynomial computational complexity of (O(n?)) [7].

The second example is based on the problem pointed in [9]. We assume that
a multiagent application consists of set of virtual machines (creating an local
environment) and number of agents. The virtual machine enables for example
the access to the local data base system by an agent. When an agent needs move
to another destination it is limited only to this nodes which offers the same
(or greater) virtual machine properties. Similarly as in the preceding example
we assume that DCE maintains the allocation graph; its structure is however
more complicated, there are represented there layers: hardware, virtual machines
and agents. The role of DCE is in this case more complicated, and it can not be
solved by the execution of two productions (removing agents node and putting it
in another place). Application based on DCE have to check whether new virtual
machine offers at least the same properties as the old one (it can be made using
selectors). Otherwise, we have to enrich this environment before moving the
agent to it. This task needs direct support of the graph grammar properties;
as the old virtual machine is represented as a graph, so it is necessary to parse
it in order to find a sequence of productions that can generate such a graph.
These productions can be next performed in the context of a new computing
node (creating the new virtual machine).

4 Conclusion

The centralized control of the agents allocation is the bottle-neck of the pre-
sented solution, thus it is desirable introduction the parallel derivation of the
distributed graph. Let us assume that each monolithic DCE maintains the local

890 L. Kotulski

graph and some information about the connections of this graph nodes with
nodes belonging to the local graphs that are maintained by other DCEs. Mod-
ifications inside local graphs can be made in a parallel way. It is, also, easy to
coordinate the common modification of two local graphs by implementing some
communication protocol (basing for example on Two Commit protocol) with
help of their monolithic DCEs and some systems requests. The presented solu-
tion, for ETPL(k) graph grammar [4] associated with DCE , offers polynomial
parsing and generation complexity (O(n?)) (where n is maximum of local graph
dimensions (n;) and number of local DCEs (k)). In case of the AI solutions,
using multiple agents, we can expect that the influence of k£ parameter on a final
system effectiveness shall grow. The computational complexity is here specially
outlined, because most of the graph transformation mechanisms with large de-
scription power has an unsatisfactory computational complexity. For example,
the most popular graph transformation mechanism based on single push-out has
exponential computational complexity of parsing. This excludes the use of such
a methodology in applications working on-line.

References

1. Ralph Depke, Reiko Heckel, and Jochen Malte. Integrating visual modeling of
agent-based and object-oriented systems. In AGENTS ’00: Proceedings of the
fourth international conference on Autonomous agents, pages 82-83, New York,
NY, USA, 2000. ACM Press.

2. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook
of graph grammars and computing by graph transformation: vol. 3: concurrency,
parallelism, and distribution. World Scientific Publishing Co., Inc., River Edge,
NJ, USA, 1999.

3. H. Ehrig and G. Taentzer. Graphical represenation and graph transformation.
ACM Comput. Surv., 31(3es):9, 1999.

4. M. Flasiniski. Power properties of nlc graph grammars with a polynomial member-
ship problem. Theor. Comput. Sci., 201(1-2):189-231, 1998.

5. M. Flasinski and L. Kotulski. On the use of graph grammars for the control of a
distributed software allocation. The Computer Journal, 35:A167-A175, 1992.

6. Mariusz Flasiriski. Characteristics of ednlc-graph grammar for syntactic pattern
recognition. Comput. Vision Graph. Image Process., 47(1):1-21, 1989.

7. L. Kotulski. Model wspomagania generacji oprogramowania w rodowisku rozpros-
zonym za pomoc a gramatyk grafowych. Rozprawy Habilitacyjne. Wydawnictwo
Uniwersytetu Jagielloniskiego, 2000. ISBN 83-233-1391-1.

8. L. Kotulski and A. Nowak. Wykorzystanie gramatyk grafowych do kontroli migracji
mobilnych agentéow. In InZynieria wiedzy i systemy ekspertowe, pages 319-325.
Oficyna wydawnicza Politechniki Wroclawskiej, 2003.

9. Koenraad Mertens, Tom Holvoet, and Yolande Berbers. A case for adaptation
of the distributed environment layout in multiagent applications. In SELMAS
"05: Proceedings of the fourth international workshop on Software engineering for
large-scale multi-agent systems, pages 1-8, New York, NY, USA, 2005. ACM Press.

10. Rong Xie, Daniela Rus, and Cliff Stein. Scheduling multi-task multi-agent systems.
In AGENTS ’01: Proceedings of the fifth international conference on Autonomous
agents, pages 159-160, New York, NY, USA, 2001. ACM Press.

	Introduction
	Derivation Control Environment
	Derivation Control Environment and Agent Systems
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

