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Abstract. Identifying functional modules is believed to reveal most
cellular processes. There have been many computational approaches to
investigate the underlying biological structures [9,[4LI0L[6]. A spectral
clustering method plays a critical role identifying functional modules
in a yeast protein-protein network in [6,4]. We present an unweighted-
graph version of a multilevel spectral algorithm which more accurately
identifies protein complexes with less computational time.

1 Introduction

Most cellular processes are carried out by groups of proteins. Identifying func-
tional modules in protein-protein networks is considered as one of the most im-
portant and challenging research topic in computational systems biology. There
has been a lot of recent computational approaches to disclose the underlying
biological structures [9}4L[10}6].

Pothen et al. [6] propose a two-level architecture for a yeast proteomic net-
work. They construct a smaller network from a protein-protein interaction net-
work by removing proteins which interact with too many or too few proteins. A
clustering algorithm is applied to this residual network. Validation of clusters is
performed by comparing the clustering result with a protein complex database,
called MIPS. A spectral clustering method plays a critical role for identifying
functional modules in the protein-protein network in their research.

We successfully applied a multilevel spectral algorithm to cluster a group of
documents in [16] using similarity matrices which are mostly dense with entries
between 0 and 1. Like large-scale networks, the vertex connectivities of proteomic
networks follow a scale-free power-law distribution. That is, the proteomic net-
work consists of a small number of high degree nodes and a majority of low
degree nodes. However, there are no edge weights. In this paper, we present an
unweighted-graph version of a multilevel spectral algorithm in [16] which iden-
tifies more protein complexes with less computation time.

Multilevel algorithms have a long history, mostly for PDE in numerical anal-
ysis but also for graph partitioning such as in METIS [12]. Recently multilevel
schemes have been applied to graph clustering [16,[1T]. Multilevel algorithms
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conventionally consists of three main steps: coarsening, partitioning and decoars-
ening. Multilevel clustering algorithms, like multilevel partitioning algorithms,
mostly try to improve existing clustering algorithms using good coarsening or
matching algorithms. Multilevel algorithms not only improve qualities of the
clustering but also significantly reduce computational time.

The most well-known algorithms include random-edge matching (REM) and
heavy-edge matching (HEM) [I3]. And there are more recent matching algo-
rithms like LAM [1I]. These algorithms are mainly designed for weighted graphs.
We also compared two different coarsening algorithms for weighted graphs in
[16]. We have shown that when nodes are merged in order from the heaviest
edge weight we can expect better results. We call this Sorted Matching (SM),
because each edge weight represents how close two nodes are. The unweighted
or uniform weight graph cases can not use any of these edge-oriented methods
directly because all edge weights are initially all 1. But after one level of coars-
ening some edges may represent more than one edge (up to 4). That is, we have
groups of different edge weights after coarsening when we define the weight of an
edge as the sum of edge weights combined into it. So after one level of coarsen-
ing we are able to use Sorted Matching (SM) for unweighted graph coarsening:
merge nodes with highest edge weight. But there are many nodes with the same
edge weight. Thus we give the higher priority to the edge with fewer combin-
ing node weights, which is defined as the number of all nodes included in the
supernode. The maximum edge with 1/w(n;) + 1/w(n;) is taken as a tie-break
rule, where w(n;) and w(n;) are the node weights (the number of nodes) of su-
pernodes n; and n;. Let us call this algorithm Heavy-Edge-Small-Node (HESN).
We show that HESN algorithm outperforms a randomly matching algorithm
and a matching algorithm which focuses on maximizing the number of nodes
collapsed.

We also introduce self-edge weightings for unweighted graphs. The spectral
clustering algorithm in this research uses similarities between vertices. Note that
in unweighted graphs all edges have the same edge weights, that is the same
similarities. In a weighted graph each node has the highest similarity with itself.
To cause the same effect we add self edges to each node with weight equal to
the degree of the node. This weighting process contributes to our clustering
algorithm, especially for the refining step.

Further applications of our clustering algorithm may include other complex
networks such as genetic networks, the World Wide Web, citation networks,
biological networks and social networks [I5].

2 Background on Multilevel Approach and Proteomic
Networks

Let G = (V, E) be a graph with vertex set V' and set of undirected edges E.
One of the most commonly used data structures for Graphs are matrices. Matrix
representation is very useful to store weights for edges and vertices. We can also
use a lot of well known computational techniques from Linear Algebra. In our
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matrix representations S = (s;;), diagonal entries s;; store the weights of vertices
and off-diagonal entries s;; represent edge weights.

2.1 Multilevel Algorithms

The basic concept of multilevel clustering algorithms is that when we have a big
graph G = (V, E) to partition, we construct a smaller graph G' = (V, E') whose
vertices are groups of vertices from G. We can apply a clustering method to this
smaller graph, and transfer the partition to the original graph. This idea is very
useful because smaller matrices or graphs require much less time to cluster. The
process of constructing the smaller matrix is called coarsening, and the reverse
process is called decoarsening.

Coarsening and decoarsening steps are implemented by multiplying a special
coarsening matrix C' by the graph matrix S. Each column of C has 1’s for vertices
to merge and 0’s for the rest. The way merging or matching is accomplished is
explained in section[3.Il Then a series of Sy, S1, - - -, S] are recursively constructed
using C1, - -+, C in the form of S; = C{%.S;_1 *C; with ¢ = 1, - -, 1. The coarsest
matrix is used to get the initial partition Cut.

Partitioning algorithms fall into two categories: direct partitioning and re-
cursive bipartitioning. One recursive bipartitioning algorithm which has been
successfully applied to identify functional modules is Divisive MinMaxCut algo-
rithm [4,[6]. Divisive MinMaxCut algorithm repeatedly performs two main steps.
One is selecting a cluster to split and the other is applying the two-way Min-
MaxCut algorithm. The two-way MinMaxCut algorithms tries to find a pair of
disjoint subsets (A, B) of V' which minimizes the objective function

7 _s(A,B) | s(A,B) _ s(A, A)  s(B,B) 1
MMC ™ g(A,A) " s(B,B)  s(A,A) ' s(B,B)’ (1)

where s(A, B) = 37,c 4 jep Sij- 1t is well known [3] that the optimal solution of
() is the eigenvector g2 associated with the second smallest eigenvalue of the
system (D — S)q = ADgq, where D = diag(dy,ds,--,d,) and d; = Zj Sij-

The optimum value of () is called the cohesion of the cluster and is an
indicator which shows how closely vertices of the current cluster are related [3].

Divisive MinMaxCut algorithm recursively chooses a cluster which has the
least cohesion value, until we have a predefined number of clusters or when all
current clusters have cohesion values greater than a threshold.

Decoarsening is the way back to the original graph. The partition from the
coarsest level is mapped into finer levels by multiplying a proper coarsening ma-
trix C'. Then a Kernighan-Lin (KL) type refinement algorithm [14] is applied to
improve the quality at each level. KL starts with an initial partition; it iteratively
searches for nodes from each cluster of the graph if swapping of a node to one
of the other clusters leads to a better partition. For each node, there would be
more than one cluster to give smaller objective function values than the current
cut. So the node moves to the cluster that gives the biggest improvement. The
iteration terminates when it does not find any node to improve the partition.
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2.2 Functional Modules in Protein-Protein Interaction Networks

Proteomic networks have two important features [2]. One is that the degree
distribution function P(k) follows a power law (and so is considered a scale-free
network). That is, most vertices have low degrees and a few are highly connected.
The other feature is the small world property which is also known as siz degrees
of separation. This means the diameter of the graph is small compared with
the size.

DIP is a protein interaction database. The protein-protein interactions can be
detected by high-throughput experiments. However, many of them (as high as
50%) are false positive. Database of Interacting Proteins (DIP: http://dip.doe-
mbi.ucla.edu) provides a protein-protein interaction dataset in the budding
yeast, Saccharomyces cerevisiae, that is experimentally determined and cross-
referenced to the major sequence databases (SWISS-PROT, GenBank, PIR).
They also provide a smaller dataset called CORE which contains the pairs of
interacting proteins identified that were validated according to the criteria de-
scribed in Deane at al.[5].

Pothen et al. presented a two-level architecture on this CORE dataset. The
network has 2610 proteins and 6236 interactions. Their idea is that removing
high degree proteins (called hub proteins) and low degree proteins (low-shell
proteins) from the network before clustering leads to better partitioning and
then the removed nodes can be added to the partitioning. The residual network
after removing hub proteins and low shell proteins has 499 proteins and 1229
interactions.

Instead of using the small network (CORE dataset), we use the DIP network
which has 4931 nodes 17471 edges. We construct a residual network after re-
moving nodes that have degree 20 or more and 3 or less from the original DIP
dataset. We do this in similar way to Pothen et al. [6]. The residual network has
1078 nodes and 2778 edges.

MIPS is the Munich information center for protein sequence information on
the molecular structure and functional networks and data of yeast for com-
parative analysis. The currently annotated functional modules for yeast have
6451 proteins in all with 4022 id known proteins and 2429 id unknown pro-
teins. 800 proteins are common to the residual network of DIP protein-protein
network.

Many functional modules in the yeast are found in a hierarchy of as many as
four levels. That is, some proteins are related to only one cellular process and
some proteins work in a group and groups of them are involved in another cel-
lular process. For example, proteins in the Anaphase promoting complex (id:60)
are not involved in any other cellular process. However, proteins in the Dynactin
complex (id:140.30.30.30) cooperate with proteins in Kinesin-related motorpro-
teins (id:140.30.30.10) and Dynein-complex motorproteins (id:140.30.30.20) to
make bigger, complex, Tubulin-associated motorproteins. Similarly, all proteins
in complexes whose id start with 140 are included in highest complex Cytoskele-
ton (1d:140). Let us call these smallest functional units leaf modules.
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3 Coarsening Unweighted Graphs and Computational
Experiments

We first present three different matching algorithms for unweighted graphs. A
computational comparison of them follows. And then we show how multilevel
approach improves the current clustering algorithms. We use two measures to
validate our computational results. One is the triplet, x. The first item of k
is the total number of edges inside clusters and the second is number of edges
between clusters. The last item is the maximum number of edges between any two
clusters. This measure does not exactly show how well our network is clustered.
However, this measure provides a some insight. The bigger the first number and
the smaller the second and third, the more cohesive clusters a network has. The
other measure we use is the number of nodes exactly clustered. Each cluster
partitioned from the DIP residual network is compared with all leaf functional
modules of MIPS. We define 7 as the sum of maximum number of correctly
matched proteins of each cluster.

One property of 7 is that it increases as the number of clusters increases
because the sizes of supernodes decrease.

3.1 Coarsening Algorithms

A matching in a graph is a set of edges in which no two of them are incident on
the same node. A matching is maximal when any edge in the graph that is not
in the matching has at least one of its endpoints matched. Some algorithms aim
to match as many nodes as possible [I7] and some aim to maximize the sum of
all edge weights [8]. These algorithms are too time intensive [I] and designed for
weighted graphs. Our new matching algorithm tries to find a compromise.

The simplest matching for unweighted graphs is random matching. One node
is randomly visited and one of unmatched node is randomly chosen to be merged
with the node (RVRM). A drawback is that the nodes with low degrees have
higher chance to be left unmerged than high degree nodes. In order to avoid this
problem we can pick the lowest degree node among unmerged nodes and choose
one of the unmerged nodes randomly to merge (LVRM). Thus this algorithm
tends to merge more nodes than RVRM.

We define the weights of edges as follows. The edge weights are all 1’s to start
with, but become the sum of the number of edges combined in a matching step.
Similarly, a node weight is defined as the total number of nodes merged into it.
We developed a matching algorithm which uses the edge weights and the node
weights. After one level of coarsening with RVRM or LVRM, some edges may
represent more than one edge (up to 4). That is, we have groups of different edge
weights after coarsening. So we now can adapt the Sorted Matching (SM) idea
for the unweighted graph coarsening: merge nodes with highest edge weight. But
there are too many nodes with the same edge weight. Then we give the higher
priority to the edge with lower combined node weights, like LVRM. We take
the edge with maximum 1/w(n;)+1/w(n;) as a tie-break rule, where w(n;) and
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w(n;) are the node weights, that is, the number of nodes, of supernodes n; and
n;. We call this matching Heavy-Edge-Small-Node (HESN).

3.2 Comparison of Coarsening Algorithms

Table [Tl shows the comparison of three coarsening algorithms without partition-
ing and refinement. The total numbers of correctly matched proteins are listed
after various levels of coarsening. The first row for each algorithm has the sizes of
the graphs (no. of nodes) at the various levels of our multilevel scheme. LVRM
results in the smallest graph in coarsest level than other two algorithms. But
HESN generates more cohesive clusters as the second row of each coarseningon
this table shows. That is, there are more edges inside clusters and less edges
crossing them. Moreover, more proteins match MIPS dataset in the third rows
by HESN.

Table 1. Comparison of different coarsening algorithms with different levels. First
row of each algorithm has sizes of graphs. Second rows have the number edges inside,
between and maximum between edges (k) . Third rows have the number correctly
grouped nodes (7).

level 3 4 5
RVRM 607-340-185 612-346-192-105 616-339-184-100-53 size of graph
1036-1742-17 1216-1562-22 1283-1495-41 K
459 346 218 T
LVRM 573-296-151 573-302-157-79 571-302-156-79-40 size of graph
1062-1716-18 1226-1552-17 1254-1524-23 K
419 282 182 T
HESN 601-333-182 601-333-182-102 601-333-182-102-56 size of graph
1351-1427-37 1602-1176-11 1749-1029-8 K
514 397 295 T

3.3 Various Levels and Identifying Functional Modules

One issue when we use this spectral clustering algorithm is that (Il) may have
0 for denominators because all diagonal entries of S are 0. Then the objective
function values can be computed without including the clusters whose inner
similarity s(A, A) is 0. We tried to add weights on diagonal entries of S with 1’s
and with degrees. To compare these three algorithms, we generated two groups
of clusters without multilevel algorithm. Table 2] shows that we expect better
results when we add degrees of nodes into diagonal entries.

Table Bl shows the effect our multilevel algorithm (ML) on finding functional
modules. We considered the ML algorithms with levels 0 through 3 and use
HESN and 60 clusters in all experiments for this table. As shown in this table, the
number of correctly clustered proteins (7) increases and the edge connectivities
(k) become better as the number of levels increases. The last row of the table
shows the total timing and the third row shows the timings for the 3 parts



732 S. Oliveira and S.C. Seok

Table 2. Comparison of three different weighting methods on diagonal entries of S
with 40 and 60 clusters. The entries show the number of correctly clustered proteins
(T)and the edge information (triplet k) in parenthesis.

no. of clusters 40 60
no weighting 151 (1296 1482 209) 224 (1198 1580 86)
Adding 1 192 (1596 1182 50) 226 (1477 1301 37)

Adding degree 201 (1652 1126 50) 234 (1490 1288 46)

Table 3. Multilevel algorithm results with different number of levels. Timings are
measured in seconds.

level 0 1 2 3

no. of nodes 601 333 182 102
edge info (k) 1490 1288 46 1769 1009 31 1788 990 20 1834 944 40
no. of correct (7) 234 300 312 329
Time 0/261.1/53.4 0.3/69.3/112.3 0.4/7.6/106.3 0.4/1.7/117.9
Total time 314.5 181.9 114.3 120.0

of ML (coarsening, partitioning and decoarsening). The total time consumed
decreases up to 3 levels and then starts increasing. Particularly the time for
partitioning clearly decreases although the time for coarsening increases with the
number of levels. The refining step takes up most of time for ML with 3 levels:
117.9 out of 120 seconds. This is because KL refinement algorithm takes O(N?)
complexity. So we can improve the timings even further using more efficient
refining algorithms such as Fiduccia-Mattheyses linear time heuristic [7].

4 Conclusion

We presented a multilevel algorithm for unweighted graphs which represent
protein-protein interactions. This research focuses on matching groups of pro-
teins which are more likely to be part of the same functional modules. These
groups are considered as single nodes so the graph with them is much smaller
than the original graph. We showed that this multilevel approach favors not only
less computation time but also more accurate groupings of proteins.
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