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Abstract. Gene selection is usually the crucial first step in microarray data anal-
ysis. One class of typical approaches is to calculate some discriminative scores
using data associated with a single gene. Such discriminative scores are then
sorted and top ranked genes are selected for further analysis. However, such an
approach will result in redundant gene set since it ignores the complex relation-
ships between genes. Recent researches in feature subset selection began to tackle
this problem by limiting the correlations of the selected feature set. In this paper,
we propose a novel general framework BFSS: Boost Feature Subset Selection to
improve the performance of single-gene based discriminative scores using boot-
strapping techniques. Features are selected from dynamically adjusted bootstraps
of the training dataset. We tested our algorithm on three well-known publicly
available microarray data sets in the bioinformatics community. Encouraging re-
sults are reported in this paper.

1 Introduction

Recent technological advances in large scale DNA profiling enable researchers to si-
multaneously monitor the expression levels of thousands of genes or ESTs [1, 6, 10].
This provides unique opportunities to uncouple the relationship between disease phe-
notypes and their biochemical causations. As a first step, researchers have attempted to
classify disease using such molecular evidences [1, 6, 10].

Microarray technology also raises new challenges for data analyzing algorithms be-
cause of the uniqueness of the resulting microarray dataset. In a typical microarray
study, the genes or ESTs being monitored number from thousands to tens of thou-
sands, while the number of different tissue samples is much smaller ranging from tens
to hundreds. This results in the situation where the number of features (or genes) well
outnumbers the number of observations. The term “peaking phenomenon” is coined in
the machine learning and pattern recognition community, referring to the phenomenon
that inclusion of excessive features may actually degrade the performance of a classi-
fier if the number of training examples used to build the classifier is relatively small
compared to the number of features [8]. Gene selection is commonly performed be-
fore sample classification is even attempted to alleviate the above stated problem. A
smaller subset of informative genes is also a good start point of further biological inves-
tigations. The broadly used gene selection algorithms on microarray data sets share a
common workflow: 1. some single-gene based discriminative score is selected; 2. genes
are ranked based on such discriminative score; and 3. top scored genes are then selected
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for further investigation. We term this class of algorithms single-gene based gene selec-
tion. Although relatively simple, various single-gene based gene selection algorithms
have been proposed and demonstrated to be effective for improving sample classifica-
tion accuracy. Some of them are statistical tests (t-test, F-test) [3], non-parametric tests
like TNoM [2], mutual information [13], S2N ratio (signal to noise ratio) [6] etc.

However, the assumption of independence between genes oversimplifies the com-
plex relationship between genes. Genes are well known to interact with each other
through gene regulative networks. As a matter of fact, the common assumption of pop-
ular cluster analysis on microarray data sets [9] is that co-regulated genes have similar
expression profiles. Several of recent researches on feature subset selection especially
gene selection [7, 11, 12, 15] explicitly took into consideration the correlations among
features (genes) by limiting redundancy in resulting feature (gene) set. We showed in
earlier research that the concept of virtual gene (correlations between genes) [14] could
help improve gene selection.

In this work, we propose a novel meta-algorithm for boosting the performance of
single-gene based gene selection algorithms. In our framework, genes are selected not
from original training samples, but from its bootstraps. The probability table of sam-
pling for the different training samples is dynamically adapted based on how previous
selected genes behave. Our proposed framework is a general purpose meta-algorithm.
Instead of tying with some fixed single-gene based discriminative scores, our algorithm
accepts as input most if not all single-gene based gene selection algorithms and pro-
duces a better gene selection algorithm. It is worth mentioning that our algorithm is
closely related to bagging [4] and boosting [5] proposed for ensemble classifier design.

The rest of this paper is organized as follows. Our proposed algorithm is discussed
in Section 2 in detail with an illustrating example. Extensive experimental results on
three publicly available microarray data sets are reported in Section 3. In Section 4, we
conclude this paper and give directions of our future work.

2 BFSS: Boost Feature Subset Selection

In this section we formulate our boost feature subset selection algorithm (BFSS). No-
tation used throughout this paper is introduced in the first subsection. An illustrating
example is given in subsection two. Detailed algorithm is given in the third subsection.

2.1 Notation

Let R be the set of real numbers and N be the set of natural numbers including
0. Let G = {g1,g2, · · · ,gn} be the set of all genes that are used in one study, S =
{s1,s2, · · · ,sm} be the set of all experiments performed, L = {l1, l2, · · · , ll} be the set
of sample class labels of interest. We assume G ,S ,L are fixed for any given study. Let
n = |G | be the total number of genes, m = |S | be the total number of experiments and
l = |L| be the total number of class labels. A microarray gene expression dataset used
in our study can be defined as E = (G ,S ,L,L,E), where L is a function S → L such
that for s ∈ S , L(s) ∈ L is the class label for sample s; E is a function G × S → R .
For g ∈ G and s ∈ S , E(g,s) is the expression level of gene g in experiment s. In the
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bioinformatics community, the function E is normally presented as a two dimensional
array of real numbers.

Sometimes we need to treat the set of samples S as a multiset (or bag). In this case
we refer to the set of samples S as S M1 = (S ,M1), where M1 is a function that is always
1 (M1(s) = 1,s ∈ S ). A multiset is a set that allows duplication. In the case of S M1 , S
is the underlying set and M1 is the multiplicity function for elements in the underlying
set. More generally we refer to multiset S M = (S ,M ) as the bootstrap sample set,
where M is an arbitrary function S → N . We will discuss bootstrap sample set in
detail later in this section.

For simplicity of presentation, we use a subscripting scheme to refer to elements in
E . Let E(G,S M ) = (G,S M ,L,E) where G ⊆ G and S M is a bootstrap sample set.
We further use L(S M ) to denote the set of class labels for the set of experiments S M .

2.2 Motivating Example

The most obvious drawback of single-gene based gene selection algorithms is the fact
that those algorithms ignore the relationships that exist between genes. There is no guar-
antee that the combination of two “good” features will necessarily produce a “better”
classifier. As an illustrating example, please refer to Figure 1, in which the expression
levels of three genes across 100 samples are plotted. Samples are labeled using two
class labels: either caner (grey background) or normal (white background).

The first two genes, gene 1 and gene 2 behave similarly. In majority of the samples
(samples 1 to 40 and samples 61 to 100, or 80% of samples), the expression levels of
gene 1 or gene 2 can be used to predict sample class labels effectively. Actually the
expression levels of these two genes are generally higher in cancer samples than in
normal ones. However, the expression levels of these two genes in samples 41 to 60
(20% of samples) are more mixed across cancer/normal class distinction.

Fig. 1. Illustrating example of redundancy in selected gene set
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Gene 1 and gene 2 score high in term of t-score and S2N scores as shown in Figure 1.
Gene 3 is obviously a less capable predictor when considered alone. Clear trend exists in
the expression levels of gene 3 in samples 31 to sample 70 (40% of samples). However
it varies across cancer/normal labels in the rest samples (60%). Gene 3 scores much
lower than gene 1 and gene 2 in term of t-score and S2N as expected. Using t-score and
S2N, we can rank these three genes based on their salience in predicting cancer/normal
class labels as: gene 2 > gene 1 > gene 3.

However, t-score and S2N do not consider the fact that gene 1 and gene 2 behave
similarly. They both work well in samples 1 to 40 and samples 61 to 100. They both
share more difficult samples, namely samples 41 to 60. If two genes out of the three are
to be selected for further data analysis, would it be wise to use both gene 1 and gene 2,
as suggested by their relatively high single-gene based discriminative score (t-score and
S2N) ranking? This is the very question we address in this paper. We empirically show
that it is not the case. Choosing gene 2 and gene 3 might be a better idea as gene 3
“covers” the more difficult samples where gene 2 fails.

2.3 BFSS: Boost Feature Subset Selection

In this section, we elaborate our new algorithm. First we will define some concepts and
then describe our BFSS algorithm.

A bootstrap sample set S M = (S ,M ) is a multiset of samples randomly drawn
with replacement from the original set of samples S . M (s),s ∈ S is the multiplicity of
item s. As a result, the same sample s ∈ S can appear more than once or does not appear
at all in S M . The cardinality of S M is denoted by mb. The sampling probability of each
sample in S is determined by a probability table p(s) where s ∈ S .

Definition 1. A bootstrap sample set S M = (S ,M ) of size mb is a multiset of sam-
ples resulting from random sampling from S with replacement. The probability of each
sample s ∈ S being sampled is p(s). mb = ∑s∈S M (s).

Definition 2. A bootstrap B of a training dataset E = (G ,S ,L,E) using bootstrap
sample set S M is a dataset defined as

B = (G ,S M ,L,E)

Definition 3. The worst set of samples Sworst of size δ with respect to bootstrap dataset
E(g,S M ) and a single-gene based scoring function F is defined as a multiset:

argmax
S⊆S M and |S|=δ

(F(E(g,S M − S)))

Here S M − S means a set by removing S from S M . We also call S M − Sworst the best
set of samples.

A bootstrap of training set is defined using the definition of bootstrap sample set. A
bootstrap B is a new dataset defined using the four-tuple notation we used to define
microarray dataset. The only difference is that the second element is a bootstrap sample
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Algorithm 1. WorstSampleSet : Calculate the worst set of samples using a greedy
algorithm
Require: E = ({g},S,L,E), F as a single-gene based discriminative score
Ensure: S′ is the worst set of samples with respect to E and F
1: S′,S0 to be empty sets
2: for all s ∈ S do
3: S1 ← S−{s}
4: calculate F(E({g},S1)), add score to S0
5: end for
6: sort S0, add samples s corresponding to top δ scores in S0 to S′

7: return S′

Algorithm 2. BFSS : Boost Feature Subset Selection
Require: E = (G,S,L,E); n′ as the number of genes to be selected; F as a single-gene based

discriminative score
Ensure: G′ as the selected gene set by BFSS using F .
1: Initialize p(s) to be 1/m (m is the number of samples in E). Set G′ as an empty set.
2: E ′ ← E
3: for |G′| < n′ do
4: generate bootstrap sample set S M and bootstrap B of training set E ′ by random sampling

using probabilities p(s)
5: calculate score F on bootstrap B , refer to this score as F ′, keep track of the best score so

far
6: add top ranked gene g based on F ′ to G′

7: find worst δ samples Sworst based on B(g,S M ) using Algorithm 1
8: reduce (p(s) where s ∈ S M −Sworst by a factor of ε and normalize p(s) so that it represents

a distribution
9: remove g from E ′

10: end for
11: return G′

set. B shares the same set of genes G , same sample class label mapping L, and same
expression levels mapping E with E .

Given a bootstrap B , a gene g and a score function F , the worst set of sample of
size δ is a set of samples such that by removing them from the dataset B , best F score
for gene g is achieved. We refer to all other samples in S M other than those in the worst
set of samples the best set of samples. Both the worst set of samples and the best set
of samples are multisets.

By definition of the worst set of samples with respect to gene g and score F , it is
exponentially hard to find such set of samples since the power set of samples needs to
be examined. We employ a simply greedy algorithm as described in Algorithm 1. For
each sample s ∈ S M , scores F for gene g on each sample set S M −{s} are computed.
Such scores are ranked and the samples corresponding to the best δ scores are treated
as the worst set of samples. δ is one parameter of our algorithm. However, as shown
later in this section, fixed value of δ is used for all datasets we tested with good results.
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Boost feature subset selection algorithm (BFSS) is shown in Algorithm 2. After
some initialization, the algorithm first generates a bootstrap B of training set E , where
i iteration counter. This involves the generation of bootstrap sample set of size mb

and then the bootstrap itself. This involves random sampling with replacement from S
using probability table p(s).

After bootstrap B of a training set is generated, the F score is then calculated for
each gene in B . Best F score so far is kept during the computation, so is the gene
associated with it. In the next step, the gene with best F score for current bootstrap B
is selected and added to the selected gene set. Based on the selected gene, BFSS then
identifies the worst set of samples with respect to the currently selected gene and the
single-gene based scoring function F using Algorithm 1. The probability table p(s)
for generating bootstraps is modified by reducing the probabilities for the best set of
samples by a constant factor. The probability of those good samples being selected in
subsequent analysis is thus reduced, focusing BFSS onto those samples that previously
selected genes would not perform well. The currently selected gene is then marked as
selected and not considered further by the BFSS algorithm. BFSS repeats this process
until n′ genes are selected.

There are three parameters mb (size of bootstrap sample set), δ (size of worst set of
samples) and ε (the degradation factor of sampling probability) used in our algorithm.
We experimentally chose δ to be 0.96 of the number of training samples in a dataset and
ε to be 0.96. We set mb to be twice the number of samples in the training set so that a
bootstrap is more representative. After fixing these three parameters, there is virtually
no more need of tweaking our BFSS algorithm. We used these same parameters for
all the three data sets we experimented with and achieved good performance on all of
them. This indicates BFSS’s good property of requiring little tuning for different data
sets. We omit complexity analysis of our algorithm in this paper due to space constraint.

3 Experiments

We performed extensive experiments on three publicly available microarray datasets:
Colon Cancer [1], Leukemia [6] and multi-class cancer [10]. Data preprocessing is the
same as described in [14]. Performance of classifiers is used as a measure of the perfor-
mance of feature subset selection algorithms. In order not to be biased on which clas-
sifiers we use, three very different general purpose classifiers are used: DLD (diagonal
linear discriminant), KNN (k-nearest neighbor, k=3) and SVM (support vector machine,
with radial kernel). A 2 fold cross-validation procedure is used to estimate classifica-
tion performance. We systematically examine the performance of different gene subset
selection algorithms using these three classifiers with different number of genes se-
lected. The number of genes selected ranges from 2 to 100 in the increment of 2. All
experiments are repeated 100 times to get more accurate results.

This paper focuses on improving performance of single-feature based feature subset
selection algorithms. Two simple widely used algorithms are used for testing: t-score
and S2N. We plug these two algorithms into our BFSS algorithm and refer to the re-
sulting new algorithms as “boost t-score” and “boost S2N” respectively. We also report
classification performance without using gene selection algorithms as a comparison.
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Table 1. Performance(%) of single-gene based methods and their boosted versions

Num of FSS Colon Cancer Leukemia Multi-class
genes method KNN DLD SVM KNN DLD SVM KNN DLD SVM

N/A No FSS 75.9 64.7 71.3 93.1 65.3 92.0 85.6 77.2 83.4

t-score 81.58 80.10 81.35 92.75 94.97 94.25 78.34 78.13 79.92
Boost t-score 82.81 81.35 82.87 93.67 94.69 94.47 78.86 78.51 80.47

20 S2N 81.23 79.94 81.30 93.33 95.19 94.56 78.56 78.26 80.71
Boost S2N 82.90 81.71 82.16 94.11 95.11 94.94 78.85 78.37 81.14

t-score 81.52 78.10 81.81 94.14 95.47 95.19 81.57 78.65 82.13
Boost t-score 83.87 81.00 83.71 94.47 95.64 94.94 81.93 78.96 82.62

50 S2N 81.84 77.39 82.65 94.31 95.77 95.44 81.73 78.84 82.46
Boost S2N 83.32 81.55 83.19 94.94 95.86 95.00 81.83 79.14 82.72

t-score 82.13 76.65 81.74 95.11 95.81 94.36 83.08 78.97 83.30
Boost t-score 84.39 80.39 83.65 95.75 96.22 95.22 83.21 79.41 83.73

100 S2N 81.52 76.39 81.45 95.42 96.00 95.61 83.29 79.19 83.21
Boost S2N 83.84 80.19 83.68 95.75 96.17 95.81 83.09 79.50 83.63

Table 1 shows part of our experimental result. Boosted version of single gene based
discriminative score yields higher classification accuracy in most cases in our experi-
ments. Significant improvement is observed in colon cancer data set, where
performance improved as much as 4%. Less yet consistent performance gain is ob-
served in the other two data sets we tested. For Leukemia data set, the average perfor-
mance is already in mid 90 percent, where the space for improvement is limited. For
multi-class data set we tested, classification performance of KNN classifier is actually
better than any of the gene selection algorithms in our experiment. Considering there
are more than 16000 genes in this dataset, this seems indicating selecting top 100 genes
may not be enough. Multi-class data set is also more heterogeneous since the cancer
tissues came from 14 common cancer types. It is reasonable to expect more genes are
needed to characterize such vast different phenotypes.

4 Conclusion and Future Work

In this paper, we presented a novel general feature subset selection framework to im-
prove the performance of single-gene based discriminative scores. In our approach,
genes are selected from bootstraps of training set instead of training set itself. The
sampling probability is dynamically adapted based on the performance of previously
selected genes on different bootstrap samples. Extensive experiments were performed
on three publicly available microarray datasets. According to our experiments, boosted
versions of those single-gene based discriminative scores perform consistently better
in most cases and in many cases boosted versions perform considerably better than
the original scores. A nice feature of our approach is that most if not all single-gene
based discriminative scores can be plugged into our system and the resulted BFSS fea-
ture selectors are expected to perform better than the original scores according to our
experiments. Our approach is also independent of the classifier used.
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Although not targeted as feature selection algorithm for ensemble classifiers, our
algorithm may work well with such classifiers nonetheless. Better performance could
be achieved by diversifying the feature set selected for each member classifier. Since
our BFSS algorithm is based on bootstraps of the training set and sampling probabil-
ity is dynamically adapted, diversity of the selected features is already built in. It is
also interesting to examine the behavior of BFSS in conjunction with these ensemble
classifiers, especially these bootstrap based ensemble classifiers (bagging and boost-
ing). Furthermore, since BFSS and bootstrap based ensemble classifiers are all based
on the bootstrapping concept, it is possible that they can be combined into a uniform
framework. We are currently researching into these directions.
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