Exemplar Longest Common Subsequence

Paola Bonizzoni', Gianluca Della Vedova?, Riccardo Dondi!,
Guillaume Fertin®, and Stéphane Vialette*

! Dipartimento di Informatica, Sistemistica e Comunicazione, Universita degli Studi
di Milano-Bicocca Milano - Italy
2 Dipartimento di Statistica, Universitd degli Studi di Milano-Bicocca Milano - Italy
3 LINA - FRE CNRS 2729 Université de Nantes, Nantes Cedex 3, France
4 LRI - UMR CNRS 8623 Faculté des Sciences d’Orsay, Université Paris-Sud Bat 490,
Orsay Cedex, France

Abstract. In the paper we investigate the computational and approxi-
mation complexity of the Exemplar Longest Common Subsequence of a
set of sequences (ELCS problem), a generalization of the Longest Com-
mon Subsequence problem, where the input sequences are over the union
of two disjoint sets of symbols, a set of mandatory symbols and a set of
optional symbols. We show that different versions of the problem are
APX-hard even for instances with two sequences. Moreover, we show
that the related problem of determining the existence of a feasible solu-
tion of the Exemplar Longest Common Subsequence of two sequences is
NP-hard. On the positive side, efficient algorithms for the ELCS prob-
lem over instances of two sequences where each mandatory symbol can
appear totally at most three times or the number of mandatory symbols
is bounded by a constant are given.

1 Introduction

Algorithmic studies in comparative genomics have produced powerful tools for
the analysis of genomic data which has been successfully applied in several
contexts, from gene functional annotation to phylogenomics and whole genome
comparison. A main goal in this research field is to explain differences in gene
order in two (or more) genomes in terms of a limited number of rearrangement
operations.

When there are no duplicates in the considered genomes, the computation
of the similarity measure is usually polynomial-time solvable, e.g., number of
breakpoints, reversal distance for signed genomes, number of conserved inter-
vals, number of common intervals, maximum adjacency disruption, summed ad-
jacency disruption. However, aside a few exceptions, several copies of the same
gene or several highly homologous genes are usually scattered across the genome,
and hence it is major problem to handle those duplicates when computing the
similarity between two genomes. One approach to overcoming this difficulty is
based on the concept of exemplar: for each genome, an exemplar sequence is
constructed by deleting all but one occurrence of each gene family. Another ap-
proach is based on matching: in this two-step procedure, the two genomes are

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part II, LNCS 3992, pp. 622-[629] 2006.
© Springer-Verlag Berlin Heidelberg 2006

Exemplar Longest Common Subsequence 623

first made balanced (the number of occurrences of each gene from the same family
must be the same in both genomes) by removing a minimum number of genes
and next a one-to-one correspondence (among genes of each family) between
genes of the genomes is computed.

Unfortunately, in the presence of duplicates, most similarity measures turn
out to be NP-hard to compute for both the exemplar and the matching mod-
els, so that we generally have to rely on approximation algorithms or heuristic
approaches. We discuss here one such general purpose heuristic approach (the
EXEMPLAR LCS problem) which is basically a constrained string alignment
problem. The basic idea of the general framework we propose here is based on
the observation that, for most similarity measures and for both the exemplar and
the matching models, specific common subsequences may correspond to highly
conserved sets of genes. This suggests the following greedy heuristic algorithm:
find a common subsequence of significant length — but compact enough — be-
tween the two genomes, replace in the two genomes the substring that contains
the common subsequence (the substring that starts at the first character of the
common subsequence and ends at the last character of the common subsequence)
by a new letter and continue in a similar way.

At each iteration of this simple heuristic algorithm, one however has to be
cautious in how to choose the common subsequence, as bad choices may have
a disastrous impact for the rest of the algorithm. Let us take the exemplar
model as a very simple explanatory example, and suppose that we are searching
for a common subsequence between two precise substrings of the two genomes.
For one, if one gene family has occurrences elsewhere in the two genomes, then
taking or not one occurrence of this particular gene family in the common sub-
sequence is thus not based on necessity but on the length of the obtained so-
lution. For another, if there do not exist any other occurrences of one gene
family except one in the two considered substrings, definitively one has to take
this occurrence in the common subsequence (observe that in this case the ob-
tained common subsequence may not be the longest one). This simple example
suggests to consider a LCS-like problem that deals with two types of letters
(mandatory and optional symbols) to allow greater flexibility in the searching
process.

In this paper we will formally define such framework with a simple combinato-
rial problem that generalizes the well-known LCS problem and we will study its
computational and approximation complexity. We show that different versions
of the problem are APX-hard even for instances with two sequences and that
even determining if a feasible solution exists or not is NP-hard. On a positive
side the hardness of the problem can be limited in some cases, in fact we show
that it is possible to determine efficiently a feasible solution, provided that each
symbol appears at most three times totally in the input sequence. Finally we
give a polynomial-time algorithm in case the number of mandatory symbols is a
constant.

624 P. Bonizzoni et al.

2 The Problems

The LONGEST COMMON SUBSEQUENCE problem (shortly LCS) is a well-known
problem in Computational Biology. Let s = s[1],s[2],..., s[m] and ¢ = ¢[1], ¢[2],
..., t[l] be two sequences, s is a subsequence of ¢ if for some j; < jo < ... < jm
s[h] = t[jn]- Let s1, s2 be two sequences, a longest common subsequence of s;
and s is a sequence s of maximum length, such that s is a subsequence of both
s1 and so. Let S be a set of sequences, then a longest common subsequence of S
is a longest possible sequence s that is a subsequence of each sequence in S.
Given a set of sequences S,

Table 1. Versions of EXEMPLAR LCS the LCS problem asks for a

Problem name Occurrences Occurrences longest common subsequences
mandatory optional of S. The complexity of LCS
symbols symbols problem has been deeply stud-

ELCS(1,<1) exactly 1 at most 1 ied in the past. In [7] it is

ELCS(1) exactly 1 unrestricted shown that the problem is NP-

ELCS(>1,<1) at least 1 at most 1 hard even for sequences over

ELCS(> 1) at least 1 unrestricted an alphabet of size 2. However,

when the instance of the prob-
lem consists of a fixed number of sequences, the LLCS can be solved in polynomial
time via dynamic programming algorithms [54]. The input of the EXEMPLAR
LCS problem (ELCS) consists of a set S of sequences over alphabet 4, U A,
A,NA,, =0, where A, is the set of optional symbols and A,, is the set of manda-
tory symbols. The output of the problem is a longest common subsequence of
all sequences in S and containing all mandatory symbols.
Given an instance S of ELCS, by exemplar common subsequence we mean
a feasible solution of ELCS over S. It is possible to define different versions
of the problem, according to the number of occurrences of each symbol in the
solution, as represented in Table[Il In this paper we will deal with such different
versions of ELCS. First notice that ELCS(1) and ELCS(> 1) are generalizations
of the LCS problem, where no mandatory symbols are present. Therefore all the
hardness results for LCS apply to ELCS(1) and ELCS(> 1). Moreover, we will
show that the above problems are hard also on instances of only two sequences
(while the LCS problem can be solved in polynomial time for any fixed number
of sequences). When dealing with the restriction of ELCS containing only a
fixed number of sequences, we will denote such restriction prefixing the problem
name with the number of sequences, e.g. 2-ELCS(1, < 1) is the restriction of
ELCS(1, < 1) to instances of two sequences.

3 The Results

Theorem 1. The 2-ELCS(1, < 1) problem is APX-hard even when each symbol
appears at most twice in each input sequence.

Proof. We prove the theorem describing an L-reduction from MAX INDEPEN-
DENT SET on Cubic Graph to 2-ELCS(1,< 1), since the latter problem is

Exemplar Longest Common Subsequence 625

known to be APX-hard[I]. Let G = (V, E) be a cubic graph. Then for each
vertex v; there are three edges e;(v;), ea(v;), e3(v;) incident on it. In the re-
duction each vertex v; is associated with a symbol v; of A, and a symbol z;
in A,,. Each edge is associated with a distinct symbol of A,,. Define a block
associated with a vertex v;, as a string consisting of a vertex symbol v;, the
symbols associated with edges incident to v; in G and the symbols x;. There
are two possible blocks associated with v;, one contained in s; and defined
as b1(v;) = vier(vi)ea(v;)es(vi)x;, the second contained in sy and defined as
ba(vi) = e1(vi)ez(v;)es(vi)vix;. The instance of 2-ELCS(1, < 1) consists of the
following two sequences: s1 = by (v1)b1(v2) - - - b1(vn), S2 = ba(v1)ba(va) - - - ba(vy).
Observe that since each symbol z; is mandatory and it occurs only in blocks
b1(v;), ba(v;) of s1, so respectively, any symbol z; in a feasible solution of 2-
ELCS(1,< 1) over s; and s must be taken from bq(v;) and by (v;). It follows
that if v; is in an exemplar common subsequence, then the exemplar com-
mon subsequence does not contain any symbol of eq(v;)ez(v;)es(v;) of by(v;)
and ba(v;). Let s be a feasible solution of 2-ELCS(1, < 1) over si, s2, then s
consists of fix1... fix;... fnxy, where each f; is either v; or a subsequence of
e1(v;)ea(v;)es(v;). Observe that each edge symbol is mandatory, which means
that it must appear exactly once in a common subsequence. Moreover, an edge
symbol encoding edge (v;,v;) appears in blocks by (v;) and by (v;) of s1 and in
blocks ba(v;) and ba(v;) of sp. Thus a common subsequence takes such edge
symbol either from bq(v;) and ba(v;) or from by (v;) and ba(v;).

Let I be the set of ver-
tices appearing in s, we
will show that I is an inde-
pendent set of G. Assume
that symbols v;,v; € 1.
Then (v;,v;) is not an edge
of G, otherwise s in f; and
f; contains symbols v; and
v; respectively. It follows
that the edge symbol as-
sociated with (v;,v;), that
can appear only in f; and
fj, is not contained in s.
Since each edge symbol is
mandatory, it must appear
in any feasible solution of
2-ELCS(1, < 1), which is a
contradiction. Observe that the length of a feasible solution of 2-ELCS(1,< 1)
over s1, s2 is |V| + |E| + |I], where I is an independent set of G. On the other
side, let I be an independent set of G, it is easy to compute a feasible solution
of 2-ELCS(1,< 1) over s1, s2 of size |[V| + |E| + |I], retaining in the exemplar
common subsequence only the symbols associated with vertices in I. O

Vi

s1 = v11CAEx1v9CF Bx2vsAF DxsvasEBDxy
s0 = CAEv121CFBvoyx2AF Dvsxs EBDuvyxy

Fig. 1. Reducing the graph K4

A similar proof can be given also for 2-ELCS(> 1,< 1).

626 P. Bonizzoni et al.

Theorem 2. The 2-ELCS(> 1,< 1) problem is APX-hard even when each
symbol appears at most twice in each input sequence.

Proof. The reduction is similar to the previous one, but for each vertex v; of the
graph, we have four symbols v#v?v§v¢ and the blocks by (v;) and by (v;) associated
with v; in sequences s; and s respectively are defined as follows: by(v;) =

vaﬁ?vafel(vi)eg(vi)eg(vi)xi; bo(v;) = 61(vi)eg(vi)eg(vi)vafvafxi.

Again the symbols z; are mandatory. Since each z; appears in blocks by (v;)
and ba(v;) of s1 and so respectively, it follows that any symbol z; in an exemplar
common subsequence must be taken from the blocks of s1, so associated with
v;, that is b1(v;) and ba(v;). Since each mandatory edge symbols appears twice
in each input sequence, it must appear once or twice in a common subsequence.

Clearly if sequence vivPvéod is in a feasible solution of 2-ELCS(> 1, < 1) over
81, S2, then this solution does not contain occurrence of symbols of sequence
e1(vy)ea(vy)es(v1) in by(v;) and by(v;). This means that a feasible solution s
of 2-ELCS(> 1,< 1) over s1, sg consists of ¢g121...¢;%; ... gn%Tn, where each
gi is either a subsequence of v?vafvf or a subsequence of ej(v;)ea(v;)es(v;).
Observe that each edge symbol is mandatory, which means that it must appear
exactly once in an exemplar common subsequence. Thus an exemplar common
subsequence takes each edge symbol from one of the two blocks where it appears.

Let I be an independent set of G, then s = g1x1 ... g;%; . .. gnTy, where each
gi = vévlvsud if v; € I and g; = ey (v;)e2(v;)es(v;) otherwise. It is immediate to
note that s is a common subsequence of s and sz of length |V| + 3|V| + |I] and
that all mandatory symbols encoding an edge are included in s.

Assume now that there exists a feasible solution s of 2-ELCS(> 1, < 1) over
s1, s2 with length |V| + 3|V|+ |I|. We can assume that, for each block in s, $2,

either v@v?v§vd or eq(v;)ea(vi)es(v;) appears as a substring of s. Let Y be the

4 Y4 Y1 Y
by,c,,d

set of blocks for which v{v;viv{ is part of s. Hence the vertices corresponding

to Y are an independent set of G. By a trivial counting argument, it is easy to

show that for |I| blocks s includes vfv?v§vsd. We claim that such blocks encode

(2 2 a2
an independent set. W.l.o.g. assume that v{vbv$v{ and v§vivSvgd are included in
s, then there is no edge (v1,v2) in G, otherwise the mandatory symbol encoding

such edge would not be in s. O

A related problem is that, given an instance of 2-ELCS, of determining if a
feasible solution exists. In what follows we will consider a general version of the
2-ELCS problem. Notice that both reductions described above hold for instances
that are known to admit a feasible solution, therefore they are not sufficient for
dealing with the problem. Observe that we can assume that both input sequences
consist only of mandatory symbols, since only mandatory symbols are relevant
for the existence of a solution.

Theorem 3. The problem of determining if a feasible solution exists for an
instance of 2-ELCS where each mandatory symbol appears totally at most three
times in the input sequences, can be solved in polynomial time.

Exemplar Longest Common Subsequence 627

Proof. We prove the theorem reducing an instance of 2-ELCS where each manda-
tory symbol appears totally at most three times in the input sequences to an
instance of 2SAT. Notice that 2SAT can be solved in polynomial time [2].

For each symbol s, let occy(s) (respectively occa(s)) be the set of positions of
the input sequence s (resp. s2) where the s appears. Clearly both occq(s) and
occa(s) are not empty and |ocey (s)|+|ocez(s)| < 3. For each symbol s there are at
most two pairs in occy (s) X ocea(s), for otherwise |ocey (s)| + |ocea(s)| > 3, let us
associate with each of such pairs a variable x5 ;, where ¢ € {1, 2} if there are two
pairs in occy (s) X occa(s) and @ = 1 if there is only one pair in occy (s) X occa(s).

Graphically the possible variables are

[TTWITITLUTLRTILT I S represented in Fig. 2l with a line connect-
1 ing two identical symbols belonging to

M different sequences. The case |oce (s)] +
5.2 locca(s)] = 3 is represented by the two
[TV TTTTTITN I S2 leftmost lines and the variables z5 1, x5 2,
while the case |ocey(s)| + |ocea(s)] = 2 is

Fig. 2. Reducing 2-ELCS to 2SAT represented by the rightmost line and the
variable x; ;. Each truth assignment to

the variables can be viewed as picking the lines corresponding to true variables.
Let C be the set of clauses of the instance of 2SAT that we are constructing.
For each pair x5 1, xs2 of variables, the clauses —xs1 V —x52 and x51 V 252
are added to C. Moreover, for each symbol s such that there is only one pair
in ocei(s) x ocea(s), add the clause x5 1 to C' (this corresponds to forcing the
variable ;1 to be true). The fact that all these clauses are satisfied in any fea-
sible solution of 2SAT, corresponds to pick exactly one of the lines associated
with each symbol. Two lines (or two variables) are called crossing if they cross
in the drawing built as in Fig. 2l More formally, notice that each variable x; ; is
associated with an occurrence of s in s; (denoted as s1(s,4)) and one occurrence
of sin so (denoted as sa(s,4)). A pair x4 ;, x; ; of variables is crossing if in s; the
symbol s1(s,4) precedes s1(t,7) and in sp the symbol so(s,7) does not precede
sa(t,j) or, symmetrically, if in s; the symbol s1(s,?) does not precede s1(t,7)
and in sp the symbol sa(s,4) precedes sa(t, j). For each pair x, ;, 2 ; of crossing
variables, the clause -z ; V -z, ; is added to C. We can prove that the original
instance of 2-ELCS has a feasible solution if and only if the instance of 2SAT
is satisfiable, that is there is a truth assignment for all variables such that all
clauses in C are evaluated true. Assume that there is a feasible solution z of
the instance of 2-ELCS then, for each symbol s, we pick the lines connecting
the symbols retained in z. By definition of common subsequence there cannot
be two crossing lines, and exactly one of the lines associated with each symbol
must be picked as |ocey (s)|+|ocez(s)] < 3, therefore we have constructed a feasi-
ble solution of 2SAT. Conversely given a truth assignment for all variables that
satisfies all clauses in C, it is immediate to note that there are not two crossing
lines, and that there is exactly one line for each symbol, therefore it is immediate
to construct a feasible solution of 2-ELCS that contains all symbols. O

628 P. Bonizzoni et al.

Notice that the above result holds for all the restrictions of 2-ELCS considered
here, as no symbol appears twice in both input sequences, therefore it can appear
at most once in any solution. We will show in the following theorem that slightly
relaxing this constraint makes the problem NP-hard.

Theorem 4. The problem of determining if a feasible solution exists for an
instance of 2-ELCS where each mandatory symbol appears at most three times
in each input sequence, is NP-hard.

Proof. We will prove the theorem reducing 3SAT to 2-ELCS, with a reduction
very similar to the one shown before. Let C' = {C4,...,Cy} be a set of clauses,
each one consisting of at most three (possibly negated) literals. We construct an
instance of 2-ELCS associating a block with each variable. The block of s; asso-
ciated with variable x; is defined as the symbol z;, followed by the sequence of
clauses containing x;, followed by the sequence of clauses containing —x;, where
in each sequence the clauses are ordered according to the index in {C1, ..., Ck}.
In s the block associated with variable x; is defined as the symbol z;, followed by
the sequence of clauses containing —x;, followed by the sequence of clauses con-
taining z; (again the clauses are ordered according to the index in {C4, ..., Ck}).
Both sequences s; and sy consist of the sequence of all blocks associated with
the variables of the original instance of 3SAT. All symbols are mandatory, also
notice that each symbol appear at most three times in each sequence as each
clause contains at most three literals.

Each symbol x; appears exactly once in each sequence, hence there is no
ambiguity on which occurrence is retained in any exemplar common subsequence.
Consequently each symbol retained must correspond to occurrences taken from
the same block. Inside the block associated with x;, retaining the clauses where z;
appears as a positive literal is mutually exclusive with retaining the clauses where
x; appears as a negative literal, by definition of exemplar common subsequence.
The first case corresponds to setting x; to true, while the second case corresponds
to setting x; to false. In both case the clauses retained are satisfied by the
assignment of variables z;. It is immediate to note that any feasible solution
must contain all clauses, therefore we have computed a truth assignment of the
variables that satisfies all clauses in C, completing the proof. O

The above results have a definitive consequence on the approximability of the
2-ELCS problem where each mandatory symbol appears at most three times in
both input sequences, as they rule out any possible polynomial-time approxima-
tion algorithm. Since the problem can be extended to instances consisting of a set
of sequences, it is interesting to know if the above results can be made stronger.
In fact, the well-known inapproximability results in [6] for the LCS problem,
immediately apply also to the ELCS(> 1) problem, since ELCS(> 1) is more
general than LCS. A closer inspection of their proofs shows that their results also
apply to all versions of ELCS, as the optimal solutions in their reductions contain
at most one occurrence of each symbol, excluding any O(n'~¢) ratio polynomial-
time approximation algorithm unless ZPP=NP, even if no mandatory symbol
is allowed and all symbols appear at most twice in each sequence.

Exemplar Longest Common Subsequence 629

4 Restricting the Problem

In this section we consider the restriction of 2-ELCS(1) where the number of
mandatory symbols is at most a constant. We describe a polynomial time algo-
rithm for this restriction based on two phases: the first step consists of guessing
the exact ordering of all mandatory symbols in the optimal solution, the second
step basically fills in the gaps between each pair of mandatory symbol. Since each
mandatory symbol appears exactly once in a feasible solution, the correct order-
ing of the mandatory symbol is a permutation of A,,, which can be computed
in constant time, since |A4,,| is a constant.

Let s be a permutation of mandatory symbol, the second phase consists of
computing a longest common subsequence s* of {s1, s2} such that s is a subse-
quence of s*. Let us denote by s[i] the i-th character of the sequence s and by
s[i...j] the substring of s starting with s[¢] and ending with s[j]. The recurrence
equation for EL[i, j, k], that is the length of an optimal solution over si[1...4],
s2[l...7] that is a supersequence of the sequence s[1]-- - s[k] is:

EL[i — 1,5 — 1, k] + 1 if s1[i] = s2[j], s1i] € 4,
Coy EL[i — 1,5 — 1,k — 1] + 1 if s1[i] = s2[j] = s[k]
BL[.k = max S gy o™y 0 B j — 1, k] sa[i] = salj] 2 s[k], s1[i] € Ane
EL[i — 1,5, k],EL[i, 5 — 1, k] if s1[i] # s2[J]

The boundary conditions are EL[0, j,0] = 0 and EL[i,0,0] = 0 for 0 < i < |s|
and 0 < j < |sz2|. The value of the optimal solution can be read in EL[|s1], |s2], |s]].
Once the matrix EL has been completely filled in the actual optimal subsequence
can be constructed with standard backtracking techniques [3]. The recurrence
equation described above can be easily modified for the 2-ELCS(> 1), by remov-
ing the requirement s1[i] € A, in the first condition of the equation.

References

1. P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theo-
retical Computer Science, 237(1-2):123-134, 2000.

2. B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing
the truth of certain quantified boolean formulas. Information Processing Letters,
8(3):121-123, 1979.

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2nd edition, 2001.

4. K. Hakata and H. Imai. The longest common subsequence problem for small alpha-
bet size between many strings. In Proc. 3rd International Symp. on Algorithms and
Computation (ISAAC), pages 469-478, 1992.

5. W. Hsu and M. Du. New algorithms for the LCS problem. Journal of Computer
and System Sciences, 19:133-152, 1984.

6. T. Jiang and M. Li. On the approximation of shortest common supersequences
and longest common subsequences. STAM Journal on Computing, 24(5):1122-1139,
1995.

7. D. Maier. The complexity of some problems on subsequences and supersequences.
Journal of the ACM, 25:322-336, 1978.

	Introduction
	The Problems
	The Results
	Restricting the Problem

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

