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Abstract. Flat vector representation of sparse multivariate polynomi-
als is introduced in the computer algebra system TRIP with specific care
to the cache memory. Burst tries are considered as an intermediate stor-
age during the sparse multivariate polynomial multiplication by paying
attention to the memory allocations. Timing and memory consumption
are examined and compared with other recursive representations and
other computer algebra systems.

1 Introduction

A large number of celestial mechanics applications, such as the classical ex-
pansions of the Kepler problem and several expansions of disturbing functions,
requires to handle multivariate generalized power series. We develop a general
symbolic and numeric computer algebra system TRIP [I] dedicated to celes-
tial mechanics. It handles generalized power series () : Coefficients Cj can
be numerical coefficients (fixed and multi-precision rational number, double and
quadruple precision floating-point) or rational functions. Complex expressions of
the form exp*m are encoded as variables, so negative exponents are permitted.
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TRIP is tuned to compute large series with millions of terms depending on
a large number of variables. Computation of large series needs fast in-memory
data storage and fast algorithms. Computer algebra systems have different in-
ternal representations of polynomials and series. Internal representations should
depend on the sparsity of polynomials in the studied problem. Some symmetries
are present in celestial mechanics problems, such as d’Alembert relations in the
planetary motion (see Laskar, [2]). This implies that sparse series appear during
computations. Specialized computer algebra systems, called Poisson Series Pro-
cessors, handle Poisson series as list of objects (e.g., see [3], [4], or [5]). General
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computer algebra systems represent sparse polynomial as a recursive list or a
recursive vector but they always have only one of these types to handle sparse
polynomials. TRIP have three internal representations for sparse polynomials,
discussed in Section 1.

An efficient multiplication algorithm is critical for most computations on se-
ries. Hida [6] demonstrates the effects of polynomials representation and block-
ing loops on the execution time to perform a sparse polynomial multiplication.
We investigate here the usage of burst tries [7] as an intermediate representation
during the sparse polynomial multiplication. Memory management for this inter-
mediate representation is investigated in order to reduce memory consumption
and improve scalability on SMP hardware. In section 6, we compare performance
of polynomials multiplication in TRIP with other computer algebra systems.

2 Series Representations

TRIP supports multiple memory representations of a polynomial in order to
handle it efficiently. Polynomials are always stored in an expanded form. In the
two first representations described in (Laskar, [§]), multivariate polynomials are
stored as a recursive list or a recursive vector in memory. The recursive list is
a recursive single linked-list containing only the non-zero coefficients with the
associated exponents. The recursive vector stores the minimal and maximal ex-
ponents and all coefficients between the minimal and maximal exponents are
stored in this array. Depending on the polynomial, the recursive list representa-
tion consumes more or less memory than the recursive vector.

variables exponents coefficients
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Fig. 1. Flat vector representation of a polynomial with variables X1, ...X, containing
64m terms. Blocks of exponents are viewed in uncompressed form.

These two previous representations contain many indirections (pointers) to
handle large sparse polynomials. Modern computers are less efficient with indi-
rection because load instructions from memory or cache could take long time
to complete. In these cases, a processor could stall until the data are avail-
able. Hida’s experiments [6] to improve cache locality, such as blocking, show a
speedup up to 47% on the sparse polynomial multiplication. It shows that flat
structure are aware of cache locality.

We introduce a flat vector representation (Fig.[I]) in TRIP : Exponents and co-
efficients of each term are stored in two arrays subdivided in short blocks. Terms
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are always sorted on exponents. A short block contains at most 64 terms. Oper-
ations on blocks of exponents and on coefficients, when fixed-size coefficients are
used, take advantage of cache and SIMD pipelines available on some processors,
such as Altivec or SSE extensions. Storing all exponents could consume much
more memory than recursive representation. To reduce memory footprint of this
representation, we compress blocks of exponents using shift and mask operations
when exponents become unused. Compression factor is good because exponents
have many times the same values for the most factorized variables in a block.
Compression and decompression operations, when polynomial multiplications or
additions are performed, show a negligible runtime overhead because it requires
only integer arithmetics.

3 Multiplication Using Burst Tries

Multiplication of two sparse polynomials requires to use the naive algorithm of
the multiplication because Karatsuba algorithm and FFT methods are only well
adapted for dense polynomials. When polynomials are stored in the recursive list
or vector, a simple naive recursive algorithm is performed. If the recursive vector
or list is viewed as a tree, multiplication consists only as insertion of nodes in a
tree. Using the flat vector representation, multiplication requires to sort terms
on exponents. Hida [6] uses an hash table to sort terms during multiplication of
its flat vectors in order to reduce execution time. To have good performance with
hash table, it requires to find an efficient hashing function and the size of the
hash table must be sufficiently large in memory. The massively parallel Deprit’s
algorithm [9] requires much more memory : Their first step needs memory for
2nm coeflicients to perform the product of two series with n and m terms.

Burst trie Coefficients

Fig. 2. Burst trie holding 3 + 5z + 72% + 11y + 92y + 13zyx + 82222 + 9z*. Here, the
burst threshold is set to the value 5 instead of 10. Italic numbers in the burst trie are
indices of coefficients in the array of coefficients.

We prefer to find another method to sort terms during multiplication. Expo-
nents in a term could be viewed as a string not of characters but of integers. Ef-
ficient data structure to sort strings of characters are binary search trees (BST),
splay trees, judy array and tries. Heinz has developed a new data structure, burst
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trie [7], to sort large strings in memory. A burst trie consists in an access trie
whose leaves are containers. A container, which could be a sorted list or BST,
has few data. The access trie can be viewed as a recursive vector whose leaves are
list or BST. The trie node contains only the minimal and maximal exponents.
The container has all trailing exponents. The trailing zero exponents are not
stored in the burst trie. Figure [2 shows an example of burst trie which contains
the polynomial 3 4 5z + 723 + 11y 4 9zy + 13zyx + 82222 4+ 92*. A burst trie is
built during the multiplication and a final step is performed to copy exponents
into the vector. When terms are inserted into the burst trie and the number of
data in a container reaches a threshold, the container requires to be converted in
a trie node with new containers as leaves. This process is called bursting. In our
implementation, containers are a sorted list and experiments show that bursting
must be performed when containers have 10 elements. Coefficients associated
with the terms in the burst trie are stored in large blocks and their indexes are
stored with the k' exponent if we multiply 2 polynomials of k variables. Figure
[ shows a stable speedup about to 60% over recursive vector when a flat vector
representation and multiplication using burst trie as intermediate data structure
are used.
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Fig. 3. (a). Relative computation time of s1 * (s +1) with s1 = (14+z14+z2+... +2,)*°
using different representations versus computation time for the recursive vector. (b).
Relative computation time of s1 * (s1 + 1) with s1 = (1 + x + y + 2)? using different
representations versus computation time for the recursive vector.

4 Parallel Multiplication on SMP Hardware

We decide to parallelize the multiplication operation because it takes most of
the time in our computations. Currently, Symmetric Multi-Processing or Multi-
Threading Systems are becoming more and more popular and cheaper. TRIP
uses threads to implement parallelism in shared memory multiprocessor archi-
tectures. All threads within a process share the same address space. Communi-
cation between threads is more efficient and easier to use than communication
between processes. Threads must take care when they write to shared data :
it requires synchronization mechanisms. Thread mechanisms could be imple-
mented using OpenMP APIT or POSIX Threads API. For POSIX Threads, we
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adopt a manager-worker queue model in TRIP : a single thread, the manager
assigns work to other threads, the workers. The manager thread uses a dynamic
scheduling to split the multiplication operation. All workers are created at the
beginning and accept work from a common queue. The number of workers is
dynamic : the user can fix the number of workers by setting a global variable in
its interactive TRIP session.
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Fig. 4. Speedup of computation (14 z + 3y + 5z + 7t)%3 * (1 + 11z + 13y + 17z + 23t)*
using different representations with a manager-worker queue model. Computations are
performed on a server, equipped with 8 Intel Itanium2 processors (1.5GHz with a 400
MHz system bus) running Linux operating system (kernel 2.6), and another server,
equipped with 16 IBM Power4 processors running AIX 5.2 operating system.

Figure [ shows the scalability of multiplication using the recursive vector and
flat vector representations. Recursive vector representation scales linearly but
flat vector representation does not scale as well as recursive ones because each
thread builds a burst trie and a final step is required to merge all burst tries.

5 Memory Management

Most computer algebra systems use a garbage collector to perform memory op-
erations instead of explicit memory management. TRIP have two objectives for
memory management : reduce memory consumption and have efficient perfor-
mance. Garbage collection generally results in poorer performance or higher
space consumption. Garbage collectors require much more memory to be faster
than explicit memory management (Zorn, [I0] and Hertz, [11]). We decide to
use explicit memory management (allocation with system call malloc and deal-
location with free).

The frequency of allocation and the size of allocated objects depend on the
representations of series used in TRIP. Flat vectors allocate large blocks of mem-
ory but it doesn’t happen very often. This representation uses operating system
system calls (malloc and free). A recursive list representation requires many
allocations of very small blocks of memory for the elements in the list. These
blocks always have the same size. A recursive vector representation often allo-
cates blocks of different sizes but these sizes are smaller than flat vectors ones.
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5.1 Memory Management for a Recursive List Representation

Most explicit memory managers add an overhead to each allocated block of
memory. For example, Doug Lea’s Malloc [12], used in the GNU C library, adds
size and status information before the available user space data returned by
the system call malloc. In addition, it aligns data on 8 bytes even on 32-bit
operating systems. So each element in the list of the recursive list representation
will have an unnecessary overhead. We designed a custom memory manager
for the single threaded version of TRIP, called rlalloc in this paper, in order
to reduce the overhead in the allocation of elements of lists. The design of an
efficient custom memory manager is an hard task as shown in the Berger’s review
[13]. Our memory manager splits a large memory chunk requested from the
operating system in individual blocks of the size of the element of the recursive
list representation. The only overhead is a single linked-list which contains the
address of the large memory chunk. Free blocks are stored in a single linked-list:
The pointer of this list is stored in the user data space. So it doesn’t consume
extra memory. The free operation sums up to add the freed block in this single
linked-list.

Table 1. Computation time and memory consumption of s1 * (s1 + 1) with sl =
(1+m+y+z+t)25 using different memory managers. Polynomial is stored as a recursive
list. Measured time (sum of user CPU time and system CPU time) is expressed in
seconds and space used (size of the trip process in memory) in kilobytes.

Machine time (s)  memory (Kb)

system rlalloc system rlalloc
Intel Xeon 3.06Ghz - Linux 32-bits - glibc 2.3.4 108 83 22360 19688
Intel Xeon 3.6Ghz - Linux 64-bits - glibc 2.3.4 87 63 44656 33920
Apple G5 2.0Ghz - Mac os X 10.4 64-bits 225 186 28748 22504

Table [l presents timing and memory consumption with our custom memory
manager and the system memory manager (memory manager located in the C
library of the system). Computations are performed on several operating system
and hardware with a single cpu to see the effect of the system memory manager
on time and memory used. The numerical coefficients in the polynomial sl are
double-precision floats in order to reduce computation time in coefficient arith-
metic. Our memory manager reduces memory footprint about 25%. We observe
increased speed up to 27% with our allocator. Most system memory managers,
like "Doug Lea’s Malloc” on Linux, use a best-fit algorithm even for small allo-
cated blocks which produces many split and merge operations on their internal
chunks. Furthermore, this memory manager is used for fixed-size numerical co-
efficient, like quadruple-precision float or arbitrary size rational numbers.

5.2 Memory Management for the Burst Tries

When multiplication of two sparse polynomials using burst tries is performed, the
containers in burst tries have many small lists. The memory manager described in
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the previous paragraph is used to allocate memory for this list in a multi-thread
context with no lock mechanism because burst tries are always allocated and
freed by the same thread. This provides better performance on SMP hardware.

6 Benchmarks with Other Computer Algebra Systems

Previous benchmarks on sparse polynomial multiplication, such as Fateman’s
review [14], show that PARI/GP and Singular have very good performance. So
we compare the speed and memory consumption of TRIP, PARI/GP [I5] and
Singular [I6] for sparse polynomial multiplication. This benchmark is performed
on a single-core processor server to disable parallelization multiplication in TRIP.
As the benchmark depends on coefficient arithmetic, the same version (4.1.4) of
GNU Multiple Precision Arithmetic Library [17] is used for all computations.
The current stable version 2.1.7 of PARI/GP supports only a native kernel for
multi-precision kernel, a comparison with the current development version of
this library with a GMP kernel is performed in order to have the same multi-
precision kernel. Table 2] presents timing results and memory used for computing
s1% (s1+ 1) with s1 = (14+2+y+ 2+ )% and sg * (s + 1) with s2 =
(1/3%x43/5xy+5/T+2+7/11%t)%°. Our recursive and flat vector have better
execution time than PARI/GP and Singular but the recursive representation
consume more memory than Singular in some cases.

Table 2. Comparison of time and memory consumption with other computer algebra
systems. Measured time (sum of user and system CPU time) is expressed in seconds
and space used in kilobytes. Computations are performed on an Intel Xeon processor
with Linux operating system running at 3.06Ghz with a 533 MHz system bus.

Computer algebra systems s1k(s1+1) s2 % (s2+ 1)
time (s) memory (Kb) time (s) memory (Kb)
PARI/GP 2.1.7 82.1 N/A 2256 N/A
PARI/GP 2.2.11 (GMP kernel)  67.8 N/A 1776 N/A
Singular 3.0.1 101.5 8383.5 42.8 982.9
TRIP 0.98 (recursive list) 54.6 7138.5 15.5 1370.0
TRIP 0.98 (recursive vector) 42.9 5953.7 16.5 1831.4
TRIP 0.98 (flat vector) 24.1 3609.1 13.3 721.2

7 Conclusion

Flat vector representation of sparse multivariate polynomials improves the exe-
cution time and memory usage when multiplications using burst tries are per-
formed. The multiplication using burst tries of sparse polynomials is efficient
for a large number of variables and also for a large degree and it scales almost
linearly on SMP architectures. Internal representations of sparse polynomials
in the computer algebra system TRIP are sufficiently tuned to compute power
series and polynomials up to a high degree with a large number of variables.
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