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Abstract. Many algorithms have been proposed for deriving regulatory
networks from microarray gene expression data. The performance of such
algorithms is often measured by how well the resulting network can recre-
ate the gene expression data that it was derived from. However, this kind
of performance does not necessarily mean that the regulatory hypotheses
in the network are biologically plausible. We therefore propose a method
for assessing the biological plausibility of regulatory hypotheses using
prior knowledge in the form of regulatory pathway databases and Gene
Ontology-based annotation of gene products. A set of templates is de-
rived by generalising from known interactions to typical properties of
interacting gene product pairs. By searching for matches in this set of
templates, the plausibility of regulatory hypotheses can be assessed. We
evaluate to what degree the collection of templates can separate true
from false positive interactions, and we illustrate the practical use of the
method by applying it to an example network reconstruction problem.

1 Introduction

It is highly desirable to be able to derive causal gene regulatory networks using
gene expression data. This is known as reverse engineering of genetic networks[I].
Time series expression data is often used, and the task of the reverse engineering
algorithm is to find a set of activation rules that fits these data. Methods for re-
verse engineering of genetic networks that have been proposed include techniques
such as boolean [2,[3], neural [4,[5] and Bayesian networks [6,[7,[8]. In most cases,
however, many different reverse engineered networks are consistent with the ob-
served data, but we can expect only a few of these networks to be biologically
plausible. A drawback of reverse engineering methods which are based solely on
fit to the data is that they do not provide any way of distinguishing between
biologically plausible and implausible networks. Therefore, we here propose a
method for assessing the biological plausibility of regulatory hypotheses using
prior biological knowledge in the form of Gene Ontology (GO) annotation of
gene products and examples of regulatory interactions from pathway databases.
Using GO, we derive templates encoding general knowledge by generalising from
examples of known interactions to typical properties of interacting gene product
pairs. By matching regulatory hypotheses to such templates, their plausibility
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can be assessed. The assumption is that if the properties of the gene products in
a regulatory hypothesis are similar to those of gene products which are already
known to interact, this increases the plausibility of the hypothesis.

Gene Ontology [9] is a structured vocabulary of molecular biology. It contains
three different sub-ontologies covering the molecular functions, biological pro-
cesses and cellular components of gene products, and is structured as a directed
acyclic graph showing how terms are related to each other, using inheritance (IS-
A) and aggregation (PART-OF). Using these relations, abstraction hierarchies
of terms with different specificity are created. A gene product can be associated
with several terms in each sub-ontology. One important use of an ontology is
the calculation of semantic similarity between two terms. Different information
theoretic measures have been proposed and applied for this purpose [10,11112]
and ideas from these measures are used in our method.

The concept of templates is appealing for identifying hypothetical regulatory
relations that are similar to known regulatory relations. Templates have previ-
ously been used in the context of association rule discovery and expression data
in [13], where a template-language was designed that allows users to group, filter
and inspect a large number of rules produced by association rule discovery al-
gorithms. Of particular interest for our work are rule templates F'1 — F2 which
detect rules where the antecedent part contains any of the genes in a prede-
fined functional group F'1 and the consequent part contains a gene from another
predefined group F'2.

The basic idea behind the method proposed here is to use what we know
about regulation in documented pathways, generalise this knowledge, and apply
it for assessment of the plausibility of regulatory hypotheses. The GO molecular
function classification of the gene products participating in regulatory relations
in pathways is used to derive templates. The templates encode the types of gene
products known to be involved in a particular type of regulatory relation.

2 Methods and Algorithms

The three main steps of the method are: (1) GO term probability calculation,
(2) binary relation extraction, and (3) template derivation.

Step 1: GO term probability calculation. The GO term probability calcu-
lation is done as specified in [I4] using annotations of the S. cerevisiae Genome
Database (SGD) available at the GO website (http://www.geneontology.org,
September 2005). The term probability calculation is defined as follows, where
D4 is a GO annotation database for gene products (in this case SGD):

— For each gene product GP; € Dy:
- Increment a counter C'NT} for each GO term GT) in the annotation of
GP; and increment the counter of each ancestor term of GT}.
— For each GO term GTy:
- Calculate the term probability p(GTy) = CJZVVE’C, where N4 is the total
number of annotations in D 4.
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The term probabilities indicate how specific, or common, different GO terms
are, and they are used as a measure of specificity of relation templates. The
specificity increases with decreasing term probability.

Step 2: Binary relation extraction. Each relation between protein complexes
is decomposed into a set of binary relations between pairs of gene products. These
binary relations are subsequently used to derive templates. In the following, Dp
is a regulatory pathway database, C; and C}; refer to complexes containing sets
of gene products, and rel is a specific relation type, e.g. ”"expression”:

— For each complex relation C;[rel]C; € Dp:
- Create |C;| - |C;| binary relations GPy[rel]GP, by combining each gene
product in C; with each gene product in C;, and add all new relations
to a set M OD of model relations.

Step 3: Template derivation. Templates representing generalised knowledge
of regulatory relations are derived. For each template a GO-score GS is cal-
culated, based on how common the two GO terms appearing in the template
are in the annotation database. This is formalised as the average information
content of the template terms, using standard information theoretic principles.
Templates are derived by the following procedure, where GID represents a GO
identifier:

— For each binary relation GPy[rel]lGP, € MOD:
- Create templates GID;[rel]|GID; where GID; € S,={GP; terms with
ancestors} and GID; € S;={GPF, terms with ancestors}, yielding |S| -
|Si| templates. Add these templates to a set T'.
— For each template GID;[rel|GID; € T
GS = —logs(p(GID;) + p(GID,))/2).

Using this information-theoretic definition of GS we get GS € [0, —log2(1/N4)],
where N4 is the total number of annotations in D 4. In order to facilitate in-
terpretation of G.S values and to make it easier to set a threshold for which
hypotheses to consider plausible we also calculate an “expect” value E for each
hypothesis H; according to:

E(H,) = |H|- |{t:teT/\G|ST(|t) > GS(H,)}| "

where H is the hypothesis set and E(H;) the expected number of template hits
for H; with GS(t) > GS(H;) if templates are randomly drawn from 7.

We refer to templates based only on annotation level terms (terms directly
associated with the gene products in D) as “basic templates”, while templates
containing GO terms of higher abstraction levels are referred to as “variant
templates”. When initially testing the approach using the S. cerevisiae cell-cycle
pathway relations from KEGG as input, the method derived 68 basic templates,
all with GO-scores in the interval [4.84,11.29], and 1236 variant templates with
GO-scores in the interval [0,10.97]. 54% of these variant templates had a GS
lower than the lower bound for the basic templates.
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Fig. 1. Part of the cell-cycle regulatory network of S. cerevisiae (adapted from [7])

As an example to illustrate the process of template derivation, we here con-
sider the complex-to-complex relation {SWI4,SWI6} [+¢] {CLN1,CLN2} in the
S. cerevisiae cell cycle pathway (figure [I). This relation between gene prod-
uct complexes is decomposed into the four binary relations ”SWI4 [+e] CLN1”,
"SWI4 [+e] CLN2”, ?”SWI6 [+e] CLN1” and ”SWI6 [+e] CLN2”. Each of these
are used for template derivation. When ”SWI4 [+e] CLN1” is used, each of the
terms in the GO subgraph of SWI4 in figure[2 are combined with those for CLN1
to create templates. The basic template in this case would be ”GO:0003700 [+e€]
G0:0016538”, with a GO-score of —log2((0.01040.003)/2)) = 7.27. Variant tem-
plates are for example ?G0:0003700 [+¢e] GO:0019887” and ”GO0:0030528 [+¢]
GO:0019207”, with GO-scores —log2((0.010+0.005)/2)) = 7.06 and —log2((0.052
+0.005)/2))=>5.13, respectively. With six terms for SWI4 and five terms for
CLN1, there is a total of 30 templates for this relation (one basic and 29 variant
templates).

The derived set of templates is used in the assessment of hypothetical regu-
latory relations derived using e.g. reverse engineering algorithms. A hypothet-
ical relation (or hypothesis for short) is defined as a directed relation between
two gene products. There can be different relation types, e.g. ”expression” and
”phosphorylation”. Each hypothesis GPhy[rel]GPh; from a set H of regulatory
hypotheses is assessed by the templates using the following procedure:

— For each template GID;[rel|GID; € T
- Report template match if GID; € {GPhy, terms with ancestors} and
GID; € {GPh; terms with ancestors}.
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» G0:0003700 (0.010) ? G0:0016538 (0.003)
/
GO0:0003677 (0.032) G0O:0019887 (0.005)
/
G0:0003676 (0.090) G0:0030528 (0.052) GO0:0019207 (0.005)
\
GO:0005488 (0.156) G0:0030234 (0.023)
N\
G0:0003674 (1.000) G0O:0003674 (1.000)

Fig.2. GO subgraphs for SWI4 (A) and CLN1 (B). GO terms are represented by
nodes with probabilities in brackets. Directed edges represent IS-A relationships. A)
SWI4: GO:0003700 = transcription factor activity, 0003677 = DNA binding, 0003676
= nucleic acid binding, 0005488 = binding, 0003674 = molecular function, 0030528 =
transcription regulator activity. B) CLN1: 0016538 = cyclin-dependent kinase regula-
tor activity, 0019887 = protein kinase regulator activity, 0019207 = kinase regulator
activity, 0030234 = enzyme regulator activity.

This procedure results in a list of templates conforming to the hypothesis, ranked
in GO-score order. Subsequently, all hypotheses in H can be ranked in GO-score
order according to the highest-scoring template of each hypothesis.

3 Results

This section presents experiments done to assess the performance and to show
the practical use of the proposed method for plausibility assessment. Out of
the 12 types of regulatory relations supported by KEGG, we selected ”activa-
tion”, ”inhibition”, ”expression”, ”phosphorylation” and ”dephosphorylation”.
The only relation representing transcriptional regulation is ”expression”, while
the other four represent post-translational regulatory mechanisms.

In the evaluation, we study sets of hypothetical relations derived by applying
a dynamic Bayesian network technique to gene expression data measuring the
expression of genes during the S. cerevisiae cell cycle. Hypotheses derived in [15]
are shown together with their best-scoring templates in table[Il Each hypothesis
in the table is classified into one of four different categories of conformance with
respect to the target network in figure [Tk correct, transitive, misdirected and
incorrect [7]. The hypothetical relations are limited to cover only the part of
the cell cycle shown in figure[ll Relations from the whole S. cerevisiae cell cycle
pathway were used to derive the template set.
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Table 1. Regulatory hypotheses and best matching templates. Hypothesis: a directed
hypothetical relation between two gene products, derived in ref. [15]. Template: GO
term identifier for the left hand side of the template, followed by type of relation in
square brackets (E = ”expression”, P = ”phosphorylation”, I = ”inhibition”), and GO
term identifier for the right hand side of the template. Sc: GO-score of the template.
E: the expected number of hits with a GO-score greater than or equal to the matching
template’s GO-score (see eq.[dl). Cl: hypothesis class, coded as in ref. [7] (C = correct
edge with respect to the known model, T = transitive edge which skips exactly one
gene product, M = misdirected edge, I = incorrect edge). The left half of the table
shows hypotheses with £ < 1 and the right half those with £ > 1. Note that all five
correct hypotheses have ¥ < 1. In addition, correct hypotheses had the lowest average
E, followed by transitive hypotheses, while mis-directed and incorrect hypotheses had
substantially higher average E (C: 0.62, T: 0.96, I: 3.07, M: 3.48).

Hypothesis Template Sc E Cl Hypothesis Template Sc E Cl
FUS3—SIC1  4707[P]19210 10.7 0.07 CLN1—CLB6 19887[1]16538 7.971.29 T
CDC28—CDC6 4693[P]3689  9.97 0.18 CLB6—CLN2 19887[1]16538 7.97 1.29 I
CLN1—SIC1  16538[P]19210 9.04 0.47 CLN1—CLN3 19887[1]16538 7.971.29 I
SIC1—CLN2  19210[I]16538 9.04 0.47 CLB6—CLN1 19887[I]16538 7.97 1.29 I
CLN2—FARI1 16538[P]19210 9.04 0.47 CLN2—SWI4 16538[P]3700 7.24 2.36 M
CLB5—CDC6 16538[P]3689 8.97 0.52 FUS3—SWI4 4674[P]3700 6.57 3.59 I
CLN3—CDC6 16538[P]3689 8.97 0.52 CDC28—FUS3 4674[E]4674 6.51 3.68 I
FAR1—FAR1 4861[I]19887 8.59 0.59 CDC20—FARI1 30234[P]19210 6.38 4.03 I
FAR1—SIC1  19887[P]19210 8.53 0.63 CDC20—CLN2 30234[1]16538 6.23 4.60 I
FUS3—CLN3 4707[P]19887 8.53 0.63 CDC6—CLB6 3677[E]16538 5.82 7.07 M
CLB5—CDC28 19887[1]4693 8.33 0.96 CDC6—CLB5 3677[E]16538 5.82 7.07 M
CDC28—CLB5 4693[P]19207 8.24 0.99 SWI6—SWI6 30528[E]5515 4.26 12.9 I
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Fig. 3. Percentage of accumulated hypotheses as a function of GO-score for different
hypothesis classes for the relations derived in ref. [15] (left) and ref.[7] (right). Circles
= correct, squares = transitive, diamonds = misdirected, triangles = incorrect.

As can be seen in table[I] all correct hypotheses have F < 1, and the average
E of the class of correct hypotheses is higher than for any of the other classes.
This suggests that the approach is useful for reducing the number of false posi-
tives from a set of derived regulatory hypotheses by setting an F-value threshold
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for their plausibility. The results are visualised in figure [3] showing the accumu-
lation of hypotheses from different classes as a function of GO-score. It can be
noted that the curve representing the class of ” correct” hypotheses reaches 100%
before any other class, while the class ”incorrect” is the last to reach this level.
This suggests that templates and their GO-scores are useful in the evaluation of
hypothesis sets derived from data mining. For another hypothesis set, derived in
[7], the diagram at the right in figure Bl shows that the results are similar.

4 Discussion

We proposed a method based on the generalisation of knowledge of regulatory
pathways for assessing the biological plausibility of hypotheses derived during
regulatory network reconstruction. Our results demonstrate that the method is
able to filter out a large proportion of implausible hypotheses, thus improving
the specificity of the regulatory network reconstruction process.

Gene products in some hypotheses are identical or very similar to gene prod-
ucts in relations used for template derivation, with respect to GO functional
annotation. This means that the hypotheses are highly feasible, according to
our current general knowledge, while at the same time current specific knowl-
edge would suggest that they are incorrect. It is possible that a future more
fine-grained GO annotation will allow us to better discriminate between such hy-
potheses. It is also possible that future experiments show that some of these hy-
pothetical relations actually exist. A way to get higher accuracy for our method
could be to incorporate other sources of biological knowledge, such as transcrip-
tion factor binding site information or protein interactions.

Our method decomposes relations between gene product complexes into
atomic binary relations between individual gene products. This leads to cer-
tain problems, as can be observed e.g. for the CLN3-CDC28 complex in figure
[l In order to form this complex, CLN3 will bind to the CDC28 kinase and the
complex as a unit will phosphorylate SWI6. Hence, it is not entirely true that
CLN3 and CDC28 individually phosphorylate SWI6 as our method suggests. We
plan to extend our method so that complex relations can be handled without
being decomposed into binary relations.

Our method automatically identifies the biologically most plausible hypothe-
ses by a measure based on GO term specificity, but it would also be beneficial to
have the top scoring hypotheses assessed by a domain expert in order to reduce
the number of false positives.
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